
EPiC Series in Computing

Volume 94, 2023, Pages 457–472

Proceedings of 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning

Scalable Probabilistic Routes

Suwei Yang1,2, Victor C. Liang2, and Kuldeep S. Meel1

1 National University of Singapore, Singapore
2 GrabTaxi Holdings, Singapore

Abstract

Inference and prediction of routes have become of interest over the past decade owing
to a dramatic increase in package delivery and ride-sharing services. Given the underlying
combinatorial structure and the incorporation of probabilities, route prediction involves
techniques from both formal methods and machine learning. One promising approach
for predicting routes uses decision diagrams that are augmented with probability values.
However, the effectiveness of this approach depends on the size of the compiled decision
diagrams. The scalability of the approach is limited owing to its empirical runtime and
space complexity. In this work, our contributions are two-fold: first, we introduce a relaxed
encoding that uses a linear number of variables with respect to the number of vertices in a
road network graph to significantly reduce the size of resultant decision diagrams. Secondly,
instead of a stepwise sampling procedure, we propose a single pass sampling-based route
prediction. In our evaluations arising from a real-world road network, we demonstrate that
the resulting system achieves around twice the quality of suggested routes while being an
order of magnitude faster compared to state-of-the-art.

1 Introduction

The past decade has witnessed an unprecedented rise of the service economy, best highlighted
by the prevalence of delivery and ride-sharing services [9, 10]. For operational and financial
efficiency, a fundamental problem for such companies is the inference and prediction of routes
taken by the drivers. When a driver receives a job to navigate from location A to B, the ride-
sharing app needs to predict the route in order to determine: (1) the trip time, which is an
important consideration for the customer, (2) the fare, important consideration for both the
driver and the customer, and (3) the trip experience since customers feel safe when the driver
takes the route described in their app [2, 35]. However the reality is that drivers and customers
have preferences, as such the trips taken are not always the shortest possible by distance or
time [22]. To this end, delivery and ride-sharing service companies have a need for techniques
that can infer the distribution of routes and efficiently predict the likely route a driver takes
for a given start and end location.

Routing, a classic problem in computer science, has traditionally been approached without
considering the learning of distributions [1, 30]. However, Choi, Shen, and Darwiche demon-
strated through a series of papers that the distribution of routes can be conceptualized as a struc-
tured probability distribution (SPD) given the underlying combinatorial structure [6, 31, 32].

R. Piskac and A. Voronkov (eds.), LPAR 2023 (EPiC Series in Computing, vol. 94), pp. 457–472

Scalable Probabilistic Routes Yang, Liang and Meel

Decision diagrams, which are particularly well-suited for representing SPDs, have emerged
as the state-of-the-art approach for probability guided routing. The decision diagram based
approach allows for learning of SPDs through the use of decision diagrams augmented with
probability values, followed by a stepwise process for uncovering the route node by node.

However, scalability remains a challenge when using decision diagrams to reason about
route distributions, particularly for large road networks. Existing works address this concern
in various ways, such as through the use of hierarchical diagrams [6] and Structured Bayesian
Networks [31]. Choi et al. [6] partition the structured space into smaller subspaces, with each
subspace’s SPD being represented by a decision diagram. Shen et al. used Structured Bayesian
Networks to represent conditional dependencies between sets of random variables, with the
distribution within each set of variables represented by a conditional Probabilistic Sentential
Decision Diagram (PSDD) [31, 32]. Despite these efforts, the scalability of decision diagrams
for routing, in terms of space complexity, remains an open issue [7].

The primary contribution of this work is to tackle the scalability challenges faced by the
current state-of-the-art approaches. Our contributions are two-fold: first, we focus on mini-
mizing the size of the compiled diagram by relaxation and refinement. In particular, instead
of learning distributions over the set of all valid routes, we learn distributions over an over-
approximation, perform sampling followed by refinement to output a valid route. Secondly,
instead of a stepwise sampling procedure, we perform one-pass sampling by adapting existing
sampling algorithm [37] to perform conditional sampling. Our extensive empirical evaluation
over benchmarks arising from real-world publicly available road network data demonstrates
that our approach, called ProbRoute, is able to handle real-world instances that were clearly
beyond the reach of the state-of-the-art. Furthermore, on instances that can be handled by
prior state-of-the-art, ProbRoute achieves a median of 10× runtime performance improvements.

2 Background

In the remaining parts of this work we will discuss how to encode simple, more specifically
simple trips, in a graph using Boolean formulas. In addition, we will also discuss decision
diagrams and probabilistic reasoning with them. In this section, we introduce the preliminaries
and background for the rest of the paper. To avoid ambiguity, we use vertices to refer to nodes
of road network graphs and nodes to refer to nodes of decision diagrams.

2.1 Preliminaries

Simple Trip Let G be an arbitrary undirected graph, a path on G is a sequence of connected
vertices v1, v2, ..., vm of G where ∀m−1

i=1 vi+1 ∈ N(vi), with N(vi) referring to neighbours of vi. A
path π does not contain loops if ∀vi,vj∈πvi ̸= vj . π does not contain detour if ∀vi,vj ,vk,vl∈πvj ̸∈
N(vi)∨ vk ̸∈ N(vi)∨ vl ̸∈ N(vi). Path π is a simple path if it does not contain loops. A simple
path π is a simple trip if it does not contain detours. We denote the set of all simple trips in G
as SimpleTrip(G). In Figure 1, d-e-h is a simple trip whereas d-e-f-c-b-e-h and d-e-f-i-h are not
because they contain a loop and a detour respectively. We use Term(π) to refer to the terminal
vertices of path π.

Probabilistic Routing Problem In this paper, we tackle the probabilistic routing problem
which we define as the following. Given a graph G of an underlying road network, training
and testing data Dtrain, Dtest, start and end vertices s, t, sample path π from s to t such that
ε-match rate with ground truth path π′ ∈ Dtest is maximized. We define ε-match rate between

458

Scalable Probabilistic Routes Yang, Liang and Meel

a b c

d e f

g h i

Figure 1: A 3 × 3 grid graph

π and π′ as |Uclose(π)|÷ |U | where U is the set of vertices of π′ and Uclose(π) is the set of vertices
of π′ that are within ε euclidean distance away from the nearest vertex in π. More details on ε
will be discussed in Section 4.

