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Abstract
Total variation distance (TV distance) is a funda-
mental notion of distance between probability dis-
tributions. In this work, we introduce and study the
problem of computing the TV distance of two prod-
uct distributions over the domain {0, 1}n. In partic-
ular, we establish the following results.

1. The problem of exactly computing the TV
distance of two product distributions is #P-
complete. This is in stark contrast with
other distance measures such as KL, Chi-
square, and Hellinger which tensorize over the
marginals leading to efficient algorithms.

2. There is a fully polynomial-time deterministic
approximation scheme (FPTAS) for comput-
ing the TV distance of two product distribu-
tions P and Q where Q is the uniform distribu-
tion. This result is extended to the case where
Q has a constant number of distinct marginals.
In contrast, we show that when P and Q are
Bayes net distributions the relative approxima-
tion of their TV distance is NP-hard.

1 Introduction
An overarching theme in modern machine learning is the use
of probability distributions to describe data. Datasets are
often modeled by high-dimensional distributions with addi-
tional structures reflecting correlations among the features. In
this context, a basic problem is distance computation: Given
two distributions P and Q, compute ρ(P,Q) for a distance
measure ρ. For example, P and Q could be the outputs
of two unsupervised learning algorithms, and one could ask
how much they differ. As another example, a key component
of generative adversarial networks [Goodfellow et al., 2014;
Arjovsky et al., 2017] is the discriminant which approximates
the distance between the model and the true distributions.

Given two distributions P and Q over a finite domain D,
their total variation (TV) distance or statistical difference
dTV(P,Q) is defined as

dTV(P,Q) = max
S⊆D

{P (S)−Q(S)} =
1

2

∑
x∈D

|P (x)−Q(x)|

which is also equal to
∑

x∈D max{0, P (x) − Q(x)}. The
total variation distance satisfies certain fundamental proper-
ties. First, it has a physical interpretation: The TV distance
between two distributions is the maximum bias of any event
with respect to the two distributions. Second, it satisfies many
mathematically desirable properties: It is bounded, it is a met-
ric, and it is invariant with respect to bijections. Because of
these reasons, the total variation distance is one of the main
distance measures employed in a wide range of areas includ-
ing probability and statistics, machine learning, information
theory, and pseudorandomness.

In this work, we study the total variation distance from a
computational perspective. Given two distributions P and Q
over a finite domain D, how hard is it to compute dTV(P,Q)?
If P and Q are explicitly specified by the probabilities of all
of the points of the (discrete) domain D, summing up the ab-
solute values of the differences in probabilities at all points
leads to a simple linear time algorithm. However, in many
applications, the distributions of interest are of a high dimen-
sion with succinct representations. In these scenarios, since
the size of the domain D is very large, an O(|D|) algorithm is
highly impractical. Therefore, a fundamental computational
question is: Can we design efficient algorithms (with running
time polynomial in the size of the representation) for comput-
ing the TV distance between two high-dimensional distribu-
tions with succinct representations?

The simplest model for a high-dimensional distribution is
the product distribution, which is a product of independent
Bernoulli trials. More precisely, a product distribution P
over D = {0, 1}n is succinctly described by n parameters
p1, . . . , pn where each pi ∈ [0, 1] is independently the prob-
ability that the i-th coordinate equals 1. Product distributions
serve as a great testing ground for various intuitions regard-
ing computational statistics, due to their ubiquity and sim-
plicity. Despite their simplicity, surprisingly little is known
about the complexity of computing the TV distance between
product distributions. A very recent result shows the exis-
tence of a fully polynomial-time randomized approximation
scheme (FPRAS) to relatively approximate the TV distance
between two product distributions [Feng et al., 2023]. How-
ever, this result does not shed light on the complexity of the
exact computation of TV distance as well as the existence of
deterministic approximation schemes (FPTAS). Understand-
ing the computational landscape of the total variation distance



of product distributions is an important question. The present
work makes significant progress towards this research goal.

