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Abstract

Uniform sampling has drawn diverse applications in programming languages and soft-
ware engineering, like in constrained-random verification (CRV), constrained-fuzzing and
bug synthesis. The effectiveness of these applications depend on the uniformity of test
stimuli generated from a given set of constraints. Despite significant progress over the past
few years, the performance of the state of the art techniques still falls short of those of
heuristic methods employed in the industry which sacrifice either uniformity or scalability
when generating stimuli.

In this paper, we propose a new approach to the uniform generation that builds on
recent progress in knowledge compilation. The primary contribution of this paper is mar-
rying knowledge compilation with uniform sampling: our algorithm, KUS, employs the
state-of-the-art knowledge compilers to first compile constraints into d-DNNF form, and
then, generates samples by making two passes over the compiled representation.

We show that KUS is able to significantly outperform existing state-of-the-art algo-
rithms, SPUR and UniGen2, by up to 3 orders of magnitude in terms of runtime while
achieving a geometric speedup of 1.7× and 8.3× over SPUR and UniGen2 respectively.
Also, KUS achieves a lower PAR-21 score, around 0.82× that of SPUR and 0.38× that
of UniGen2. Furthermore, KUS achieves speedups of up to 3 orders of magnitude for in-
cremental sampling. The distribution generated by KUS is statistically indistinguishable
from that generated by an ideal uniform sampler. Moreover, KUS is almost oblivious to
the number of samples requested.

1 Introduction

Uniform sampling is becoming an important technique in multiple areas in computer science
from Bayesian analysis to software engineering and programming languages [35]. Some appli-
cations from these domains are as follows:

∗Part of this work was done during a visit to NUS Singapore
1PAR-2 scheme, that is, penalized average runtime, used in SAT-2017 Competition [3], assigns a runtime of
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• Dutra et al. [21] proposed the idea of constraint-based fuzzing, where one can fuzz (ran-
domly test) on the prefix of a symbolic path. This can lead to significant speedups by
combining the best of symbolic execution [31, 14] and random testing [8, 23, 25, 26].

• Constrained-random verification (CRV) [40] has been extremely successful in testing hard-
ware designs; the constraints are imposed by the hardware designers based on domain-
specific knowledge (preconditions, known invariants etc.), and uniform sampling is used
to generate tests that satisfy the provided constraints.

• Bug synthesis [42] attempts to create large bug corpora to test and tune the heuristics of
bug-finding tools. The algorithm uses a pre-selected path (seed path) to inject a bug, and
augments the path by additional guards to make the buggy location challenging to reach.
The quality of the guard predicates is gauged via uniform sampling: the path condition of
the seed path is uniformly sampled to generate tests; the number of these tests reaching
the buggy location via a guard is taken as a proxy for the quality of the guard predicate
and thus, transitively, the quality of the injected bug.

The success of application of uniform sampling in testing and debugging can be attributed
to the fact that, as the distribution of bugs in a program is not known a priori, a uniform prior
tends to be the best possible option.

One of the central problems in the field of artificial intelligence is that of probabilistic in-
ference, wherein we are given a graphical model describing conditional dependencies between
variables of interest, and we are required to compute the conditional probability of an event,
i.e., valuations of a subset of variables, given some evidence in the form of valuations of another
subset of variables. Over the past two decades, Darwiche and Marquis [18] have pioneered
the approach of knowledge compilation wherein a logical theory is compiled into a form that
allows performing probabilistic inference in polynomial time. It is known that there is a deep
connection between probabilistic inference and model counting [15, 41, 13]. Furthermore, Jer-
rum, Valiant, and Vazirani [30] observed another deep relationship between model counting and
uniform sampling. In particular, they showed that given access to an exact model counter, one
could design a uniform sampler which requires only polynomially many queries to the exact
model counter. In this context, one wonders if the recent advances in knowledge compilation
can be harnessed to design a scalable uniform sampler.