Boolean Formula A Boolean variable can take values true or false. A literal x is a Boolean
variable or its negation. Let F be a Boolean formula. F is in conjunctive normal form (CNF)
if F is a conjunction of clauses, where each clause is a disjunction of literals. F is satisfiable if
there exists an assignment τ of the set of variables X of F such that F evaluates to true. We
refer to τ as a satisfying assignment of F and denote the set of all τ as Sol(F). In the remaining
parts of this paper, all formulas and variables are Boolean unless stated otherwise.

Decision Diagrams Decision diagrams are directed acyclic graph (DAG) representations of
logical formulas under the knowledge compilation paradigm. Decision diagrams are designed to
enable the tractable handling of certain types of queries, that is the queries can be answered in
polynomial time with respect to the number of nodes in the diagram [12]. We use diagram size
to refer to the number of nodes in a decision diagram. In this work we use the OBDD[∧] [20]
variant of OBDD, more specifically Probabilistic OBDD[∧] (PROB) [37], for which there are
existing efficient sampling algorithm. We will discuss the PROB decision diagram in later
sections.

2.2 Related Works

The continuous pursuit of compact representations by the research community has resulted in
several decision diagram forms over the years. Some of the decision diagram forms include
AOMDD for multi-valued variables, OBDD and SDD for binary variables [5, 11, 24]. Both
OBDD and SDD are canonical representations of Boolean formulas given variable ordering
for OBDD and Vtree for SDD respectively. OBDD [5] is comprised of internal nodes that
correspond to variables and leaf nodes that correspond to ⊤ or ⊥. Each internal node of
OBDD have exactly two child and represents the Shannon decomposition [4] on the variable
represented by that internal node. SDDs are comprised of elements and nodes [11]. Elements
represent conjunction of a prime and a sub, each of which can either be a terminal SDD or
a decomposition SDD. A decomposition SDD is represented by a node with child elements
representing the decomposition. A terminal SDD can be a literal, ⊤ or ⊥. The decompositions
of SDDs follow that of the respective Vtree, which is a full binary decision tree of Boolean
variables in the formula. In this work, we use the OBDD[∧] [20] variant of OBDD, which is
shown to be theoretically incomparable but empirically more succinct than SDDs [20].

459

Scalable Probabilistic Routes Yang, Liang and Meel

A related development formulates probabilistic circuits [8], based on sum-product networks
[28] and closely related to decision diagrams, as a special class of neural networks known as
Einsum networks [27]. In the Einsum network structure, leaf nodes represent different gaussian
distributions. By learning from data, Einsum networks are able to represent SPDs as weighted
sums and mixtures of gaussian distributions. Einsum networks address scalability by utilizing
tensor operations implemented in existing deep learning frameworks such as PyTorch [26].
Our work differs from the Einsum network structure, we require the determinism property for
decision diagrams whereas the underlying structure for Einsum network lacks this property. We
will introduce the determinism property in the following section.

Various Boolean encodings have been proposed for representing paths within a graph, includ-
ing Absolute, Compact, and Relative encodings [29]. These encodings capture both the vertices
comprising the path and the ordering information of said vertices. However, these encodings
necessitate the use of polynomial number of Boolean variables, specifically |V |2, |V |log2|V |,
and 2|V |2 variables for Absolute, Compact, and Relative encoding respectively. While these
encodings accurately represent the space of paths within a graph, they are not efficient and
lead to high space and time complexity for downstream routing tasks.

Choi, Shen, and Darwiche demonstrated over a series of papers that the distribution of
routes can be conceptualized as a structured probability distribution (SPD) given the underlying
combinatorial structure [6, 31, 32]. This approach, referred to as the ‘CSD’ approach in the rest
of this paper, builds on top of existing approaches that represents paths using zero-surpressed
decision diagrams [19, 17, 18]. The CSD approach utilizes sentential decision diagrams to
represent the SPD of paths and employs a stepwise methodology for handling path queries.
Specifically, at each step, the next vertex to visit is determined to be the one with the highest
probability, given the vertices already visited and the start and destination vertices. While the
CSD approach has been influential in its incorporation of probabilistic elements in addressing
the routing problem, it is not without limitations. In particular, there are two main limitations
(1) there are no guarantees of completion, meaning that even if a path exists between a given
start and destination vertex, it may not be returned using the CSD approach [6]. (2) the
stepwise routing process necessitates the repeated computation of conditional probabilities,
resulting in runtime inefficiencies.

In summary, the limitations of prior works are Boolean encodings that require a high number
of variables, lack of routing task completion guarantees, and numerous conditional probability
computations.

2.3 PROB: Probabilistic OBDD[∧]

In this subsection, we will introduce the PROB (Probabilistic OBDD[∧]) decision diagram
structure and properties. We adopt the same notations as prior work [37] for consistency.

Notations We use nodes to refer to nodes in PROB ψ and vertices to refer to nodes in
graph G(V,E) to avoid ambiguity. Child(n) refers to the children of node n. Hi(n) refers to
the hi child of decision node n and Lo(n) refers to the lo child of n. θHi(n) and θLo(n) refer
to the parameters associated with the edge connecting decision node n with Hi(n) and Lo(n)
respectively in a PROB. Var(n) refers to the associated variable of decision node n. VarSet(n)
refers to the set of variables of F represented by a PROB with n as the root node. Subdiagram(n)
refers to the PROB starting at node n. Parent(n) refers to the immediate parent nodes of n in
PROB.

460

Scalable Probabilistic Routes Yang, Liang and Meel

PROB Structure Let ψ be a PROB which represents a Boolean formula F . ψ is a DAG
comprising of four types of nodes - conjunction node, decision node, true node, and false node.