1.1 Our Contributions
Our contributions are the following:

1. We show that the exact computation of the total variation
distance between two product distributions P and Q is
#P-complete (Theorem 4). This hardness result holds
even when the distribution Q has at most 3 distinct one-
dimensional marginals. Hence it is unlikely that there
is an efficient algorithm for this computational problem,
as an efficient algorithm for this problem would lead to
efficient algorithms for many hard counting problems,
including that of computing the number of satisfying as-
signments of a Boolean formula and all of the problems
in the Polynomial-time Hierarchy [Stockmeyer, 1976;
Toda, 1991].
This is a surprising result, given that for many other dis-
tance measures such as Hellinger, Chi-square, and KL,
there are efficient algorithms for computing the distance
between two product distributions. This is so, as these
distances tensorize over their marginals (folklore; see
also [Bhattacharyya et al., 2021]), in the sense that they
are easily expressible in terms of their one-dimensional
marginals.

2. We design a fully polynomial-time deterministic approx-
imation scheme (FPTAS) that computes a relative ap-
proximation of the TV distance between two product
distributions P and Q where Q is the uniform distribu-
tion (Theorem 9). Building on the techniques developed,
we design an FPTAS for the case when Q has a constant
number of distinct one-dimensional marginals (Theo-
rem 12; Theorem 11). This, combined with the earlier-
mentioned hardness result, completely characterizes the
complexity of TV distance computation for product dis-
tributions when one of the distributions has a constant
number of one-dimensional marginals.

3. We investigate the complexity of the problem when the
distributions P and Q are slightly more general than
product distributions. In particular, we show that it is
NP-hard to relatively approximate the TV distance be-
tween two sparse Bayesian networks [Pearl, 1989] (see
Theorem 8).

In summary, our study showcases the rich complexity land-
scape of the problem of total variation distance computation,
even for simple distributions.

2 Preliminaries
We use [n] to denote the ordered set {1, . . . , n}. We will use
log to denote log2 and U to denote the uniform distribution
over the sample space. Throughout the paper, we shall as-
sume that all probabilities are represented as rational numbers
of the form a/b.

A Bernoulli distribution with parameter p is denoted by
Bern(p). A product distribution is a product of independent
Bernoulli distributions. A product distribution P over {0, 1}n
can be described by n parameters p1, . . . , pn where each pi ∈

[0, 1] is the probability that the i-th coordinate equals 1 (such
a P is usually denoted by

⊗n
i=1 Bern(pi)). For any x ∈

{0, 1}n, the probability of x with respect to the distribution
P is given by P (x) =

∏
i∈S pi

∏
i∈[n]\S (1− pi) ∈ [0, 1],

where S ⊆ [n] is such that i ∈ S if and only if the i-th
coordinate of x is 1, independently.

DTVPRODUCT is the following computational problem:
Given two product distributions P and Q over the sample
space {0, 1}n, compute dTV(P,Q). When the distribution Q
is the uniform distribution over {0, 1}n, we denote the above
problem by DTVPRODUCTUNIF. A Bayes net is specified by
a directed acyclic graph (DAG) and a sequence of conditional
probability tables (CPTs), one for each of its nodes (and for
each setting of the parents of each node). In this way, one may
define a probability distribution over the nodes of a Bayes net.
We will also consider the problem of computing dTV(P,Q)
where P and Q are Bayes net distributions, which we denote
by DTVBAYESNET.

A function f from {0, 1}∗ to non-negative integers is in the
class #P if there is a polynomial time non-deterministic Tur-
ing machine M so that for any x, f(x) is equal to the number
of accepting paths of M(x). Our hardness result will make
use of the known #P-complete problem #SUBSETPROD
which is a counting version of the NP-complete problem
SUBSETPROD (see [Garey and Johnson, 1979]; the proof is
attributed to Yao). #SUBSETPROD is the following problem:
Given integers a1, . . . , an, and a target number T , compute
the number of sets S ⊆ [n] such that

∏
i∈S ai = T .