The primary contribution of this paper is marrying knowledge compilation with uniform
sampling to design a new algorithm, KUS, that performs uniform sampling, outperforming
current state-of-the-art approximately uniform and uniform samplers. The central idea behind
KUS is to first employ the state of the art knowledge compilation approaches to compile a given
CNF formula into d-DNNF form (formally described in Section 2), and then performing only
two passes over the d-DNNF representation to generate as many identically and independently
distributed samples as specified by the user. In typical industrial setting, the end user (i.e.,
verification engineer) typically invokes the underlying uniform generator repeatedly till a bug is
triggered or a desired coverage metric is reached. The key advantage of KUS is that a significant
amount of work needed for sample generation is performed offline, which is amortized over
many invocations made for sample generation. We have built a prototype implementation
of KUS, and show by means of extensive experiments that it significantly outperforms existing
state-of-the-art algorithms while generating sample distributions that are indistinguishable from
those generated by an ideal uniform sampler. KUS performs better than existing start-of-the-
art samplers, SPUR and UniGen2, by up to 3 orders of magnitude in terms of runtime while
achieving a geometric speedup of 1.7× and 8.3× over SPUR and UniGen2 respectively. Also,
KUS achieves a lower PAR-2 score around 0.82× that of SPUR and 0.38× that of UniGen2
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(PAR-2 scheme, that is, penalized average runtime, used in SAT-2017 Competition [3], assigns
a runtime of two times the time limit, instead of a “not solved” status’, for each benchmark not
solved by a solver). Furthermore, KUS achieves speedups of up to 3 orders of magnitude for
incremental sampling. We believe that the success of KUS will motivate researchers in testing,
verification, AI and knowledge compilation communities to investigate a broader set of logical
forms favorable for efficient uniform generation.

The rest of the paper is organized as follows. We first introduce notations and preliminaries
in Section 2. We discuss related work in Section 3 and present KUS in Section 4. We then
describe experimental methodology in Section 5 and discuss results in Section 5. Finally, we
conclude in Section 6.

2 Notations and Preliminaries

A literal is a Boolean variable or its negation. Let F be a Boolean formula in conjunctive
normal form (CNF) with the set of variables appearing in it denoted by X, referred to as the
support of F . An assignment of truth values to all the variables in the support of F is referred
to as its satisfying assignment or witness (denoted by σ). All witnesses of F constitute RF ; to
avoid clutter, whenever the formula F is clear from the context, we omit mentioning it.

2.1 Uniform Generators

We use Pr [X] to denote the probability of event X. Given a Boolean formula F , a probabilistic
generator of witnesses of F is a probabilistic algorithm that generates a random witness in RF .
A uniform generator Gu(·) is a probabilistic generator that guarantees

∀y ∈ RF ,Pr [Gu(F ) = y] =
1

|RF |
, (1)

An almost-uniform generator Gau(·, ·) ensures that:

∀y ∈ RF ,
1

(1 + ε)|RF |
≤ Pr [Gau(F, ε) = y] ≤ 1 + ε

|RF |
(2)

where ε > 0 is the specified tolerance. A near-uniform generator Gnu(·) further relaxes the
guarantee of uniformity, ensuring that Pr [Gnu(F ) = y] ≥ c

|RF | for a constant c, where 0 < c ≤ 1.

Probabilistic generators are allowed to “fail” occasionally (with a failure probability bounded
by a constant strictly less than 1): no witness may be returned even if RF 6= ∅;

2.2 Knowledge Compilation and d-DNNF representation

To deal with computational intractability of probabilistic reasoning, knowledge compilation
seeks to compile a knowledge base, often represented as a propositional formula in CNF, to a
target language. Thereafter, probabilistic reasoning tasks, which are often expressed as sequence
of queries, are performed by querying the knowledge base in the target language [18]. The
earliest and perhaps the most well known target language is Ordered Binary Decision Diagrams
(OBDDs), which has proven to be effective in circuit analysis and synthesis [9]. Several variants
of OBDD have been explored over the past two years. One of the such popular variant is
Deterministic Decomposable Negation Normal Form (d-DNNF), which is strict superset of
OBDDs. Since several probabilistic reasoning tasks such as probabilistic inference, Maximum
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Figure 1: DAGs generated from Dsharp and D4

a Posteriori (MAP) can be answered in polynomial time in the size of d-DNNF, d-DNNF have
emerged as a central target language in knowledge compilation community. To formally defined
d-DNNF, we first formally define Negation Normal Form (NNF):

Definition 1. [18] Let X be the set of propositional variables. A sentence in NNF is a rooted,
directed acyclic graph (DAG) where each leaf node i is labeled with true, false, y or ¬y, y ∈ X;
and each internal node is labeled with ∨ or ∧ and can have arbitrarily many children.

The d-DNNF form is a strict subset of this representation that further imposes that the
representation is:

• Deterministic: We refer to an NNF as deterministic if the operands of ∨ in all well-
formed Boolean formula in the NNF are mutually inconsistent.

• Decomposable: We refer to an NNF as decomposable if the operands of ∧ in all well-
formed Boolean formula in the NNF are expressed in a mutually disjoint set of variables.

The d-DNNF formulae can be represented as AND-OR graphs (DAGs) where a node is
either an AND node (represented by nodes labeled with “A”), an OR node (represented by
nodes labeled with “O”) or a literal (the leaves of the DAG). The operands of AND/OR nodes
appear as children of the node. Figure 1 shows d-DNNF representations of the same formula,
but generated using two different d-DNNF compilers, Dsharp and D4. For every node t, the
sub-formula corresponding to t is the formula corresponding to d-DNNF obtained by removing
all the nodes u such that there does not exist path from t to u.