A conjunction node (or ∧-node) nc splits Boolean formula F into different sub-formulas, i.e.
F = F1 ∧F2 ∧ ...∧Fj . Each sub-formula is represented by a PROB rooted at the corresponding
child node of nc, such that the set of variables in each of F1, F2, ..., Fj are mutually disjoint.

A decision node nd corresponds to a Boolean variable x and has exactly two child nodes,
Hi(nd) and Lo(nd). Hi(nd) represents the decision to set x to true and Lo(nd) represents
otherwise. We use Var(nd) to refer to the Boolean variable x that decision node nd is associated
with in F . Each branch of nd has an associated parameter, and the branch parameters of nd
sum up to 1.

The leaf nodes of PROB ψ are true and false nodes. An assignment τ of Boolean formula
F is a traversal of the PROB from the root node to the leaf node, we denote such a traversal
as Repψ(τ). At each decision node nd, the traversal follows the value of variable Var(nd) in τ .
At each conjunction node, all child branches are traversed. A satisfying assignment of F will
result in a traversal from root to leaf nodes where only the true nodes are visited. If a traversal
leads to a false node at any point, then the assignment is not a satisfying assignment.

x

y z

⊤⊥

n1

n2 n3

n4 n5

θHi(n2)θLo(n2)
θHi(n3) θLo(n3)

θLo(n1) θHi(n1)

Figure 2: A PROB ψ1 representing F = (x ∨ y) ∧ (¬x ∨ ¬z)

An assignment of Boolean formula F is represented by a top-down traversal of a PROB
compiled from F . For example, we have a Boolean formula F = (x∨y)∧ (¬x∨¬z), represented
by the PROB ψ1 in Figure 2. When x is assigned true and z is assigned false, F will evaluate
to true. If we have a partial assignment τ , we can perform inference conditioned on τ if we
visit only the branches of decision nodes in ψ that agree with τ . This allows for conditional
sampling, which we discuss in Section 3.

PROB inherits important properties of OBDD[∧] that are useful to our algorithms in later
sections. The properties are - determinism, decomposability, and smoothness.

Property 1 (Determinism). For every decision node nd, the set of satisfying assignments
represented by Hi(nd) and Lo(nd) are logically disjoint

Property 2 (Decomposability). For every conjunction node nc, VarSet(ci) ∩ VarSet(cj) =
∅,∀ci, cj ∈ Child(nc), ci ̸= cj

Property 3 (Smoothness). For every decision node nd, VarSet(Hi(nd)) = VarSet(Lo(nd))

In the rest of this paper, all mentions of PROB refer to smooth PROB. Smoothness can
be achieved via a smoothing algorithm introduced in prior work [37]. We defer the smoothing
algorithm to the appendix.

461

Scalable Probabilistic Routes Yang, Liang and Meel

3 Approach

In this section, we introduce our approach, ProbRoute, which addresses the aforementioned
limitations of existing methods using (1) a novel relaxed encoding that requires a linear number
of Boolean variables and (2) a single-pass sampling and refinement approach which provides
completeness guarantees. The flow of ProbRoute is shown in Figure 3.

Encode
(Sec 3.1)

Compile into
OBDD[∧]

Learn parameters
(Sec 3.2)

Sample and
refinement
(Sec 3.3)

Graph

Data

Query Sampled Trip

Figure 3: Flow of ProbRoute, with red rectangles indicating this work. For compilation, we use
existing off-the-shelf techniques.

In our approach, we first use our relaxed encoding to encode SimpleTrip(G) of graph G into
a Boolean formula. Next, we compile the Boolean formula into OBDD[∧]. In order to learn
from historical trip data, we convert the data into assignments. Subsequently, the OBDD[∧] is
parameterized into PROB ψ and the parameters are learned from data. Finally to sample trips
from start vertex vs to destination vertex vt, we create a partial assignment τ ′ with the variables
that indicate vs and vt are terminal vertices set to true. The ProbSample algorithm, algorithm
2, takes τ ′ as input and samples a set of satisfying assignments. Finally, in the refinement step,
a simple trip π is extracted from each satisfying assignment τ using depth-first search to remove
disjoint loop components.

3.1 Relaxed Encoding

In this work, we present a novel relaxed encoding that only includes vertex membership and
terminal information. Our encoding only requires a linear (2|V |) number of Boolean variables,
resulting in more succinct decision diagrams and improved runtime performance for downstream
tasks. In relation to prior encodings, we observed that the ordering information of vertices can
be inferred from the graph given a set of vertices and the terminal vertices, thus enabling us to
exclude ordering information in our relaxed encoding. Our relaxed encoding represents an over-
approximation of trips in SimpleTrip(G) for graph G(V,E) using a linear number of Boolean
variables with respect to |V |. We discuss the over-approximation in later parts of this section.

Our encoding uses two types of Boolean variables, n-type and s-type variables. Each vertex
v ∈ V in graph G(V,E) has a corresponding n-type and s-type variable. The n-type variable
indicates if vertex v is part of a trip and s-type variable indicates if v is a terminal vertex of
the trip. Our encoding is the conjunction of the five types of clauses over all vertices in graph
G as follows.

462

Scalable Probabilistic Routes Yang, Liang and Meel

∨
i∈V

si (H1)∧
i∈V

[ni −→
∨

j∈adj(i)

nj] (H2)

∧
i,j,k∈V,
i ̸=j ̸=k

(¬si ∨ ¬sj ∨ ¬sk) (H3)

∧
i∈V

si −→ ni ∧
∧

j,k∈adj(i),j ̸=k

(¬nj ∨ ¬nk) (H4)

∧
i,j∈V,j∈adj(i)

[ni ∧ nj −→ si ∨ [(
∨

k∈adj(i),
k ̸=j ̸=i

nk) ∧
∧

l,m∈adj(i),
l,m̸=j

(¬nl ∨ ¬nm)]] (H5)

A simple trip π in graph G has at least one terminal vertex and at most two terminal
vertices, described by encoding components H1 and H3 respectively. At each terminal vertex vi
of π, there can only be at most 1 adjacent vertex of vi that is also part of π and this is encoded
by H4. For each vertex vi in π, at least one of their adjacent vertices is in π regardless if vi is a
terminal vertex or otherwise, this is captured by H2. Finally, H5 encodes that if a given vertex
vi and one of its adjacent vertices are part of π, then either another neighbour vertex of vi is
part of π or vi is a terminal vertex.