We also require a counting version of the KNAPSACK
problem, #KNAPSACK which is defined as follows: Given
weights a1, . . . , an and capacity b, compute the number of
sets S ⊆ [n] such that

∑
i∈S ai ≤ b. It is known that

#KNAPSACK is #P-complete.

Definition 1. A function f : {0, 1}∗ → R admits a fully
polynomial-time approximation scheme (FPTAS) if there is
a deterministic algorithm A such that for every input x (of
length n) and ϵ > 0, A on inputs x and ε outputs a (1 + ε)-
relative approximation of f(x), i.e., a value v that lies in the
interval [f(x)/(1 + ε), (1 + ε)f(x)]. The running time of A
is polynomial in n, and 1/ε.

We require the following result from [Gopalan et al.,
2010].

Lemma 2 ([Gopalan et al., 2010]). There is an FPTAS for
#KNAPSACK.

In our work, we shall also use the following adaptation of
the framework that was introduced by [Gopalan et al., 2010].
We fix some terminology first. For a set S ⊆ [n] its Hamming
weight (or cardinality) |S| is the number of 1’s in its charac-
teristic vector in {0, 1}n. Given a vector v in {0, 1}n and a
set S = {i1, . . . , ik} ⊆ [n], the projection of v at S is the
string vi1 · · · vik .

Lemma 3 (Following [Gopalan et al., 2010]; proof in the
extended version [Bhattacharyya et al., 2022]). There is a
deterministic algorithm that, given a #KNAPSACK instance
(a1, . . . , an, b) of total weight W =

∑
i ai + b, δ > 0, a

k-size partition S1, . . . , Sk of [n] for some constant k, and
r1, . . . , rk ∈ [n] such that ri ≤ |Si|, outputs a (1 + δ)-



relative approximation of the number of KNAPSACK solu-
tions such that their projections at sets S1, . . . , Sk have Ham-
ming weights r1, . . . , rk, respectively. The running time of
this algorithm is polynomial in n, logW , and 1/δ.

3 Related Work
Most of the earlier works on computing the TV distance
of succinctly represented high-dimensional distributions are
about the complexity and feasibility of additive approxima-
tions. Sahai and Vadhan [2003] established in a seminal work
that additively approximating the TV distance between two
distributions that are samplable by Boolean circuits is hard
for the complexity class SZK (Statistical Zero Knowledge).
The complexity class SZK is fundamental to cryptography
and is believed to be computationally hard. Subsequent works
captured variations of this theme [Goldreich et al., 1999;
Malka, 2015; Dixon et al., 2020]: For example, [Goldreich et
al., 1999] showed that the problem of deciding whether a dis-
tribution samplable by a Boolean circuit is close or far from
the uniform distribution is complete for the complexity class
NISZK (Non-Interactive Statistical Zero Knowledge). An-
other line of work focuses on finding the complexity of com-
puting the TV distance between two hidden Markov models
culminating in the results that it is undecidable whether the
TV distance is greater than a threshold or not, and that it is
#P-hard to additively approximate it [Cortes et al., 2007;
Lyngsø and Pedersen, 2002; Kiefer, 2018].

Complementing the above hardness results, [Bhat-
tacharyya et al., 2020] designed efficient algorithms to ad-
ditively approximate the TV distance of distributions that are
efficiently samplable and also efficiently computable (mean-
ing that their probability mass function is efficiently com-
putable). In particular, they designed efficient algorithms for
additively approximating the TV distance of structured high
dimensional distributions such as Bayesian networks, Ising
models, and multivariate Gaussians. In a similar vein, [Pote
and Meel, 2021] studied a related property testing variant of
TV distance, for distributions encoded by circuits.

Relative approximation of TV distance has received less
attention compared to additive approximation. Very recently,
[Feng et al., 2023] designed an FPRAS for relatively approx-
imating the TV distance between two product distributions.
The current work, in addition to showing that the exact com-
putation of the TV distance between two product distributions
is #P-complete, also presents deterministic approximation
algorithms for a certain class of product distributions.