The state-of-the-art d-DNNF construction tools like C2D [17], Dsharp [39] and D4 [29],
construct the d-DNNF representation where each OR node has exactly two children while an
AND node may have multiple children. Since our framework KUS employs modern d-DNNF
compiler, we assume that the OR node has exactly two children. This assumption is only for
the simplicity of exposition as our algorithms can be trivially adopted to the general d-DNNF
representations.

Decision-DNNF [29] is a close cousin of d-DNNF where the deterministic OR nodes are
replaced by ite(u,C1, C2) for a decision variable u; the semantics of ite is defined to select one
of the children, C1 or C2, depending on the polarity of u. The children subtrees, Ci, do not
contain the variable u. D4 is capable of generating both the d-DNNF and Decision-DNNF
representations; we use the d-DNNF representation from D4 for this work.
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3 Related Work

Sampling from solutions of constraint systems is challenged by the dual objectives of providing
scalability while ensuring strong guarantees of uniformity. Though it has been shown that, in
theory, provably uniform generator of SAT witnesses can be designed to run in probabilistic
polynomial time relative to an NP oracle [7], this algorithm does not scale in practice [36]. BDD
based techniques [44] to sample for SAT witnesses also suffer from scalability problems [32].

On the other end of the spectrum, adapted BDD based techniques [34] and random seed-
ing of DPLL SAT solvers [38], compromise guarantees of uniformity to achieve scalability [32].
Markov Chain Monte Carlo (MCMC) based methods for model counting and constrained-
random verification [43, 32], being heuristic in nature, refrain from providing theoretical guar-
antees of uniformity. Similarly, sampling techniques based on interval-propagation and belief
networks [20, 24, 28] tend to be scalable, but the generated distributions have been shown to
deviate significantly from the uniform distribution [33].

Hashing-based sampling [30, 7, 11, 12, 37] operate by partitioning the space of satisfying
assignments into small “cells” of roughly equal size using r-wise independent hash functions
(for a suitable value of r), and then randomly choosing a solution from a randomly picked cell.
Bellare et al. [7] showed that uniform generation can be guaranteed by choosing r = n (with n
variables in the propositional constraint), but understandably, it does not scale. Chakraborty et.
al [11] design a significantly more scalable near-uniform generator (UniWit) and Ermon et al. [22]
suggest further algorithmic improvements to uniform generation of witnesses. UniGen2 [12, 10]
exploits a deep connection between approximate counting and almost-uniform sampling [30]
to improve upon the ideas of UniWit, thereby providing stronger guarantees of uniformity and
scaling to formulae with hundreds of thousands of variables. Even so, the runtime performance
of UniGen2 falls short of the performance of heuristic methods commonly employed in industry,
for example, to generate stimuli for CRV; a random-constrained test case generator is typically
allowed to be 10× slower than a constraint solver 2.

Recently, Dutra et al. [21] proposed a new technique QuickSampler for efficient sampling.
QuickSampler uses a small number of constraint solver (Z3 [19]) calls to generate a large number
of samples. QuickSampler finds a random satisfying assignment, and then, flips the value of each
variable in the assignment; then, it uses constraint solver to check the satisfiability of newly
generated assignments. The difference between the original solution and the modified solutions
known as atomic mutations are then combined and applied to the original solution to generate
new solutions. The samples generated by QuickSampler are not guaranteed to satisfy the given
constraints. With no theoretical bound on the error, and the empirical evidence showing only
about three-fourths of the samples satisfying the constraints, such techniques would not be
suitable for a large number of applications. For example, applied to CRV, the false positive
rate can grow arbitrarily large due to failure on tests that do not satisfy the preconditions.

Concurrently, Achlioptas, Hammoudeh, and Theodoropoulos have developed another ap-
proach, called SPUR [5], to uniform sampling by traversing the search of a component-caching
based exact model counters such as sharpSAT. SPUR was shown to be 1-2 orders of magnitude
faster than UniGen2 for a large set of benchmarks. Our algorithm, KUS, encompasses SPUR
due to a strong connection between search and knowledge compilation demonstrated in [27];
wherein it was shown that the search-based algorithms for model counting such as sharpSAT
generate traces belonging to d-DNNF language. As we demonstrate in this paper, this general-
ization allows us to exploit highly efficient d-DNNF compilers, allowing our algorithm to solve
69 more instances than SPUR out of 1425 benchmarks and gain about 1.7× speedup.