Definition 1. Let M : SimpleTrip(G) 7→ Sol(F) such that for a given trip π ∈ SimpleTrip(G),
τ =M(π) is the assignment whereby the n-type variables of all vertices v ∈ π and the s-type
variables of v ∈ Term(π) are set to true. All other variables are set to false in τ .

We refer to our encoding as relaxed encoding because the solution space of constraints
over-approximates the space of simple trips in the graph. Notice that while all simple trips cor-
respond to a satisfying assignment of the encoding, they are not the only satisfying assignments.
Assignments corresponding to a simple trip π with disjoint loop component β also satisfy the
constraints. The intuition is that β introduces no additional terminal vertices, hence H1, H3,
and H4 remain satisfied. Since the vertices in β always have n-type variables of exactly two of
its neighbours set to true, H5 and H2 remain satisfied. Thus, a simple trip with a disjoint loop
component also corresponds to a satisfying assignment of our encoding.

3.2 Learning Parameters from Data

We introduce algorithm 1, ProbLearn, for updating branch counters of PROB ψ from assign-
ments. In order to learn branch parameters θHi(n) and θLo(n) of decision node n, we require
a counter for each of its branches, Hi#(n) and Lo#(n) respectively. In the learning process,
we have a dataset of assignments for Boolean variables in the Boolean formula represented by
PROB ψ. For each assignment τ in the dataset, we perform a top-down traversal of ψ following
Algorithm 1. In the traversal, we visit all child branches of conjunction nodes (line 4) and the
child branch of decision node n corresponding to the assignment of Var(n) in τ (lines 6 to 12),
and increment the corresponding counters in the process. Subsequently, the branch parameters
for node n are updated according to the following formulas.

θHi(n) =
Hi#(n) + 1

Hi#(n) + Lo#(n) + 2
θLo(n) =

Lo#(n) + 1

Hi#(n) + Lo#(n) + 2

463

Scalable Probabilistic Routes Yang, Liang and Meel

Algorithm 1 ProbLearn - updates counters of ψ from data

Input: PROB ψ, τ - complete assignment of data instance

1: n← rootNode(ψ)
2: if n is ∧-node then
3: for c in Child(n) do
4: ProbLearn(c, τ)
5: if n is decision node then
6: l← getLiteral(τ,Var(n))
7: if l is positive literal then
8: Hi#(n) += 1
9: ProbLearn(Hi(n), τ)

10: else
11: Lo#(n) += 1
12: ProbLearn(Lo(n), τ)

While we add 1 to numerator and 2 to denominator as a form of Laplace smoothing [23],
other forms of smoothing to account for division by zero is possible. Notice that the learnt
branch parameters of node n are in fact approximations of conditional probabilities according
to Proposition 1 and Remark 1 as follows.

Proposition 1. Let n1 and n2 be decision nodes where n1 = Parent(n2) and Lo(n1) = n2,

θLo(n2) =
Lo#(n2)+1
Lo#(n1)+2 and θHi(n2) =

Hi#(n2)+1
Lo#(n1)+2 .

Proof. Recall that the Lo branch parameter of n2 is:

θLo(n2) =
Lo#(n2) + 1

Hi#(n2) + Lo#(n2) + 2

Notice that Hi#(n2)+Lo#(n2) = Lo#(n1) as all top-down traversals of ψ that pass through
n2 will have to pass through the Lo branch of n1.

θLo(n2) =
Lo#(n2) + 1

Lo#(n1) + 2

A similar argument can be made for θHi(n2) by symmetry. In the general case if n2 has more
than one parent, then the term Hi#(n2) + Lo#(n2) is the sum of counts of branch traversals of
all parent nodes of n2 that leads to n2. Additionally, any conjunction node c between n1 and
n2 will not affect the proof because all children of c will be traversed. For understanding, one
can refer to the example in Figure 2 where n1 corresponds to the root node.

Remark 1. Recall that Var(n1) = x and Var(n2) = y in PROB ψ1 in Figure 2. Observe that
Lo#(n2)
Lo#(n1) for PROB ψ1 in Figure 2 is the conditional probability Pr(¬y|¬x) as it represents the

count of traversals that passed through Lo branch of n2 out of total count of traversals that
passed through Lo branch of n1. A similar observation can be made for Hi(n2).

464

Scalable Probabilistic Routes Yang, Liang and Meel

Notice that as the Lo#(n2) and Lo#(n1) becomes significantly large, that is Lo#(n2) >> 1
and Lo#(n1) >> 2:

θLo(n2) =
Lo#(n2) + 1

Lo#(n1) + 2
≈ Lo#(n2)

Lo#(n1)
= Pr(¬y|¬x)

As such, the learnt branch parameters are approximate conditional probabilities.