The work of [Feng et al., 2023] relies on coupling tech-
niques from probability theory (which appear inherently ran-
domized), whereas we design deterministic algorithms via
a reduction to #KNAPSACK for which deterministic ap-
proximation schemes exist (see Section 5): [Dyer et al.,
1993] gave a subexponential-time approximation algorithm
for #KNAPSACK. Later, [Morris and Sinclair, 2004] de-
signed an FPRAS for it. Subsequently, [Dyer, 2003] pre-
sented an FPRAS for #KNAPSACK using simpler tech-
niques. Later independent works of Stefankovic, Vempala,
and Vigoda [2012] and Gopalan, Klivans, and Meka [2010]
gave FPTAS for #KNAPSACK. Our work relies on the algo-

rithms presented in [Gopalan et al., 2010].
Finally, a work that highlights some interesting aspects of

product distributions is [Smith et al., 2017], whereby they
show that computing r-th order statistics for product distribu-
tions is NP-hard.

4 The Hardness of Computing TV Distance
In this section, we establish hardness results. We first show
that DTVPRODUCT is #P-complete. Then we show that it
is NP-hard to approximate the TV-distance between distribu-
tions that are slightly more general than product distributions.
More specifically, we show that it is NP-hard to design an ap-
proximation algorithm for DTVBAYESNET, even when the
underlying Bayes nets are of in-degree two.

4.1 #P-Completeness of DTVPRODUCT
We establish that following result.
Theorem 4. DTVPRODUCT is #P-complete. This holds even
when one of the distributions has at most 3 distinct one-
dimensional marginals.
Proof overview: We show the hardness in two steps. In the
first step, we introduce a problem called #PMFEQUALS and
show that it is #P-hard by a reduction from #SUBSETPROD.
#PMFEQUALS is the following problem: Given a prob-

ability vector (p1, . . . , pn) where pi ∈ [0, 1] and a number
v, compute the number of x ∈ {0, 1}n such that P (x) = v,
where P is the product distribution described by (p1, . . . , pn).

In the second step, we reduce #PMFEQUALS to the
problem of computing the TV distance of two prod-
uct distributions. For this, given a product distribu-
tion P , we construct product distributions P̂ , Q̂, P ′, Q′

such that #PMFEQUALS is a polynomial-time com-
putable function of dTV(P

′, Q′) and dTV

(
P̂ , Q̂

)
. In

particular, we establish that |{x | P (x) = v}| is equal to(
dTV(P

′, Q′)− dTV

(
P̂ , Q̂

))
/ (2βv) for an appropriately

chosen β. Thus if there is an efficient algorithm for
DTVPRODUCT, then that algorithm can be used to efficiently
solve the #P-complete problem #SUBSETPROD.
Detailed proof: We begin with the #P-hardness of
#PMFEQUALS.
Lemma 5. #PMFEQUALS is #P-hard.

Proof. We will reduce #SUBSETPROD to #PMFEQUALS.
The result will then follow from the fact that #SUBSETPROD
is #P-hard. Let a1, . . . , an, and T be the numbers of an ar-
bitrary #SUBSETPROD instance, namely IS . We will create
a #PMFEQUALS instance IP that has the same number of
solutions as IS .

Let pi := ai

1+ai
for every i and v := T

∏
i∈[n](1− pi), and

observe that ai = pi

1−pi
. For any set S ⊆ [n], we have the

following equivalences:∏
i∈S

ai = T ⇔
∏
i∈S

pi
1− pi

=
v∏

i∈[n](1− pi)

⇔
∏
i∈S

pi
∏
i/∈S

(1− pi) = v ⇔ P (x) = v,



where x is such that xi = 1 if and only if i ∈ S. This com-
pletes the proof.

We now turn to Theorem 4.

