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Abstract

Model counting is a fundamental problem in many
practical applications, including query evaluation
in probabilistic databases and failure-probability
estimation of networks. In this work, we focus
on a variant of this problem where the underlying
formula is expressed in Disjunctive Normal Form
(DNF), also known as #DNF. This problem has
been shown to be #P-complete, making it often in-
tractable to solve exactly. Much research has there-
fore focused on obtaining approximate solutions,
particularly in the form of (ε, δ) approximations.
The primary contribution of this paper is a new
approach, called pepin, an approximate #DNF
counter that significantly outperforms prior state of
the art approaches. Our work is based on the recent
breakthrough in the context of union of sets in the
streaming model. We demonstrate the effectiveness
of our approach through extensive experiments and
show that it provides an affirmative answer to the
challenge of efficiently computing #DNF.

1 Introduction
The problem of model counting is fundamental in computer
science, where one seeks to compute the total number of so-
lutions to a given set of constraints. In this work, we focus
on a variant of this problem where the underlying formula
is expressed in Disjunctive Normal Form (DNF), also known
as #DNF. This problem has many practical applications, in-
cluding query evaluation in probabilistic databases [Dalvi and
Suciu, 2007] and failure-probability estimation of networks
[Karger, 2001]. The problem of #DNF is known to be #P-
complete [Valiant, 1979], where #P is the class of counting
problems for decision problems in NP. Due to the intractabil-
ity of exact #DNF, much of the research has been focused
on obtaining approximate solutions, particularly in the form
of (ϵ, δ) approximations, where the count returned by the ap-
proximation scheme is within (1 + ϵ) of the exact count with
confidence at least 1− δ.

∗The corresponding open-source tool is available at https://
github.com/meelgroup/pepin

There has been a significant amount of research on
the problem of approximate #DNF counting. Karp and
Luby [Karp and Luby, 1983] proposed the first Fully Poly-
nomial Randomized Approximation Scheme (FPRAS) for
#DNF, known as the KL Counter. This was followed by the
KLMCounter proposed by Karp, Luby, and Madras [1989]
and the Vazirani Counter proposed by Vazirani [Vazirani,
2001]. More recently, Chakraborty, Meel, and Vardi [2016]
showed that the hashing-based framework for approximate
CNF counting can be applied to #DNF, leading to the
DNFApproxMC algorithm. This was subsequently improved
upon by Meel, Shrotri, and Vardi [2017; 2019] with the de-
sign of SymbolicDNFApproxMC algorithm.

Given the plethora of approaches with similar complexity,
it is natural to wonder how they compare to each other. Meel,
Shrotri, and Vardi [2017; 2019] conducted an extensive study
to answer this question, producing a nuanced picture of the
performance of these approaches. They observed that there
is no single best algorithm that outperforms all others for
all classes of formulas and input parameters. These results
demonstrate a gap between runtime performance and theoret-
ical bounds on the time complexity of techniques for approx-
imate #DNF, thereby highlighting the room for improvement
in the design of FPRAS for #DNF. In particular, they left open
the challenge of designing an FPRAS that outperforms every
other FPRAS.

The primary contribution of this paper is an affirmative an-
swer to the above challenge. We present a new efficient ap-
proximate #DNF counter, called pepin, with (nearly) optimal
time complexity that outperforms all the existing FPRAS al-
gorithms when run on standard benchmark data. Our inves-
tigations are motivated by the recent breakthrough by Meel,
Vinodchandran, and Chakraborty [2021] on approximating
the volume of the union of sets in the streaming model. How-
ever, we found their algorithm to be highly impractical due to
its reliance on sampling from the Binomial distribution and
runtime overhead arising from requirement of a large amount
of randomness.

To overcome these barriers, we first demonstrate that sam-
pling from the Poisson distribution suffices to provide the-
oretical guarantees. We then propose algorithmic engineer-
ing innovations, such as a novel sampling scheme and the
use of lazy data sampling to improve runtime performance.
These innovations allow us to design pepin, a practically



efficient approximate #DNF counter that outperforms every
other FPRAS. In particular, over a benchmark suite of 900
instances, pepin attains a PAR-2 score1 of 3.9 seconds while
all prior techniques have PAR-2 score of over 150, thereby
attaining a 40× speedup.