3.3 Sampling Trip Query Answers

Algorithm 2 ProbSample - returns sampled assignment

Input: PROB ψ, partial assignment τ ′

Output: complete assignment that agrees with τ ′

1: caches ω, γ ←− initCache()
2: for node n in bottom-up ordering of ψ do
3: if n is ⊤ node then
4: ω[n]←− ∅, γ[n]←− 1
5: else if n is ⊥ node then
6: ω[n]←− Invalid, γ[n]←− 0
7: else if n is ∧ node then
8: ω[n]←− unionChild(Child(n), ω)
9: γ[n]←−

∏
c∈Child(n) γ[c]

10: else
11: if Var(n) in τ ′ then
12: if ω[τ ′[Var(n)]] is Invalid then
13: ω[n]←− Invalid, γ[n]←− 0
14: else
15: ω[n]←− followAssign(τ)
16: if τ ′[Var(n)] is ¬Var(n) then
17: γ[n]←− θLo(n)× γ[Lo(n)]
18: else
19: γ[n]←− θHi(n)× γ[Hi(n)]
20: else
21: l←− θLo(n)× γ[Lo(n)]
22: h←− θHi(n)× γ[Hi(n)]
23: γ[n]←− l + h
24: α←− Binomial(h

l+h)
25: if α is 1 then
26: ω[n]←− ω[Hi(n)] ∪ Var(n)
27: else
28: ω[n]←− ω[Lo(n)] ∪ ¬Var(n)
29: return ω[rootnode(ψ)]

The ability to conditionally sample trips is critical to handling trip queries for arbitrary
start-end vertices, for which a trip is to be sampled conditioned on the given start and end
vertices. In this work, we adapted the weighted sampling algorithm using PROB, which was
introduced by prior work [37], to support conditional sampling and denote it as ProbSample.

465

Scalable Probabilistic Routes Yang, Liang and Meel

Algorithm 2, ProbSample, performs sampling of satisfying assignments from a PROB ψ in a
bottom-up manner. ProbSample takes an input PROB ψ and partial assignment τ ′ and returns
a sampled complete assignment that agrees with τ ′. The input τ ′ specifies the terminal vertices
for a given trip query by assigning the s-type variables. ProbSample employs two caches ω and
γ, for partially sampled assignment at each node and joint probabilities during the sampling
process. In the process, ProbSample performs calculations of joint probabilities at each node.
In addition, ProbSample stores the partial samples at each node in ω. The partial sample for a
false node would be Invalid as it means that an assignment is unsatisfiable. On the other hand,
the partial sample for a true node is ∅ which will be incremented with variable assignments
during the processing of internal nodes of ψ. The partially sampled assignment at every ∧-node
c is the union of the samples of all its child nodes, as the child nodes have mutually disjoint
variable sets due to decomposability property. For a decision node d, if Var(d) is in τ ′, the partial
sample at d will be the union of the literal in τ ′ and the partial sample at the corresponding
child node (lines 11 to 19) to condition on τ ′. Otherwise, the partial assignment at d is sampled
according to the weighted joint probabilities l and h (lines 21 to 28). Finally, the output of
ProbSample would be the sampled assignment at the root node of ψ. To extend ProbSample to
sample k complete assignments, one has to keep k partial assignments in ω at each node during
the sampling process and sample k independent partial assignments at each decision node.

Proposition 2. Let PROB ψ represent Boolean formula F , ProbSample samples τ ∈ Sol(F)
according to the joint branch parameters, that is

∏
n∈Repψ(τ)

[(1− In)θLo(n)+ InθHi(n)] where In
is 1 if Hi(n) ∈ Repψ(τ) and 0 otherwise.

Proof. Let ψ be a PROB that only consists of decision nodes as internal nodes. At each
decision node d in the bottom-up sampling pass, assignment of Var(d) is sampled proportional
to θLo(d) × γ[Lo(d)] and θHi(d) × γ[Hi(d)] to be false and true respectively. Without loss of
generality, we focus on the term θLo(d)×γ[Lo(d)], a similar argument would follow for the other
branch by symmetry.

Let d2 denote Lo(d). Notice that γ[d2] is θLo(d2)×γ[Lo(d2)]+θHi(d2)×γ[Hi(d2)]. Expanding
the equation, the probability of sampling ¬Var(d) is θLo(d) × θLo(d2) × γ[Lo(d2)] + θLo(d) ×
θHi(d2)× γ[Hi(d2)]. If we expand γ[Lo(d)] recursively, we are considering all possible satisfying
assignments of VarSet(Lo(d)), more specifically we would be taking the sum of the product of
corresponding branch parameters of each possible satisfying assignment of VarSet(Lo(d)).

Observe that Var(d) is sampled to be assigned false with probability θLo(d) × θLo(d2) ×
γ[Lo(d2)] + θLo(d)× θHi(d2)× γ[Hi(d2)]. Similarly, Var(d2) is sampled to be assigned false with
probability θLo(d2) × γ[Lo(d2)]. Notice that if we view the bottom-up process in reverse, the
probability of sampling ¬Var(d) and ¬Var(d2) is θLo(d)×θLo(d2)×γ[Lo(d2)]. In the general case,
it then follows that a satisfying assignment would reach the true node which has γ value set to
1. It then follows that for each τ ∈ Sol(F), τ is sampled with probability P =

∏
n∈Repψ(τ)

[(1−
In)θLo(n) + InθHi(n)]. Notice that ∧-nodes have no impact on the sampling probability as no
additional terms are introduced in the product of branch parameters.

Remark 2. Recall in Remark 1 that θHi(n) and θLo(n) are approximately conditional proba-
bilities. By Proposition 2, assignment τ ∈ Sol(F) is sampled with probability proportional to∏
n∈Repψ(τ)

[(1−In)θLo(n)+InθHi(n)]. Notice that if we rewrite the product of branch parameters

as the product of approximate conditional probability, it is approximately the joint probability of
sampling τ .

466

Scalable Probabilistic Routes Yang, Liang and Meel

Refinement In the refinement step, we extract a trip from sampled assignment τ by removing
spurious disjoint loop components using depth-first search.

Definition 2. Let M′ : Sol(F) 7→ SimpleTrip(G) be the mapping function of the refinement
process, for a given graph G and its relaxed encoding F . For an assignment τ ∈ Sol(F), let Vτ
be the set of vertices in G that have their n-type variables set to true in τ . A depth-first search is
performed from the starting vertex on Vτ , removing disjoint components. The resultant simple
path is π =M′(G).

Although M′(·) is a many-to-one (i.e. surjective) mapping function, it is not a concern in
practice as trips with disjoint loop components are unlikely to occur in real-world or synthetic
trip data from which probabilities can be learned.