Proof of Theorem 4. The proof that DTVPRODUCT ∈ #P is
given in the extended version [Bhattacharyya et al., 2022].
For establishing hardness, we will reduce #PMFEQUALS
to DTVPRODUCT. The theorem will then follow from
Lemma 5.

Let p1, . . . , pn and v be the numbers in an arbitrary in-
stance of #PMFEQUALS where each pi is represented as an
m-bit binary fraction. With this, P (x) can be represented as
an nm-bit binary fraction. Thus without loss of generality,
we can assume that v is also an nm-bit fraction. We distin-
guish between two cases depending on whether v < 2−n or
v ≥ 2−n. We handle the case where v < 2−n; the case where
v ≥ 2−n is similar and is given in the extended version [Bhat-
tacharyya et al., 2022].

Case A: v < 2−n: First, we construct two distributions
P̂ = Bern(p̂1) ⊗ · · · ⊗ Bern(p̂n+1) and Q̂ = Bern(q̂1) ⊗
· · · ⊗ Bern(q̂n+1) over {0, 1}n+1 as follows: p̂i := pi
for i ∈ [n] and p̂n+1 := 1; q̂i := 1/2 for i ∈ [n]

and q̂n+1 := v2n. We have that dTV

(
P̂ , Q̂

)
is equal to∑

x∈{0,1}n+1 max
(
0, P̂ (x)− Q̂(x)

)
or

∑
x

max

(
0, P (x)− 1

2n
v2n
)

=
∑

x:P (x)>v

(P (x)− v) . (1)

We now define two more distributions P ′ and Q′ over
{0, 1}n+2, by making use of the following claim (which is
proved in the extended version [Bhattacharyya et al., 2022]).

Claim 6. There exists a β ∈ (0, 1) such that the following
hold for all x: If P (x) < v, then P (x)

(
1
2 + β

)
< v

(
1
2 − β

)
;

if P (x) > v, then P (x)
(
1
2 − β

)
> v

(
1
2 + β

)
. In particular,

we can take β to 1
23nm .

We now define two new distributions P ′ and Q′ as follows:
p′i := pi for i ∈ [n], p′n+1 := 1, and p′n+2 := 1

2 + β; q′i :=
1
2

for i ∈ [n], q′n+1 := v2n, and q′n+2 := 1
2 − β where β is as

in Claim 6. We establish the following claim.

Claim 7. It is the case that |{x | P (x) = v}| equals(
dTV(P

′, Q′)− dTV

(
P̂ , Q̂

))
/ (2βv).

Proof. We have that dTV(P
′, Q′) is equal to∑

x∈{0,1}n+2 max(0, P ′(x)−Q′(x)) or

=
∑

x∈{0,1}n

max

(
0, P (x)

(
1

2
+ β

)
− 1

2n
v2n

(
1

2
− β

))

+
∑

x∈{0,1}n

max

(
0, P (x)

(
1

2
− β

)
− 1

2n
v2n

(
1

2
+ β

))

=
∑

x:P (x)≥v

P (x)

(
1

2
+ β

)
− v

(
1

2
− β

)

+
∑

x:P (x)>v

P (x)

(
1

2
− β

)
− v

(
1

2
+ β

)
= 2βv |{x | P (x) = v}|+

∑
x:P (x)>v

(P (x)− v) .

The result now follows from Equation (1). The first equality
follows from the definitions of P ′ and Q′ (since p′n+1 = 1).
Note that when for every x with P (x) < v, by Claim 6,
P (x)( 12 + β) < v( 12 − β) and if P (x) ≥ v, then P (x)( 12 +

β) ≥ v( 12 − β). Also when P (x) ≤ v, P (x)( 12 + β) is at
most v( 12 − β) and when P (x) > v, by Claim 6, we have
P (x)( 12 − β) > v( 12 + β). These imply the second equality.
The last equality holds by an algebraic manipulation.

For that matter |{x | P (x) = v}| can be computed by
computing dTV(P

′, Q′) and dTV(P̂ , Q̂). Thus the proof fol-
lows by Lemma 5. Finally, note that the distribution Q̂ has
2 distinct one-dimensional marginals and Q′ has 3 distinct
one-dimensional marginals.