The rest of the paper is organized as follows: we present
notations and preliminaries in Section 2. We then present, in
Section 3, a detailed overview of the prior approaches in the
context of streaming that serve as the inspiration for our ap-
proach. We present the primary technical contribution, pepin,
in Section 4 and present detailed empirical analysis in Sec-
tion 5. Finally, we conclude in Section 6.

2 Notations and Preliminaries
In this paper, we consider Disjunctive Normal Form (DNF)
formulas, which are disjunctions over conjunctions of liter-
als. A literal is a variable or the negation of a variable. The
disjuncts in a formula are referred to as cubes, and we use
Fi to denote the ith cube. A formula F with m cubes can be
represented as F = F1 ∨F2 ∨ ...∨Fm. We use n to denote the
number of variables in the formula. The width of a cube Fi is
the number of literals it contains and is denoted by width(Fi).

Throughout this paper, log means logarithms to the base
2, and ln means logarithms to the base e. We use Pr[A] to
denote the probability of an event A, and µ[Y ] and σ2[Y ] to
denote the expectation and variance of a random variable Y ,
respectively. An assignment of truth values to the variables
in a formula F is called a satisfying assignment or witness
if it makes F evaluate to true. The set of all satisfying as-
signments of F is denoted by Sol(F). Computing a satisfying
assignment, if one exists, can be done in polynomial time for
DNF formulas. The constrained counting problem is to com-
pute |Sol(F)|.

We say that a randomized algorithm A is a FPRAS for
a problem if, given a formula F, a tolerance parameter
ε ∈ (0, 1), and a confidence parameter δ ∈ (0, 1), A
outputs a random variable Y such that the probability that
Pr[ 1

1+ε |Sol(F)| ≤ Y ≤ (1 + ε)|] ≥ 1 − δ, and the running
time of the algorithm is polynomial in |F|, 1/ε, and log(1/δ).

2.1 Related Work
The problem of designing efficient techniques for #DNF has
a long history. Starting with the work of Stockmeyer [Stock-
meyer, 1983] and Sipser [Sipser, 1983], randomized poly-
nomial time algorithms for approximately counting vari-
ous #P problems were designed. In a breakthrough work,
Karp and Luby [Karp and Luby, 1983] introduced the con-
cept of Monte Carlo algorithms for #DNF. Since then, sev-
eral FPRAS-s based on similar approaches have been devel-
oped [Karp et al., 1989]. All these techniques use a mix-
ture of sampling and carefully updating a counter. In re-
cent years, hashing-based techniques have also been used
to design FPRASs for #DNF [Chakraborty et al., 2016;
Meel et al., 2017; 2019]. While the theoretical results are
one part of the story, the practical usability of these FPRAS

1PAR-2 score is a penalized average runtime. It assigns a runtime
of two times the time limit for each benchmark the tool timed out on.

Algorithm 1 MVC

1: Thresh←
(

log(12/δ)+logm
ε2

)
2: p← 1 ; X ← ∅
3: for i = 1 to m do
4: for all s ∈ X do
5: if s |= Fi then remove s from X
6: Ni ← Binomial(2n−width(Fi), p)
7: while Ni + |X | is more than Thresh do
8: Remove each element of X with probability 1/2
9: Ni = Binomial(Ni, 1/2) and p = p/2

10: k = 0
11: for j = 1 to Ni logNi do
12: s← Sample(Fi)
13: if s ̸∈ X then
14: X .Append(s).
15: k = k + 1
16: if k == Ni then break
17: Output |X |

p

algorithms gives a different viewpoint. Various FPRAS al-
gorithms for #DNF have been implemented, and their per-
formances analyzed and compared in [Meel et al., 2017;
2019]. There, the authors observed that no single FPRAS
algorithm performed significantly better than the rest on all
benchmarks.