Theorem 1. Given vs, vt ∈ G, let πs,t ∈ SimpleTrip(G) be a trip between vs and vt. Let
Rπs,t = {τ | (τ ∈ Sol(F)) ∧ (M′(τ) = πs,t)}. Then,

Pr[πs,t is sampled] ∝
∑

τ∈Rπs,t

∏
n∈Repψ(τ)

[(1− In)θLo(n) + InθHi(n)]

Proof. From Definition 1 and 2, one can say that given a graph G and its relaxed encoding F ,
∀π ∈ SimpleTrip(G),∃τ ∈ Sol(F) such thatM′(τ) = π.

Notice that sampling πs,t amounts to sampling τ ∈ Rπs,t . As such, the probability of
sampling πs,t would be the sum over probability of sampling each member of Rπs,t . Recall
that the probability of sampling a single assignment τ is proportional to

∏
n∈Repψ(τ)

[(1 −
In)θLo(n) + InθHi(n)] by Proposition 2. As such the probability Pr[πs,t is sampled] is pro-
portional to

∑
τ∈Rπs,t

∏
n∈Repψ(τ)

[(1− In)θLo(n) + InθHi(n)].

Remark 3. It is worth noting that Pr[πs,t is sampled] > 0, as all branch parameters are greater
than 0 by definition. Recall that branch parameters are computed with a ’+1’ in numerator and
’+2’ in denominator, and given that branch counters are 0 or larger, branch parameters are
strictly positive.

4 Experiments

In order to evaluate the efficacy of ProbRoute, we built a prototype in Python 3.8 with
NumPy [16], toposort [33], OSMnx[3], and NetworkX [15] packages. We employ KCBox tool1

for OBDD[∧] compilation [20]. The experiments were conducted on a cluster of machines with
Intel Xeon Platinum 8272CL processors and 64GB of memory. In the experiments, we evaluated
ProbRoute against an adaptation of the state-of-the-art probabilistic routing approach [6] and
an off-the-shelf non-probabilistic routing library, Pyroutelib3 [36], in terms of quality of trip
suggestions and runtime performance. In particular, we adapted the state-of-the-art approach
by Choi et al [6] to sample for trips instead of computing the most probable trip and refer to
the adapted approach as ‘CSD’ in the rest of the section. In addition, we compared our relaxed
encoding to existing path encodings across various graphs, specifically to absolute encoding and
compact encoding [29].

Through the experiments, we investigate the following:

R1 Can ProbRoute effectively learn from data and sample quality trips?

1https://github.com/meelgroup/KCBox

467

Scalable Probabilistic Routes Yang, Liang and Meel

R2 How efficient is our relaxed encoding technique?

R3 What is the runtime performance of the ProbRoute?

Data Generation In this study, we use the real-world road network of Singapore obtained
from OpenStreetMap [25] using OSMnx. The road network graph Gr consisted of 23522 vertices
and 45146 edges along with their lengths. In addition, we also use an abstracted graph2 of Gr
which we denote as Ga for the remaining of this section. A vertex in Ga corresponds to a unique
subgraph of Gr.

Synthetic trips were generated by deviating from shortest path given start and end vertices.
A random pair of start and end vertices were selected in Gr and the shortest path π was found.
Next, the corresponding intermediate regions of π in Ga are blocked in Gr, and a new shortest
path π′ was found and deemed to be the synthetic trip generated. We generated 11000 synthetic
trips, 10000 for training and 1000 for evaluation. While we used Ga to keep the trip sampling
time reasonable, it is possible to use more fine-grained regions for offline applications.

4.1 R1: ProbRoute’s Ability to Learn Probabilities

To understand ProbRoute’s ability to learn probabilities from data, we evaluate its ability to
produce trips that closely resembles the ground truth. Both ProbRoute and CSD, which are
sampling-based approaches, were evaluated by sampling 20 trips and taking the median match
rate for each instance. Recall that the ε-match rate is defined as the proportion of vertices in
the ground truth trip that were within ε meters of euclidean distance from the closest vertex
in the proposed trip. In the evaluation, we set the ε tolerance to be the median edge length of
Gr, which is 64.359 meters, to account for parallel trips. To further emphasize the advantages
of probabilistic approaches, we included an off-the-shelf routing library, Pyroutelib3 [36], in the
comparison.

In order to conduct a fair comparison, we have adapted the CSD approach to utilize PROB
derived from our relaxed encoding. Our evaluation utilizes this adapted approach to sample a
trip on Ga in a stepwise manner, where the probability of the next step is conditioned on the
previous step and destination. The conditional probabilities are computed in a similar manner
to the computations of joint probabilities, which are the γ cache values, in the ProbSample.
The predicted trip on the road network Gr is determined by the shortest trip on the subgraph
formed by the sequence of sampled regions. In contrast, ProbRoute samples a trip on Ga in a
single pass, and subsequently retrieves the shortest trip on the subgraph of the sampled regions
as the predicted trip on Gr. It is worth noting that for sampling-based approaches, there may
be instances where a trip cannot be found on Gr due to factors such as a region in Ga containing
disconnected components. We incorporated a rejection sampling process with a maximum of
400 attempts and 5 minutes to account for such scenarios.