4.2 Hardness of Approximating DTVBAYESNET
In this section, we prove the following.
Theorem 8. Given two probability distributions P and
Q that are defined by Bayes nets of in-degree at least
two, it is NP-complete to decide whether dTV(P,Q) ̸=
0 or not. Hence the problem of relatively approximating
DTVBAYESNET is NP-hard.

Proof. The proof gives a reduction from the satisfiability
problem for CNF formulas (which is NP-hard [Cook, 1971])
to deciding whether the total variation distance between two
Bayes nets distributions is non-zero or not. Let F be a CNF
formula viewed as a Boolean circuit. Assume F has n input
variables x1, . . . , xn and m gates Y = {y1, . . . , ym}, where
Y is topologically sorted with ym being the output gate. We
will define two Bayes net distributions on the same directed
acyclic graph G which, intuitively, is the graph of F . (By a
graph of a formula we mean the directed acyclic graph that
captures the circuit structure of F , whereby the nodes are ei-
ther AND, OR, NOT, or variable gates, and the edges corre-
spond to wires connecting the gates.)

The vertex set of G is split into two sets X and Y , and a
node Z. The set X = {Xi}ni=1 contains n nodes with node
Xi corresponding to variable xi and the set Y = {Yi}mi=1
contains m nodes with each node Yi corresponding to gate yi.
So totally there are n+m+ 1 nodes. There is directed edge
from node Vi to node Vj if the gate/variable corresponding to
Vi is an input to Vj .

The distributions P and Q on G are given by CPTs defined
as follows. Each Xi is a uniformly random bit. For each Yi,
its conditional probability table (CPT) is deterministic: For
each of the setting of the parents Yj , Yk the variable Yi takes
the value of the gate yi for that setting of its inputs yj , yk.
Finally, in the distribution P the variable Z is a random bit
and in the distribution Q the variable Z is defined by the value
of Ym OR-ed with a random bit.

Note that the formula F computes a Boolean function on
the input variables. Let f : {0, 1}n → {0, 1} be this function.



We extend f to {0, 1}m (i.e., f : {0, 1}n → {0, 1}m) to also
include the values of the intermediate gates.

With this notation for any binary string XY Z of length
n+m+ 1, both P and Q have a probability 0 if Y ̸= f(X).
(In the derivation of TV distance that follows, we shall as-
sume that Y = f(X).) Let A := {x | F (x) = 1} and
R := {x | F (x) = 0}. Thus 2dTV(P,Q) can be written as∑

X,f(X),Z

|P −Q| =
∑

X∈A,Z

|P −Q|+
∑

X∈R,Z

|P −Q|

where we have abused the notation P,Q to denote the proba-
bilities P (X, f(X) , Z) , Q(X, f(X) , Z).

We will now compute each sum separately. First, we have
that

∑
X∈A,Z |P − Q| is equal to

∑
X∈A,Z=0 |P − Q| +∑

X∈A,Z=1 |P −Q| (taking cases for the value of Z) or∑
X∈A,Z=0

∣∣∣∣ 1

2n+1
− 0

∣∣∣∣+ ∑
X∈A,Z=1

∣∣∣∣ 1

2n+1
− 1

2n

∣∣∣∣
which is equal to |A|

2n ; then, we have that the quan-
tity

∑
X∈R,Z |P − Q| is equal to

∑
X∈R,Z=0 |P − Q| +∑

X∈R,Z=1 |P −Q| (taking cases for the value of Z) or∑
X∈R,Z=0

∣∣∣∣ 1

2n+1
− 1

2n+1

∣∣∣∣+ ∑
X∈R,Z=1

∣∣∣∣ 1

2n+1
− 1

2n+1

∣∣∣∣
which is equal to 0.