Applications of #DNF to probabilistic databases also mo-
tivated a number of algorithms designed for approximate
#DNF that try to optimize query evaluation [Olteanu et al.,
2010; Fink and Olteanu, 2011; Gatterbauer and Suciu, 2014;
Tao et al., 2004]. These algorithm are, however, either im-
practical (in terms of time complexity) or are designed to
work on restricted classes of formulas such as read-once,
monotone, etc. In addition to the randomized algorithms, a
significant amount of effort has gone into designing determin-
istic approximation algorithms for #DNF [Luby and Velick-
ovic, 1996; Trevisan, 2004; Gopalan et al., 2013]. How-
ever, the challenge of developing a fully polynomial time
deterministic approximation algorithm for #DNF remains
open [Gopalan et al., 2013].

3 Background
As mentioned in Section 1, our algorithmic contributions are
based on the recent advances in the streaming literature due
to Meel, Vinodchandran, and Chakraborty [2021]. To put our
contributions in context, we review their algorithm, hence-
forth referred to as MVC after the initials of the authors.
MVC is a sampling-based algorithm that makes a single

pass over the given DNF formula. The high-level idea of the
algorithm is to maintain a tuple (X , p) wherein X is a set of
satisfying assignments while p indicates the probability with
which every satisfying assignment of F is in X . Since the
number of solutions of F is not known a priori, the value of
probability p is not a predetermined value but changes as the
algorithm proceeds.

We now provide a description of MVC, whose pseudocode



is presented in Algorithm 1. MVC processes each cube se-
quentially and for every cube, it first removes all the solutions
of Fi that belong to X (lines 4 – 5). In Line 6, we determine
the number of solutions Ni that would be sampled from Fi if
each solution of Fi was sampled (independently) with proba-
bility p. The distribution over the number Ni is simulated by
the Binomial distribution. Since we do not want to store more
than Thresh elements in X , if |X |+Ni is larger than Thresh
we decrease p and appropriately adjust Ni (by sampling from
Binomial(Ni, p) and X (by removing each element of X with
probability 1/2). This is done in Lines 7 to 9. We now need to
sample Ni distinct solutions of Fi uniformly at random: to ac-
complish this task, in Lines 10 – 16, we simply pick solutions
of Fi uniformly at random with replacement until we have ei-
ther generated Ni distinct solutions or the number of samples
(with replacement) exceeds Ni logNi. Finally, in Line 17,
we return our estimate as the ratio of |X |

p . We refer the reader
to [Meel et al., 2021] for the theoretical analysis of MVC. It
is worth remarking the worst-case time complexity of MVC
is
(
2n · (log(12m/δ))2 log log(12m/δ) · ε−2 log ε−1

)
.

Upon observing the existence of a new algorithm, our first
step was to determine whether such an algorithm can translate
to practical techniques for DNF counting. However, rather
surprisingly, the resulting implementation could only handle
a few hundred variables. The primary bottleneck to scala-
bility is the reliance of MVC’s algorithm on the subroutine
Binomial(k, p) in line 6. State-of-the-art arbitrary precision
libraries take prohibitively long time sampling from Binomial
when the first argument is of the order 2100, which is un-
fortunately necessary to handle formulas with more than a
hundred variables. To further emphasize the overhead due to
sampling from Binomial, a run of the algorithm would invoke
Binomial roughly m times, and every such invocation when
the first argument is of the order of 2100 is prohibitively slow
to handle instances in practice. Since m for DNF instances is
in the range of few ten to hundred thousand, such a scheme
is impractical in contrast with state-of-the-art techniques that
could handle such formulas in the order of a few seconds. At
this point, it is worth remarking that the crucial underlying
idea of the algorithm is to be able to sample every satisfying
assignment of Fi with probability p, and the current analysis
of MVC crucially relies on the usage of the Binomial distri-
bution. Consequently, this raises the questions: Is it possible
to design an efficient algorithmic scheme based on the under-
lying ideas that can also lend itself to practical implementa-
tion?