2Private communication with industry expert W. Hung
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Algorithm 1 KUS(F, s)

1: dag← Compile(F )
2: dag← Annotate(dag)
3: SampleList← Sampler(dag.root, s)
4: SampleList← RandomAssignment(SampleList)
5: return SampleList

We close the review of prior work by a brief exposition to knowledge compilation. As dis-
cussed in section 2, knowledge compilation attempts to build representations that aid certain
propositional reasoning tasks. Other than the OBDD, d-DNNF and decision-DNNF represen-
tations, the Sentential Decision Diagram (SDD) [16] has also become quite popular. SDDs are
strictly more general than OBDDs and are canonical up to a given binary tree of variables
(referred to as a vtree). Quite a few compilers have been proposed for these forms: the pop-
ular BuDDy [1] and MuDDy [2] packages for BDDs, C2D [17], Dsharp [39] and D4 [29] for
d-DNNFs and SDD [4] for SDDs. The C2D compiler pioneered efficient d-DNNF compilation:
it is based on an exhaustive recursive (rather than iterative) DPLL traversal. Given a CNF,
C2D attempts to partition the clauses into two sets that do not share variables; these partitions
are then compiled independently and the results are conjoined together. Dsharp improves upon
C2D by performing the partitioning dynamically during the DPLL exploration (instead of the
static decomposition used by C2D), and further using Implicit Binary Constraint Propagation
(IBCP) to discover inconsistencies quicker. D4 is a recent work that uses different decomposi-
tion heuristics in an attempt to keep the best of the static and dynamic decomposition strategies
from C2D and Dsharp.

4 Algorithm

In this section, we discuss our primary technical contribution: KUS, a uniform sampler that
employs knowledge compilation techniques. We close the section with theoretical analysis of
KUS.

KUS takes in a CNF formula F and required number of samples s and returns a set of s sam-
ples such that each sample is uniformly and independently drawn from the uniform distribution
over the set of solutions RF . KUS is presented in Algorithm 1. KUS first invokes a d-DNNF
compiler over the formula F (line 1) to obtain its d-DNNF. Then, the subroutine Annotate is
invoked in line 2 that annotates d-DNNF by annotating each node with a tuple consisting of
the number of solutions and the set of variables in the node’s corresponding sub-formula. Then,
the subroutine Sampler is invoked in line 3 that returns s uniformly and independently drawn
samples. Finally, KUS gives random assignment to the unassigned variables for each sample in
the SampleList to account for unconstrained variables that do not appear in d-DNNF by invok-
ing the subroutine RandomAssignment (line 4). We now describe the two subroutines Annotate
and Sampler in detail.

4.1 Annotate

The subroutine Annotate is presented in Algorithm 2. Annotate takes in a d-DNNF as input and
returns an annotated d-DNNF where each node t is annotated with a tuple consisting of the
number of solutions and the set of variables in the sub-formula rooted at t. Annotate performs
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Algorithm 2 Bottom up pass for annotating d-DNNF

1: function Annotate(dag)
2: for t ∈ ReverseTopologicalOrder(dag) do
3: if label(t) = Literal then
4: count(t)← 1
5: set(t)← var(t)
6: else if label(t) = OR then
7: set(t)← set(t.left) ∪ set(t.right)
8: for c ∈ {t.left, t.right} do
9: if set(c) 6= set(t) then . upgrade

10: count(c)← count(c) ∗ 2|set(t)|−|set(c)|

11: set(c)← set(t)

12: count(t)← count(t.left) + count(t.right)
13: else if label(t) = AND then
14: for c ∈ children(t) do
15: set(t)← set(t) ∪ set(c)
16: count(t)← count(t) ∗ count(c)
17: return dag
18: end function

OR

... ...

set:[x1,x2,x3]

count = 22

set:[x1,x3,x4]

count = 41

OR

... ...

set:[x1,x2,x3,x4]

count =126

set:[x1,x2,x3,       ]

count = 44 

set:[x1,      , x3,x4]

count = 82

x4 x2

Figure 2: Upgrading nodes

a bottom-up traversal on d-DNNF in a reverse topological order such that a parent node is
visited only after all its children nodes have been visited.

For each node t in the dag, Annotate maintains two attributes, set and count: the attribute
set records the set of variables for the sub-formula rooted at t; the attribute count records the
model count of the respective sub-formula rooted at node t with respect to its set. This is done
as follows according to the label of the node:

Literal (lines: 3–5) : Add the respective variable to set and initialize count as 1;

OR (lines: 6–12) : As the children of an OR node represents a disjoint set of solutions of
a sub-formula, there are two possibilities depending on whether set of variables for the
children are identical or different. If the set for the two children are not identical, the set
of variables for both the children are upgraded to the union of the sets of both the children
by adding any missing variable(s). As missing variables imply unconstrained variables,
the respective model count on these children are also updated to include all possible
valuations on these variables. Figure 2 illustrates this case: to enable the constraint that
both the children of an OR node contain the same set of variables as the OR node, the
left child was upgraded to contain the variable x4 and its model count increased to 44
(to allow for the valuations of the unconstrained variable x4). The right child was also
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Algorithm 3 Top Down pass for sampling s samples