Therefore dTV(P,Q) = |A|/2n+1. The membership in
NP follows because dTV(P,Q) ̸= 0 if and only if there is an
X so that P (X) ̸= Q(X); this can be checked in polynomial
time for Bayes distributions over finite alphabets. The NP-
hardness follows because the arbitarry CNF formula F is sat-
isfiable if and only if |A| ≠ 0 if and only if dTV(P,Q) ̸= 0.

The NP-hardness of relative approximation of
DTVBAYESNET follows as a relative approximation
dTV(P,Q) is non-zero if and only if dTV(P,Q) ̸= 0.

5 Deterministic Approximation Schemes
It is an open problem to design an FPTAS for DTVPRODUCT.
In this section, we report progress on this by designing deter-
ministic approximation algorithms for a few interesting sub-
cases. In particular, we first provide an FPTAS for computing
the total variation distance between an arbitrary product dis-
tribution P and the uniform distribution U, and then extend
to the case where Q has O(1) distinct q′is. The proof of the
latter case is given in the extended version [Bhattacharyya et
al., 2022].

5.1 Algorithm for DTVPRODUCTUNIF

We establish the following theorem.

Theorem 9. There is an FPTAS for dTV(P,U) where P =
Bern(p1)⊗ · · · ⊗ Bern(pn).

Proof overview: The idea is to reduce an instance of
DTVPRODUCTUNIF to several instances of #KNAPSACK.
Since the latter problem has an FPTAS (Lemma 2), the theo-
rem follows.

For every subset S ⊆ [n], we assign a non-negative weight
YS and show that a “normalized” dTV(P,U) is equal to∑

S YS . We express the problem of computing this sum-
mation as multiple #KNAPSACK instances. For this, we first
show that each non-zero YS lies in the range [1, V ) (for an
appropriate V ). We divide the interval [1, V ) into subinter-
vals of the form

[
(1 + ε)i, (1 + ε)i+1

)
for various values of

i. Let ki be the number of sets S for which YS lies in the i-th
interval. Then

∑
S ki(1+ε)i yields an (1+ε) approximation

of the normalized dTV. However, computing each ki exactly
is also #P-hard. Thus we seek an approximation of each ki.
We use a re-organization trick of summations and additional
techniques to express this as several #KNAPSACK instances.
Setting the approximation parameter for #KNAPSACK to ε,
leads to a (1 + ε2)-approximation algorithm. By setting
ε := δ/2, we get an (1 + δ)-approximation algorithm.

Detailed proof: We now give detailed technical proof. First
we assume, without loss of generality, that no pi is equal
to 1/2 since otherwise we can ignore these coordinates i.
Moreover, again without loss of generality, we assume that
pi > 1/2 for all i, since otherwise we can flip 0 and 1 in the
i-th coordinate of both P and U.

Let M be the set of indices i ∈ [n] such that pi = 1. Let
A :=

∏
i/∈M (1− pi) and W := 1

2n

∏
i/∈M

1
1−pi

be constants,
and WS :=

∏
i∈S\M

pi

1−pi
, W∅ := 1.

Claim 10. It is the case that dTV(P,U) is equal to
A ·
∑

S⊆[n]:M⊆S max (0,WS −W ).

Proof. We have that dTV(P,U) equals∑
x∈{0,1}n max(0, P (x)− U(x)) or

∑
S⊆[n]

max

(
0,
∏
i∈S

pi
∏
i/∈S

(1− pi)−
1

2n

)

=
∑

S⊆[n]:M⊆S

max

(
0,
∏
i∈S

pi
∏
i/∈S

(1− pi)−
1

2n

)

=
∏
i/∈M

(1− pi)

·
∑

S⊆[n]:M⊆S

max

0,
∏

i∈S\M

pi
1− pi

− 1

2n

∏
i/∈M

1

1− pi


= A

∑
S⊆[n]:M⊆S

max (0,WS −W ) .

The second equality holds by the definition of M . The third
equality holds as

∏
i∈S pi =

∏
i∈S\M pi.