4 Technical Contributions
The primary contribution of our work is to resolve the afore-
mentioned challenge. To this end, we present a new algo-
rithmic scheme, pepin, that achieves significant runtime im-
provements over state-of-the-art techniques. As a first step,
we seek to address the major bottleneck of MVC: avoid-
ing dependence on Binomial by proposing a different sam-
pling routine which no longer ensures that every solution of
a given cube Fi is sampled independently with probability p.
We present the new sampling scheme in Section 4.1; the re-
sulting scheme allows our algorithm to be competitive with

Algorithm 2 pepin(F, ε, δ)

1: Thresh← max
(
12 · ln(24/δ)ε2 , 6(ln 6

δ + lnm)
)

2: p← 1 ; X ← ∅
3: for i = 1 to m do
4: t← 2n−width(Fi)

5: for s ∈ X do
6: if s |= Fi then remove s from X
7: while p ≥ Thresh

t do
8: Remove every element of X with prob. 1/2
9: p = p/2

10: Ni ← ComputeNumSamples(t, p)
11: while Ni + |X | > Thresh do
12: Remove every element of X with prob. 1/2
13: Ni = Binom(Ni, 1/2) and p = p/2

14: S ← GenerateSamples(Ni,F
i)

15: X .Append(S)
16: Output |X |/p

Algorithm 3 ComputeNumSamples(t, p)

1: Thresh1 ← 12Thresh2m
δ ; Thresh2 ←

√
δ

6m ;Ni ← 0

2: if t · p ≥ Thresh2 then
3: if t ≤ Thresh1 then
4: Ni ← Binom(t, p)
5: else
6: Ni ← Pois(t · p)
7: else
8: Ni ← Binom(1, tp)

9: return Ni

the state-of-the-art techniques. In order to achieve a signifi-
cant runtime performance improvement, we profiled our im-
plementation and discovered that sampling from every cube
was the most expensive operation. As a remedy, we propose,
inspired by lazy (vs eager) lemma proof generation in mod-
ern SMT solvers, lazy sampling to delay sampling as much
as possible without losing correctness (Section 4.2). We then
discuss several low-level but crucial enhancements in the im-
plementation of pepin. Finally, we close the section with a
theoretical analysis of the correctness of pepin.

4.1 Subroutine ComputeNumSamples
In Algorithm 3, we are interested in sampling the number Ni

of samples we get if, from a set of t elements, we sample
each element independently with probability p, i.e., from the
binomial distribution Binom(t, p). If t is large and p is not
much larger than 1/t, then the expected value of Ni is t · p,
which is small, and it is inefficient to toss t coins, each with
probability p. We argue that if t is large, but t ·p is small, then
the statistical distance between Binom(t, p) and Pois(t · p) is
small, and hence we only introduce a small additional error
if we replace Binom(t, p) by the more efficiently samplable
Pois(tp). Additionally, if t · p ≪ 1, then it is even more
efficient (and we show that it still introduces only a small
additional error) if we replace Binom(t, p) by Binom(1, t ·p).



Algorithm 4 GenerateSamples(Ni,F
i)

1: S ← ∅
2: if n− width(Fi)− 2 · log(1 + Thresh) ≤ log 6m

δ then
3: k = 0;
4: for j = 1 to Ni(lnNi + ln 6

δ + lnm) do
5: s← Sample(Fi)
6: if s /∈ S then
7: S.Append(s); k ← k + 1

8: if k == Ni then break;
9: else

10: for j = 1 to Ni do
11: s← ConstructLazySample(Fi)
12: S.Append(s)

13: return S

4.2 Subroutine GenerateSamples

As mentioned earlier, the above-proposed sampling scheme
allows our algorithm to be on par with the prior state-of-the-
art techniques. To achieve further speedup, we observed that
the subroutine Sample(Fi) often takes over 99% of the run-
time. Therefore, one wonders whether it is possible to not
sample? At the outset, such a proposal seems counterintu-
itive as after all, pepin is a sampling-based technique. Upon
further investigation, two observations stand out: (1) almost
all samples generated by the Sample routine are removed
in line 6 at some point in the future, and (2) to determine
whether to remove s from X , one needs to only determine
whether s |= Fi, which does not require one to know the
assignment to all variables in s. Consequently, it is only re-
quired to generate assignment to variables in order to check
whether s |= Fi. We achieve such a design in the subroutine
GenerateSamples, which we describe next.