1: function Sampler(t, s)
2: if label(t) = OR then

3: p← count(t.left)
count(t)

4: b ∼ Binomial(s, p)
5: SampleList0 ← Sampler(t.left, b)
6: SampleList1 ← Sampler(t.right, s− b)
7: SampleList← Shuffle(SampleList0 ∪ SampleList1)
8: return SampleList
9: else if label(t) = AND then

10: SampleList = EmptyList(s)
11: for c ∈ children(t) do
12: SampleListc ← Sampler(c, s)
13: SampleList← Stitch(SampleList, SampleListc)

14: return SampleList
15: else . label(t) == Literal
16: SampleList← ∅
17: for i = 1 to s do
18: Append(val(t), SampleList)

19: return SampleList

20: end function

upgraded in a similar manner to include the variable x2. Following the upgrade process,
the set is equal for both the children. Finally, the count is updated to the sum of count
of node’s children.

AND (lines: 13–16) : Since d-DNNF has the property of decomposition, it is implied that
the set for AND node is the union of the (disjoint) set on its children and the count for
an AND node is the product of the count of node’s children.

Finally, Annotate returns the annotated d-DNNF.

4.2 Sampler

The subroutine Sampler is presented in Algorithm 3. Sampler takes the root node of an an-
notated d-DNNF, t, and the number of samples required, s, as input and returns a list of s
samples. Similar to Annotate, Sampler takes actions based on the label of node (i.e., whether
the node is an AND, OR, and a literal). The function EmptyList on line 10 takes a natural
number s and returns a list containing s empty lists.

OR (lines 2–8) For an OR node, we first compute the probability p of choosing a sample
from the left child by computing the ratio of the count of left child to the count for the
node (line 3). Then, we compute the number of models to be sampled from left child, b,
via a Binomial distribution with parameters s and p. We, then, extract b and s − b
samples from the left and right children. To ensure that every sample is identically and
independently chosen, it is important that the union of two lists is randomly permuted,
which is achieved by the Shuffle operation in line 7.

AND (lines 9–14) When an AND node is encountered, Sampler is invoked recursively on
each of the children nodes. The disjoint chunks of solutions from each of these nodes are
then concatenated (represented by the subroutine Stitch in line 13).
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Literal (lines 15–19) We return the list with s copies of the literal. val(t) refers to the value
of the literal t.

Next, we present the theoretical analysis of our algorithm.

4.3 Theoretical Analysis

Lemma 1. Every node t in the dag returned by Annotate is annotated with the count of the
solutions and the support of the sub-formula corresponding to node t.

Proof. The proof proceeds by induction on the height of the dag. The base case is trivial as
for dag of height one, i.e. literal, the number of models allowed is 1. As OR node accumulates
mutually disjoint solutions of the same constraint (via the property of determinism) from its
children, the support for both the children should be same. Hence, the children of the OR
node are upgraded to contain all possible valuations of the “missing” variables (those available
in their sibling) to account for unconstrained variables; the model count on the OR node is
then the sum of the (disjoint) solutions from both its children (the count on the children on
the OR node is correct by the inductive hypothesis). For the AND node, the property of
decomposability implies that all the solution of an AND node can compose with each other;
hence, the count on the AND node is the product of the counts on all its children.

Theorem 1. For a given F and s, let L be the list of samples generated using KUS. Let L[i]
indicate the sample at the ith index of the list. Then for each y ∈ RF , ∀i ∈ [n] where n is the
total number of samples, we have

Pr[y = L[i]] =
1

|RF |

Proof. Lemma 1 shows that dag returned by Annotate is annotated with the count of the
solutions for the sub-formula corresponding to node t. To complete the proof, we focus on the
subroutine Sampler. The proof proceeds by induction on the height of dag. The base case is
trivial as for dag of height one, i.e. literal, there is only one solution and therefore, we apply
our induction hypothesis to assume that our algorithm provides a uniformly random sample for
all dag of height h. For a dag of height h+ 1, we have the following cases: if the root node is an
AND node, the property of decomposability allows us to construct a sample selected uniformly
at random by uniformly sampling a solution segment from each of the children and appending
them. For an OR node, the property of determinism ensures disjoint solutions; hence, it boils
down to the problem of selecting a model uniformly at random from two buckets (children
nodes) having cl and cr number of solutions. To do the same, one performs a Bernoulli trial
with p = cl

cl+cr
, and selecting a solution from the respective bucket of solutions. To draw s

samples, s Bernoulli trials can be simulated by Binomial distribution and randomly permuting
the union of the solution lists returned from the respective children.