Table 1 shows the match rate statistics of the respective methods. Under ε-Match setting,
where ε is set as the median edge length of Gr to account for parallel trips, ProbRoute has
the highest match rate among the three approaches. In addition, ProbRoute produced perfect
matches for more than 25% of instances. ProbRoute has 0.316 ε-match rate on median, sig-
nificantly more than 0.172 for CSD and 0.107 for Pyroutelib. The trend is similar for exact
matches, where ε is set to 0 as shown under the ‘Exact Match’ columns in Table 1. In the
exact match setting, ProbRoute achieved a median of 0.310 match rate, almost double that

2We use the geohash system (geohash level 5) of partitioning the road network graph. For more information
on the format http://geohash.org/site/tips.html#format

468

Scalable Probabilistic Routes Yang, Liang and Meel

Stats Exact Match ε-Match
Pyroutelib CSD ProbRoute Pyroutelib CSD ProbRoute

25% 0.045 0.049 0.082 0.061 0.066 0.102
50% 0.088 0.160 0.310 0.107 0.172 0.316
75% 0.185 0.660 1.000 0.208 0.663 1.000
Mean 0.151 0.359 0.445 0.171 0.372 0.456

Table 1: Match rate statistics for completed benchmark instances by respective methods. The
percentages under ‘Stats’ column refer to the corresponding percentiles. ‘Exact Match’ refers
to match rate when ε = 0, and ‘ε-Match’ refers to match rate when ε is set to median edge
length of Gr.

of CSD’s 0.160 median match rate. The evaluation results also demonstrate the usefulness of
probabilistic approaches such as ProbRoute, especially in scenarios where experienced drivers
navigate according to their own heuristics which may be independent of the shortest trip. In
particular, ProbRoute would be able to learn and suggest trips that align with the unknown
heuristics of driver preferences given start and destination locations. Thus, the results provide
an affirmative answer to R1.

4.2 R2: Efficiency of Relaxed Encoding

Encoding Grid SGP
2 3 4 5

Absolute 99 1500 31768 1824769 TO
Compact 771 TO TO TO TO
Relaxed(Ours) 31 146 2368 20030 38318

Table 2: Comparison of OBDD[∧] size for different graphs, with 3600s timeout. Grid 2 refers
to a 2x2 grid graph. SGP refers to abstract graph (Ga) of Singapore road network.

We compared our relaxed encoding to existing path encodings across various graphs, specif-
ically to absolute encoding and compact encoding [29]. In the experiment, we had to adapt
compact encoding to CNF form with Tseitin transformation [34], as CNF is the standard input
for compilation tools. We compiled the CNFs of the encodings into OBDD[∧] form with 3600s
compilation timeout and compared the size of resultant diagrams. The results are shown in
Table 2, with rows corresponding to the different encodings used and columns corresponding to
different graphs being encoded. Entries with TO indicate that the compilation has timed out.
Table 2 shows that our relaxed encoding consistently results in smaller decision diagrams, up
to 91× smaller. It is also worth noting that relaxed encoding is the only encoding that leads
to compilation times under 3600s for the abstracted Singapore graph. The results strongly
support our claims about the significant improvements that our relaxed encoding brings.

4.3 R3: ProbRoute’s Runtime Performance

For wide adoption of new routing approaches, it is crucial to be able to handle the runtime
demands of existing applications. As such, we measured the relative runtimes of probabilistic
approaches, that is ProbRoute and CSD, with respect to existing routing system Pyroutelib

469

Scalable Probabilistic Routes Yang, Liang and Meel

Stats CSD
Pyroutelib

× 103 ProbRoute
Pyroutelib

× 103

25% 6.33 1.40
50% 21.64 2.00
75% 47.90 3.03
Mean 36.16 2.62

Table 3: Relative runtime statistics (lower is better) for completed instances by CSD and
ProbRoute. Under column ‘ CSD

Pyroutelib ’ and row ‘50%’, CSD approach takes a median of 21.64×103
times the runtime of Pyroutelib.

and show the relative runtimes in Table 3. From the result, ProbRoute is more than one order
of magnitude faster on median than the existing probabilistic approach CSD. The result also
shows that ProbRoute is also on median more than a magnitude closer to Pyroutelib’s runtime
using the same PROB as compared to CSD approach. In addition, CSD approach timed out on
650 of the 1000 test instances, while ProbRoute did not time out. Additionally, as mentioned
in [6], CSD does not guarantee being able to produce a complete trip from start to destination.
The results in Table 3 highlight the progress made by ProbRoute in closing the gap between
probabilistic routing approaches and existing routing systems.

5 Conclusion

Whilst we have demonstrated the efficiency of our approach, there are possible extensions to
make our approach more appealing for wide adoption. In terms of runtime performance, our
approach is three orders of magnitude slower than existing probability agnostic routing systems.
As such, there is still room for runtime improvements for our approach to be functional replace-
ments of existing routing systems. Additionally, our relaxed encoding only handles undirected
graphs at the moment and it would be of practical interest to extend the encoding to directed
graphs to handle one-way streets. Furthermore, it would also be of interest to incorporate
ideas to improve runtime performance from existing hierarchical path finding algorithms such
as contractual hierarchies, multi-level dijkstra and other related works [13, 14, 21].

In summary, we focused on addressing the scalability barrier for reasoning over route dis-
tributions. To this end, we contribute two techniques: a relaxation and refinement approach
that allows us to efficiently and compactly compile routes corresponding to real-world road
networks, and a one-pass route sampling technique. We demonstrated the effectiveness of our
approach on a real-world road network and observed around 91× smaller PROB, 10× faster
trip sampling runtime and almost 2× the match rate of state-of-the-art probabilistic approach,
bringing probabilistic approaches closer to achieving comparable runtime to traditional routing
tools.

6 Acknowledgments

We sincerely thank Yong Lai for the insightful discussions. We sincerely thank reviewers for the
constructive feedback. Suwei Yang is supported by the Grab-NUS AI Lab, a joint collaboration
between GrabTaxi Holdings Pte. Ltd., National University of Singapore, and the Industrial
Postgraduate Program (Grant: S18-1198-IPP-II) funded by the Economic Development Board
of Singapore. Kuldeep S. Meel is supported in part by National Research Foundation Singa-

470

Scalable Probabilistic Routes Yang, Liang and Meel

pore under its NRF Fellowship Programme(NRF-NRFFAI1-2019-0004), Ministry of Education
Singapore Tier 2 grant (MOE-T2EP20121-0011), and Ministry of Education Singapore Tier 1
Grant (R-252-000-B59-114).