The subroutine GenerateSamples is presented in Algo-
rithm 4. The primary challenge in GenerateSamples is to
handle the generation of Ni distinct solutions randomly from
Fi as if we delay the generation of assignments to unassigned
variables in Fi, then we would not know whether we have
generated Ni unique solutions. To this end, we observe that
when the number of unassigned variables (i.e. n−width(Fi))
is small, then the chances of repetitions among independent
samples would be high and the cost of sample generation is
low. Therefore, it is wise to generate the samples than to de-
lay the sample generation (line 2– 8).

Now, we move to the case when the number of unassigned
variables is large. In such a case, we seek to defer sampling
and therefore, ConstructLazySample sets the value to only
the variables that appear in Fi and for rest of the variables,
it sets them to a special symbol MARK (i.e., s is a mapping
from the set of variables to {TRUE, FALSE, and MARK}.
Therefore, in contrast to relying on the expensive operation
of pseudorandom generation, we can compute and store s at
extremely high speed. Overall, we have deferred assignment
to variables in s (except the ones corresponding to literals in
Fi) at the time when we are required to check whether s |=
Fj when a new cube Fj arrives. At such a time, for all the
variables that are set to MARK in s but whose values are

fixed in Fj , we use the pseudorandom generator to generate a
random value for the corresponding variables. Note that once
we have assigned all the variables corresponding to literals
in Fj , we can perform the check whether s |= Fj by only
checking whether s and Fj agree on assignment to variables
corresponding to literals in Fj . If s and Fj do agree on all such
variables, we can remove s, which showcases the strength of
our approach as we could avoid all the work required to assign
the variables in s that are still set to MARK.

4.3 Engineering Enhancements
Dense Matrix-based Sample Storage Sample storage for
all samples is stored in a single contiguous pre-allocated
memory array, similarly to a dense matrix representation.
This helps with cache locality and ensures that when we
check the samples to be emptied, we go forward, and only
forward, in memory, with fixed jump sizes. This allows the
memory subsystem to prefetch values the algorithm will read
from memory, thereby masking memory latency, where mem-
ory latency can often be over 100x slower than instruction
throughput in modern CPUs.

The current maximum number of samples always stay al-
located, and we keep a stack where we have the next empty
slot. When a sample is removed, we simply put their num-
ber on this stack. The size of the stack tells us the number of
empty slots (i.e. unfilled sample slots).

Sample storage is further bit-packed. Each variable’s value
in the sample is represented as 2 bits, as we need to be able
to represent not only TRUE and FALSE, but also MARK.
The bit representation used is 00 = FALSE, 01 = TRUE, 11
= MARK, which allows us to quickly set all-MARK by fill-
ing the vector with 1’s using highly optimized, SSE memset
operations.
Sparse Matrix-based Sample Storage Since a large por-
tion of the samples contain MARK values, one may ask
whether it would be faster to use a sparse matrix represen-
tation where only 1’s and 0’s are stored, along with the num-
ber of consecutive MARKs following the 1 or 0. To check
whether such a system would be faster, we have also devel-
oped an implementation that uses such a sparse matrix rep-
resentation. Unfortunately, this implementation is very slow
for anything but extremely sparse DNFs. We compare its per-
formance to the dense matrix representation in Section 5.
Handling Arbitrary Precision We made extensive use of
the GNU Bignum library [Granlund and the GMP develop-
ment team, 2020] for all values that need high precision. We
use MPQ for fractions such as sampling probabilities, and
MPZ for large numbers such as the precision product. All
bignum variables are pre-allocated and pre-initialized and,
when appropriate, re-used to reduce dynamic memory allo-
cation. Furthermore, observe that the sampling probability
is always of the form 2−k for integer k. Therefore, we only
keep the exponent bits k and regenerate sample probability
when needed. Since the GNU Bignum library has a special
function to quickly generate values of the form 2−k, such re-
generation is fast.