5 Evaluation

To evaluate runtime performance and quality of samples returned by KUS, we implemented a
prototype in Python. KUS uses off the shelf d-DNNF compilers and in our experimental results,
we used the tool D4 [29]. We conducted experiments on a wide range of publicly available
benchmarks. In all, our benchmark suite consisted of 1425 benchmarks arising from wide
range of application areas of uniform sampling such as probabilistic reasoning, Bounded Model
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Checking, circuit, product configuration, SMTLib benchmarks, planning, quantified information
flow and bug synthesis [6, 10, 11, 12, 29, 42]. We compared KUS with SPUR and UniGen2. For
SPUR, we used the default parameters and set the cache size to 2 GB, which was empirically
chosen to minimize the number of memory-outs on our experimental setup. UniGen2 was run
with default parameters. The experiments were conducted on high performance computer
cluster, where each node consists of E5-2690 v3 CPU with 24 cores and 96GB of RAM. All
individual instances for each tool was executed on a single core.

The objective of our experimental evaluation was to answer the following questions:

1. How does KUS performs in terms of runtime in comparison to SPUR and UniGen2, the
current state-of-the-art samplers for uniform sampling?

2. How does KUS performs in case of incremental sampling?

3. How does the distribution of samples generated by KUS compare with the ideal distribu-
tion?

4. How does the runtime of KUS scales with the number of samples drawn from it?

5. How does the performance of KUS vary for different d-DNNF compilers?

Our experiments showed that KUS outperformed both SPUR and UniGen2 by a factor of
up to 3 orders of magnitude in terms of runtime in some cases while achieving a geometric
speedup of 1.7× and 8.3× over SPUR and UniGen2 respectively. Also, KUS achieves a lower
PAR-23 score equal to 396.49 compared to 484.01 of SPUR and 1059.42 of UniGen2. Further-
more, KUS achieves speedups of upto 3 orders of magnitude for incremental sampling. The
distribution generated by KUS is statistically indistinguishable from that generated by an ideal
uniform sampler. Moreover, KUS is almost oblivious to the number of samples requested. Fi-
nally, we observe that KUS can benefit from different d-DNNF compilers, therefore suggesting
development of portfolio samplers in future.

5.1 Results

We present results for only a subset of representative benchmarks here. Detailed data along
with expanded versions of all the Tables presented here is available at https://github.com/

meelgroup/KUS.

Number of instances solved

We compared the runtime performance of KUS to two other state-of-the-art tools, SPUR [5] and
UniGen2 [10] by generating 1000 samples from each tool with a timeout of 700 secs. Figure 3
shows the cactus plot for SPUR, KUS, and UniGen2. We present the number of benchmarks on
x−axis and the time taken on y−axis. A point (x, y) implies that x benchmarks took less than
or equal to y seconds to solve. All our runtime statistics for KUS include the time for the
knowledge compilation phase (via D4).

We see that UniGen2 was able to complete only 370 formulas, while SPUR and KUS were
able to complete 980 and 1049 formulas respectively. Table 1 shows the runtimes of some of the
benchmarks on the three tools. The columns in the table give the benchmark name, number
of variables, number of clauses, time taken in seconds by UniGen2, SPUR, and KUS divided
into Compilation and A+S: Annotation and Sampling followed by speedup of KUS with respect
to SPUR. Table 1 clearly shows that KUS outperforms UniGen2 and SPUR for most of the

3PAR-2 scheme, that is, penalized average runtime, used in SAT-2017 Competition [3], assigns a runtime of
two times the time limit (instead of a not solved status) for each benchmark not solved by a solver

629

https://github.com/meelgroup/KUS
https://github.com/meelgroup/KUS


Knowledge Compilation meets Uniform Sampling Sharma, Gupta, Roy and Meel

0 200 400 600 800 1000 1200 1400
instances

0

100

200

300

400

500

600

700

CP
U 
tim

e 
(s
)

KUS
SPUR
UniGen2

Figure 3: Cactus Plot comparing UniGen2, SPUR, and KUS

Table 1: Run time (in seconds) for 1000 samples

Benchmark Vars Clauses UniGen2 SPUR
KUS Speedup

Compile A+S Total on SPUR

LoginService 11511 41411 80.78 TO TO - TO -
IssueServiceImpl 1393 4319 6.28 4.71 1.48 9.47 10.95 0.43
UserServiceImpl 1509 5009 4.44 2.55 0.13 3.54 3.67 0.69
GuidanceService 988 3088 11.65 1.88 0.21 1.81 2.02 0.93

mastermind 06 08 03 3979 8833 TO 78.71 18.05 47.72 65.77 1.20
cnt07.shuffled 1786 5856 0.08 6.54 0.06 4.96 5.02 1.30