References

[1] Ravindra K Ahuja, Kurt Mehlhorn, James Orlin, and Robert E Tarjan. Faster algorithms for the
shortest path problem. Journal of the ACM (JACM), 37(2):213–223, 1990.

[2] Siddhartha Banerjee, Carlos Riquelme, and R. Johari. Pricing in ride-share platforms: A queueing-
theoretic approach. Econometrics: Econometric & Statistical Methods - Special Topics eJournal,
2015.

[3] Geoff Boeing. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing com-
plex street networks. Econometrics: Computer Programs & Software eJournal, 2017.

[4] George Boole. An investigation of the laws of thought: On which are founded the mathematical
theories of logic and probabilities. 1854.

[5] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput., 35(8):677–691, 1986.

[6] Arthur Choi, Yujia Shen, and Adnan Darwiche. Tractability in structured probability spaces. In
NeurIPS, volume 30, pages 3477–3485, 2017.

[7] Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. Probability distributions over structured
spaces. In AAAI, 2015.

[8] YooJung Choi, A. Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying framework
for tractable probabilistic models. 2020.

[9] Regina R. Clewlow and G. Mishra. Disruptive transportation: The adoption, utilization, and
impacts of ride-hailing in the united states. 2017.

[10] Jack Collison. The impact of online food delivery services on restaurant sales. 2020.

[11] Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In
IJCAI, 2011.

[12] Adnan Darwiche and P. Marquis. A knowledge compilation map. J. Artif. Intell. Res., 17:229–264,
2002.

[13] Daniel Delling, Andrew Goldberg, Thomas Pajor, and Renato Werneck. Customizable route
planning. In Proceedings of the 10th International Symposium on Experimental Algorithms, 2011.

[14] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing in large
road networks using contraction hierarchies. Transp. Sci., 2012.

[15] Aric A. Hagberg, Daniel A. Schult, and Pieter Swart. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the 7th Python in Science Conference, pages 11 – 15,
2008.

[16] C. Harris, K. J. Millman, S. Walt, Ralf Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Tay-
lor, S. Berg, N. Smith, R. Kern, Matti Picus, S. Hoyer, M. Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fern’andez del R’io, Mark Wiebe, P. Peterson, Pierre G’erard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, Christoph Gohlke, and T. E. Oliphant. Array programming
with numpy. Nature, 585:357 – 362, 2020.

[17] Takeru Inoue, Hiroaki Iwashita, Jun Kawahara, and Shin ichi Minato. Graphillion: software
library for very large sets of labeled graphs. International Journal on Software Tools for Technology
Transfer, 2016.

[18] Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin ichi Minato. Frontier-based search for
enumerating all constrained subgraphs with compressed representation. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., 2017.

471

Scalable Probabilistic Routes Yang, Liang and Meel

[19] Donald Ervin Knuth. The art of computer programming, volume 4, fascicle 2: Generating all
tuples and permutations. 2005.

[20] Yong Lai, Dayou Liu, and Minghao Yin. New canonical representations by augmenting obdds
with conjunctive decomposition. Journal of Artificial Intelligence Research, 58:453–521, 2017.

[21] Ken C. K. Lee, Wang-Chien Lee, Baihua Zheng, and Yuan Tian. Road: A new spatial object
search framework for road networks. IEEE Transactions on Knowledge and Data Engineering,
2012.

[22] J. Letchner, John Krumm, and E. Horvitz. Trip router with individualized preferences (trip):
Incorporating personalization into route planning. In AAAI, 2006.

[23] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information
retrieval. 2008.

[24] R. Mateescu, R. Dechter, and Radu Marinescu. And/or multi-valued decision diagrams (aomdds)
for graphical models. J. Artif. Intell. Res., 2008.

[25] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https://www.
openstreetmap.org, 2017.

[26] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, Alban Desmaison, Andreas Köpf, E. Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, B. Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In NeurIPS, 2019.

[27] Robert Peharz, Steven Lang, A. Vergari, Karl Stelzner, Alejandro Molina, M. Trapp, Guy Van
den Broeck, K. Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable learning
of tractable probabilistic circuits. In ICML, 2020.

[28] Hoifung Poon and Pedro M. Domingos. Sum-product networks: A new deep architecture. 2011
IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages 689–
690, 2011.

[29] S. Prestwich. Sat problems with chains of dependent variables. Discret. Appl. Math., 130:329–350,
2003.

[30] Daniel J Rosenkrantz, Richard Edwin Stearns, and Philip M Lewis. Approximate algorithms for
the traveling salesperson problem. In 15th Annual Symposium on Switching and Automata Theory
(swat 1974), pages 33–42. IEEE, 1974.

[31] Yujia Shen, Arthur Choi, and Adnan Darwiche. Conditional psdds: Modeling and learning with
modular knowledge. In AAAI, 2018.

[32] Yujia Shen, Anchal Goyanka, Adnan Darwiche, and Arthur Choi. Structured bayesian networks:
From inference to learning with routes. In AAAI, 2019.

[33] Eric V. Smith. toposort, 2022.

[34] G. S. Tseitin. On the complexity of derivation in propositional calculus. 1983.

[35] Zheng Wang, Kun Fu, and Jieping Ye. Learning to estimate the travel time. Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018.

[36] Oliver White and Mikolaj Kuranowski. Pyroutelib3, 2017.

[37] Suwei Yang, Victor Liang, and Kuldeep S. Meel. Inc: A scalable incremental weighted sampler.
In FMCAD 2022, page 205, 2022.

472

 https://www.openstreetmap.org
 https://www.openstreetmap.org

	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Related Works
	2.3 PROB: Probabilistic OBDD[]

	3 Approach
	3.1 Relaxed Encoding
	3.2 Learning Parameters from Data
	3.3 Sampling Trip Query Answers

	4 Experiments
	4.1 R1: ProbRoute's Ability to Learn Probabilities
	4.2 R2: Efficiency of Relaxed Encoding
	4.3 R3: ProbRoute's Runtime Performance

	5 Conclusion
	6 Acknowledgments
	References