4.4 Theoretical Analysis of the Algorithm
We will need the following bounds.



Lemma 1 (Chernoff Bound). For any n ∈ N, p ∈ (0, 1),
ε, α > 0,

Pr[Binom(n, p) ≥ np+ α] ≤ e−α2/(2np+α) ,

and

Pr[|Binom(n, p)− np| ≥ εnp] ≤ 2e−ε2np/3 ,

The statistical distance between two random variables
A,B is defined by

∆ =
1

2

∑
v

|Pr[A = v]− Pr[B = v]|

=
∑

v:Pr[A=v]≥Pr[B=v]

(Pr[A = v]− Pr[B = v]) .

We use A ≈ε B as shorthand for ∆(A,B) ≤ ε.
Lemma 2. For any possibly randomized function α, if
∆(A ; B) ≤ ε, then ∆(α(A) ; α(B)) ≤ ε.

We now bound the statistical distance between
Binom(n, p) and Binom(1, np) and show that this is
small when np≪ 1.
Lemma 3. For any n ∈ N, p ∈ (0, 1) such that np < 1, the
statistical distance between Binom(n, p) and Binom(1, np)
is at most

∆(Binom(n, p) ; Binom(1, np)) < n2p2 .

Using Le Cam’s theorem [Le Cam, 1960], we can bound
the statistical distance between the Poisson’s distribution and
the Binomial distribution as follows.
Lemma 4. For any n ∈ N, p ∈ (0, 1), the statistical distance
between Pois(np) and Binom(n, p) is at most

∆(Binom(n, p) ; Pois(np)) < 2np2 .

The following is a well known bound on the coupon col-
lector problem that we will need.
Lemma 5. Let there be a set S = {a1, . . . , an}. Let T be
the number of times we need to draw independently and uni-
formly from the set S until all elements are drawn at least
once. Then, we have that

Pr[T > n lnn+ cn] ≤ e−c .

The following is the well known birthday bound.
Lemma 6. Let there be a set S = {a1, . . . , an}. Let T be
the number of times we draw a uniformly random element
from the set S. Then, the probability that the T elements are
distinct is at least 1− T 2

n .
For the purpose of the analysis, we will first analyze Al-

gorithm 2 with one of the subroutines simplified. We will
replace Algorithm 3 by Algorithm 5.

Algorithm 5 ComputeNumSamplesBinom(t, p)

1: Ni ← Binom(t, p)
2: return Ni

Lemma 7. Consider the Algorithm 2 with the subroutine
Algorithm 3 replaced by the subroutine Algorithm 5. Fur-
ther, assume that in Step 14 of the algorithm, we obtain
Ni uniformly distributed distinct samples from the solu-
tion set of Fi. Then, the algorithm outputs a number in
((1− ε)|Sol(F)|, (1 + ε)|Sol(F)|) with probability at least
1− δ

3 .

Now, we complete the proof of our main result.

Theorem 1. Algorithm 2 outputs a number in
((1− ε)|Sol(F)|, (1 + ε)|Sol(F)|) with probability at
least 1− δ and runs in expected time

O

(
1

ε2
mn log

1

δ

(
log

1

ε
+ log

1

δ
+ logm

))
.

Proof. The algorithm from Lemma 7 is obtained from Algo-
rithm 2 by:

1. Replacing the subroutine Algorithm 3 by the subroutine
Algorithm 5.

2. Replacing the subroutine Algorithm 4 by an ideal proce-
dure that obtains Ni uniformly distributed distinct sam-
ples from the solution set of Fi.

For item (1), we argue that the statistical distance between the
distributions obtained by the two subroutines is at most δ/3.
Then by Lemma 2, this small distance is added to the prob-
ability that the algorithm does not output an estimate within
the desired range. As for item (2), we argue that the prob-
ability that the subroutine Algorithm 4 does not output Ni

uniformly distributed distinct samples from the solution set
of Fi with probability at most δ/3.

Combining the above steps, we get our desired probability
of error at most δ.