ais10 181 3151 457.53 5.10 2.35 0.61 2.96 1.72
uf250-031 250 1065 TO 29.22 5.74 0.41 6.15 4.75

bugsynthesisnc6 723 1273 TO 9.89 0.08 1.37 1.45 6.82
qg1-08 512 148957 3.34 31.58 3.12 0.74 3.86 8.18

or-50-20-1-UC-40 100 250 85.66 11.87 0.01 0.32 0.33 35.97
case10 328 878 TO 171.85 0.16 1.17 1.33 129.21

or-60-10-1-UC-40 120 300 TO 147.36 0.03 0.53 0.56 263.14
or-70-10-1-UC-30 140 350 TO 215.77 0.02 0.44 0.46 469.07

benchmarks. Over the entire set of benchmarks, there were 190 benchmarks for which SPUR
failed to complete while KUS could successfully discharge the samples. On the other hand, for
121 benchmarks, KUS failed to complete but SPUR could sample successfully. Furthermore, for
the 859 benchmarks that were successfully sampled by both KUS and SPUR, KUS outperformed
SPUR for 446 benchmarks; KUS had speedup of (i) more than 10× for 229 instances, (ii) more
than 100× for 102 cases, and (iii) more than 1000× for 14 cases.

Incremental Sampling

One of the biggest advantage of sampling from knowledge compilations is in incremental
sampling—fetching multiple, relatively small-sized samples, repeatedly. The typical use case of
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Table 2: Comparing runtimes (in seconds) of SPUR and KUS for incremental sampling
Benchmark Vars Clauses SPUR KUS Speedup

1000 10,000 1000 10,000

PhaseService 1686 5655 2.6 26.61 4.11 31.10 0.89
IterationService 1896 6732 3.39 35.06 7.13 40.62 0.95

log-4 2303 20963 7.95 80.97 68.02 137.38 1.05
mastermind 03 08 04 4720 10920 51.46 539.66 62.29 277.50 2.27

C209 FC 1922 4805 33.19 325.92 306.61 355.33 6.01
uf250-054 250 1065 7.68 79.03 4.06 9.86 12.30

bugsynthesisnc20 500 1113 16.83 183.19 2.24 11.86 17.29
qg1-08 512 148957 33.46 320.84 3.88 10.50 43.41

or-50-5-2-UC-30 100 250 23.21 229.50 0.30 3.01 76.12
case145 219 558 62.57 637.18 0.63 4.74 139.81

or-60-10-9-UC-30 120 300 107.17 1073.19 0.31 2.99 360.46
or-70-20-6-UC-40 140 350 661.51 6676.41 0.32 3.47 1909.49

iterative sampling can be in repeated invocation of a sampling tool until the objective (such as
desired coverage or violation of property) is achieved.

We evaluate KUS (with the D4 compiler) and SPUR for incremental sampling by invoking the
respective tool for 1000 samples in 10 successive calls. The separation of compiling and sampling
phase for KUS allows us to invoke Annotate only once and save its dag for the subsequent
invocations. Table 2 presents the results for a subset of the benchmarks. The first column
presents the benchmark id while the second and third column represent the number of variables
and clauses in the benchmark. The fourth and fifth column represent the time taken by SPUR
for the first 1000 samples and the total time taken for 10,000 samples. The sixth and seventh
column show the time taken by KUS for the first 1000 samples and the total time taken for
10,000 samples. The final column shows the speedup of KUS over SPUR for the subsequent
9000 samples.

Table 2 clearly demonstrates the advantage of uniform sampling on knowledge compilations;
while KUS can reuse the d-DNNF representation for the subsequent calls, SPUR is required to
perform a completely new exhaustive DPLL exploration to collect samples for the subsequent
phase. To further demonstrate the advantage of separation of compiling and sampling steps, we
show the trend of one of the benchmarks (or-60-20-8-UC-10) in Figure 4. The x−axis represents
the the number of samples while y−axis represents the time taken by KUS and SPUR. We see
that while KUS takes longer to compute the first 1000 samples than SPUR but the subsequent
sampling time for KUS is significantly smaller than SPUR.

Uniformity Comparison

Theorem 1 shows that KUS is a uniform sampler. In line with previous, we seek to compare
the distribution of samples generated by KUS vis-a-vis an ideal uniform sampler (similar to
[10]) henceforth denoted as IS: given a formula F , IS enumerates all the models and, then,
picks a model uniformly at random. We measured the KL-divergence between the distribution
generated by samplers (KUS, SPUR, UniGen2 and IS) and the expected Poisson distribution. The
divergence between the distribution generated by the IS and the Poisson distribution provide a
measure for all the other samplers.