To argue for item (1), note the following. By Lemma 3,
we increase statistical distance by at most t2p2 every time
we sample from Binom(1, tp) instead of Binom(t, p). This
happens only if tp < Thresh2 (See line 2 and 7 of the Algo-
rithm 3). Moreover, Algorithm 3 is invoked at most m times,
and so the statistical distance is increased by at most

m(tp)2 ≤ mThresh22 ≤
δ

6
.

Similarly, by Lemma 4, we increase statistical distance by
at most 2tp2 every time we sample from Pois(tp) instead of
Binom(t, p). This happens only if tp < Thresh (see lines 7-9
of Algorithm 2) and t ≥ Thresh1 (see line 3 and 5 of Algo-
rithm 3). Again, Algorithm 3 is invoked at most m times, and
so the statistical distance is increased by at most

2mtp2 = 2m
(tp)2

t
≤ 2m

Thresh2

Thresh1
≤ δ

6
.

To argue for item (2), the subroutine Algorithm 4 might
fail to output Ni uniformly distributed distinct samples from
the solution set of Fi for one of two reasons: (i) Ni(lnNi +
ln 6m

δ + lnm) uniformly and independently generated sam-
ples from Fi do not contain Ni distinct samples (see lines 4-8
of Algorithm 4). (ii) If (Thresh+1)2

2n−width(Fi)
< δ

6m (See line 2, 9 of
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Figure 1: Performance comparison of pepin against the other counters, with different cube widths. As can be seen on the included plots, the
cube width matters greatly for most counters other than pepin. This is due to the sparse sampling strategy employed by pepin.

Algorithm 4) and Ni uniformly random samples from Fi are
not distinct.

By Lemma 5, the probability of each failure due to (i) is at
most

e− ln 6m
δ ≤ δ

6m
,

By Lemma 6 and using that Ni ≤ Thresh < Thresh+ 1, the
probability of failure due to (ii) is at most

N2
i

2n−width(Fi)
≤ (Thresh+ 1)2

2n−width(Fi)
<

δ

6m
.

Since the Algorithm 4 is invoked at most m times, the proba-
bility that there exists an i such that the corresponding invoca-
tion does not output Ni uniformly distributed distinct samples
from the solution set of Fi is at most

m · δ

6m
+m · δ

6m
=

δ

3
.

The desired bound on the error probability follows.
Now we bound the time complexity. The steps 5, 6 are

executed at most m · |X | < m · Thresh times. Since, the
probability that p cannot drop below 1

2n in steps 7-9, the steps
7-9 are executed at most n + m times. Since, after step 10,
E[Ni] < Thresh, and |X | ≤ Thresh, steps 11-13 are exe-
cuted O(1) times for every i, and hence O(m) times in total.
So, the overall time complexity is dominated by Steps 10 and
14, and hence is bounded by

m · Thresh(lnThresh+ ln
6

δ
+ lnm) · n

= O

(
1

ε2
mn log

1

δ

(
log

1

ε
+ log

1

δ
+ logm

))
.

5 Empirical Evaluation
We followed the methodology outlined in [Meel et al., 2019]:
we use the same benchmark generation tool with the pa-
rameters specified by the authors. In particular, the value
of n varied from 100 to 100’000 while the value of m var-
ied from 300 to 8 × 105 and the width of cubes varied
from 3 to 43. Furthermore, in line with prior work, we set
ε to 0.8 and δ to 0.36. We compare the runtime perfor-
mance of pepin2 with the prior state of the art techniques,
KLMCounter [Karp et al., 1989], DKLRCounter [Dagum et
al., 2000], and DNFApproxMC [Meel et al., 2017]. These
techniques were observed to be incomparable to each other
while outperforming the rest of the alternatives in Meel et
al.’s work. All our experiments were conducted on a high-
performance computer cluster, each node consisting of 2xE5-
2690v3 CPUs with 2x12 real cores and 96GB of RAM, i.e.,
4GB limit per run. The timeout was set to be 500 seconds for
all runs.

The primary objective of our empirical evaluation was to
answer the following questions:

RQ 1 How does the runtime performance of pepin compare
to the state of the art tools KLMCounter, DKLRCounter,
and DNFApproxMC?

RQ 2 How accurate are the estimates computed by pepin?

2The pepin is available open-source at https://github.com/
meelgroup/pepin



Counter finished PAR-2 score

pepin 900 3.9
KLMCounter 780 158
DKLRCounter 740 198
DNFApproxMC 511 527

Table 1: Comparing the PAR2 scores of the different counters over
the performance problems.

In summary, we observe that pepin achieves significant
runtime performance improvements over prior state of the art.
In particular, pepin achieves a PAR-2 score of 3.9 seconds
while the prior state of the art technique could only achieve a
PAR-2 score of 158 seconds, thereby achieving a nearly 40×
speedup. Furthermore, we observe that the observed ε is only
0.10 – significantly lower than ε = 0.8.

5.1 Performance Experiments
We follow the methodology of Meel et al. in the presenta-
tion and analysis of the results. Accordingly, we first present
the cactus plots of performance comparisons in Fig. 1. The
first three subfigures show the performance of the counters on
DNFs with different cube widths, since the cube width has a
significant effect on the performance of all solvers. The final
subfigure shows the performance over all the cube widths.

The graph on Fig. 1a shows that at small cube widths
the previous set of counters all exhibit comparable, and rela-
tively poor, performance, with DKLRCounter performing the
worst. In fact, even the best of the previous set of counters,
KLMCounter, only managed to count 60 instances (for cube
width 3) within the 500s timeout. In contrast, pepin shows re-
markable performance here: it finished for all 180 instances
for cube width 3, all under 25 seconds. This is primarily due
to its lazy sample generation technique, which skips generat-
ing random values for variables not in the DNF clause, result-
ing in many saved computations for cube width 3.

As the cube width increases in Figs. 1b and 1c, the perfor-
mance of pepin stays similarly good, while the other counters
start exhibiting better performance, but never catching up to
pepin. For larger cube widths, the lazy sampling starts to be
less relevant while the careful design and implementation of
the counter plays a more significant role.

Finally, Fig. 1d shows the performance of all the counter
over all cube widths. Here, it is clear that pepin outperforms
all the counters by a large margin. In fact, pepin is faster than
any other counter on all files, except for 27 files, 24 of which
are under 1s slower to count by pepin, and the remaining 3
are only under 3s slower to count.

We also present the PAR-23 scores for all the counters in
Table 1. As shown in Table 1, pepin outperforms all other
solvers by a wide margin, thereby, presenting an affirmative
answer to the challenge posed by Meel et al. [2019].

Having established significant performance over prior state
of the art, we now focus on analyzing pepin further. In partic-
ular, we evaluate the performance of three variants of pepin:

3PAR-2 score is a penalized average runtime. It assigns a runtime
of two times the time limit for each benchmark the tool timed out on.
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Figure 3: The count returned by pepin compared to the exact counter
GANAK. All counts of pepin were well within the 80% permissible
error rate as dictated by ϵ = 0.8

default, eager, and sparse, where eager refers to the variant of
pepin without the lazy sampling strategy while sparse refers
to the variant of pepin with sparse matrix representation. The
results are depicted in in Fig. 2. The results clearly demon-
strate the significant performance improvements due to lazy
sampling while also demonstrating that the usage of sparse
matrix representation leads to an overall degradation of run-
time performance.

5.2 Accuracy Experiments
To measure the accuracy of pepin, we compared the counts
returned by pepin with that of the exact counter, GANAK, for
all the instances for which GANAK could terminate success-
fully. Figure 3 shows the counts computed by pepin, and the
bounds obtained by scaling the exact counts with the toler-
ance factor (ε = 0.8). The y-axis represents the counts on
log-scale while the x-axis represents instances ordered in the
increasing order of counts. We observed that for all the in-
stances, pepin computed counts within the tolerance. Further-
more, the average mean of observed error for all benchmarks
is 0.102– significantly better than the theoretical guarantee of
ε = 0.8.

6 Conclusion
In this paper, we successfully tackled the challenge of de-
signing an FPRAS for #DNF that outperforms other FPRAS
in practice. An interesting direction of future work would be
to further improve the data structures employed in pepin.
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