Figure 6 reports the KL-divergence for case110 that has 16,834 models: the ratio of diver-
gence is close to 1. For this formula we generated 4×106 samples. Since the number of samples
is much larger than the number of models, each model occurred multiple times in the list of
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Figure 4: Cumulative runtimes for incremental sampling (or-60-20-8-UC-10 )

samples. We then computed the frequency of generation of individual model and grouped the
models that had the same frequency. Figure 5 plots the output of KUS, UniGen2, SPUR and IS
with each (x, y) indicating that the x distinct models are generated y times. It is clear from
Figure 5 that the distribution generated by KUS is practically indistinguishable from IS, which
is also expected from the theoretical analysis of KUS.

Effect of number of samples

To evaluate the scalability of KUS (with D4) with the number of samples drawn, we invoked
our tool for fetching different number of samples: 100, 200, 400, 800 and 1000. Table 3 presents
the runtime of KUS for different samples. The first column gives the benchmark name and the
next five columns show time taken by KUS for 100, 200, 400, 800 and 1000 samples. Table 3
clearly demonstrates that KUS is almost oblivious to the number of samples requested.

Runtime impact of d-DNNF generation tool

We evaluate how KUS responds to two of the state-of-the-art d-DNNF compilers: D4 and
Dsharp. For this experiment, we generate 1000 samples from the respective d-DNNF DAG; we
run both KUS with Dsharp and KUS with D4 with a timeout of 700 secs. Figure 7 shows a
scatter plot for KUS with D4 vis-a-vis KUS with Dsharp. A point (x, y) indicates that KUS with
D4 took x seconds to solve the particular formula while KUS with Dsharp took y seconds. First
of all, KUS with D4 was able to sample from 1049 benchmarks while KUS with Dsharp was
able to sample from 1005 benchmarks. Secondly, KUS with D4 outperformed KUS with Dsharp
for 485 instances against 458 instances for the opposite case. As the knowledge compilation
technique continue to develop, we expect development of tools that would further speedup the
compilation process. Our decision to separate the compiling and sampling phase would allow
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Figure 6: KL-Divergence
between the distribution
generated by the samplers
and Poisson distribution for
case110

Table 3: Runtime (in seconds) of KUS to generate different size samples
Benchmarks Vars Clauses Sample Size

100 200 400 800 1000

fs-01 32 38 0.18 0.17 0.21 0.18 0.18
2bitcomp 5 125 310 2.45 2.47 2.59 2.82 2.81

s1238 539 1549 3.74 3.84 4.09 4.43 4.62
IssueServiceImpl.sk 1393 4319 8.53 8.74 9.14 10.06 10.58
bugsynthesisnc24 1544 3048 13.51 13.63 14.17 13.77 14.13

uf250-016 250 1065 17.70 17.46 19.40 18.21 16.98
s1423a 7 4 795 1964 55.57 56.77 58.63 61.82 55.95
logistics.b 843 7301 51.26 52.42 53.72 53.72 53.98

or-70-10-4-UC-30 140 350 117.23 110.87 116.18 113.03 111.79
or-100-10-2-UC-20 200 500 131.28 129.41 128.34 130.65 129.97
or-60-20-2-UC-10 120 300 355.89 353.98 355.19 357.53 359.12

case139 846 2163 378.40 382.39 363.97 366.49 371.82
sat-grid-pbl-0010 110 191 529.87 555.27 511.70 513.42 521.67

KUS to benefit from advances in knowledge compilation.

6 Conclusion

In this paper, we proposed a new approach for uniform sampling that builds on breakthrough
progress in knowledge compilation. The primary contribution of this paper is marrying knowl-
edge compilation with uniform sampling. Our algorithm, KUS, employs the state-of-the-art
knowledge compilers, first to compile constraints into d-DNNF form and then generates sam-
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Figure 7: Runtime comparison of sampling with KUS by using D4 and Dsharp

ples by making a single pass over the compiled representations. We show that KUS is able to
significantly outperform existing state-of-the-art algorithms, solving more instances than any
of the competing tools.

In our experiments, KUS outperforms both SPUR and UniGen2 by a factor of up to 3 orders
of magnitude in terms of runtime while achieving a geometric speedups of 1.7× and 8.3× over
SPUR and UniGen2 respectively. Also, KUS achieves a lower PAR-2 score, around 0.82× that
of SPUR and 0.38× that of UniGen2. Furthermore, KUS achieves speedups of upto 3 orders
of magnitude for incremental sampling. The distribution generated by KUS is statistically
indistinguishable from that generated by an ideal uniform sampler. Moreover, KUS is almost
oblivious to the number of samples requested. Finally, we observe that KUS can benefit from
different d-DNNF compilers, therefore suggesting development of portfolio samplers in future.
We believe that the success of KUS will motivate researchers in verification and knowledge
compilation communities to investigate a broader set of logical forms amenable to efficient
uniform generation.
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