For notational simplicity, we assume that each pi is rep-
resented using ℓ := poly(n) bits. Thus each non-zero
term max(0, P (x)−U(x)) of dTV(P,U) contributes at least
m0 := 2−ℓ = 2−poly(n) to dTV(P,U). Hence for any
S for which max (0,WS −W ) > 0, its value is at least
mmin := m0/A ≥ 2−poly(n). Moreover, max (0,WS −W )



is at most mmax, defined as

WS =
∏

i∈S\M

pi
1− pi

≤
∏

i∈S\M

1− 2−poly(n)

2−poly(n)
≤ 2poly(n)

by the facts that pi ≤ 1 − 2−poly(n) for i /∈ M (since we
use some finite precision of poly(n) bits), (1− x) /x is non-
decreasing in x, and (1− x) /x ≤ 1/x for all x. Therefore
mmax ≤ 2poly(n).

Consider now YS := max (0,WS −W ) /mmin which lies
in [1, V ) for some V ≤ mmax/mmin ≤ 2poly(n), and let

[1, V ) =

u−1⋃
i=0

[
(1 + ε)i, (1 + ε)i+1

)
be a set of subintervals for integers 0 ≤ i ≤ u − 1 =
⌈log1+ε V ⌉ − 1 ≤ poly(n) − 1 ≤ poly(n) and some
0 < ε < 1 that we will fix later (as a function of δ).

Let the number of sets S such that YS is in
[
1, (1 + ε)i

)
be ni. Let the average contribution in the range[
(1 + ε)i−1, (1 + ε)i

)
be Bi. We have the following equa-

tion:

dTV(P,U)
A ·mmin

= n1B1 + (n2 − n1)B2

+ (n3 − n2)B3 + · · ·+ (nu − nu−1)Bu. (2)

Since (1 + ε)i−1 ≤ Bi < (1 + ε)i, the following estimate d
is a (1 + ε)-approximation of the RHS:

d := n1(1 + ε) + (n2 − n1)(1 + ε)2 + (n3 − n2)(1 + ε)3

+ · · ·+ (nu − nu−1)(1 + ε)u. (3)

We use a reorganization trick similar to [de Colnet and Meel,
2019]; see Figure 1.

By using the reorganization trick we have, by Equation (3),

d =
(
(1 + ε)u − (1 + ε)u−1

)
(nu − nu−1)

+
(
(1 + ε)u−1 − (1 + ε)u−2

)
(nu − nu−2)

+ · · ·+ (1 + ε)nu. (4)

Therefore it suffices to estimate nu − nj for every 1 ≤ j ≤
u − 1. We know that nu = 2n−|M |. By definition, tj :=
nu − nj counts the sets S such that YS ≥ (1 + ε)j . Let
Y :=

∏
[n]\M Y{i} and observe that YS ≥ (1 + ε)j if and

only if Y([n]\M)\S ≤ Y/(1 + ε)j . Due to this bijection, tj
also counts the number of sets S such that YS ≤ Y/(1 + ε)j .

For every j, if Y/(1 + ε)j < 1 we define tj := 0.
Otherwise, we introduce logarithms to reduce the prob-
lem of estimating the number of sets S ⊆ [n] such that
max (0,WS −W ) /mmin = YS ≤ Y/(1 + ε)j to a
#KNAPSACK instance

logWS ≤ log
(
mmin · Y/(1 + ε)j +W

)
which can be more commonly written as

∑
i∈S\M logwi ≤

B for wi := pi/ (1− pi) (by the definition of WS) and B :=
log
(
mmin · Y/(1 + ε)j +W

)
. (Note that the latter problem

can be reformulated as counting the number of sets S ⊆ [n] \
M such that

∑
i∈S wi ≤ B.)

Using Lemma 2 and Equation (4) we can estimate tj up
to a (1 + ε)-approximation in deterministic polynomial time,
which in turn would give us a (1 + ε)-approximation for d

and for that matter a (1 + ε)
2-approximation for dTV(P,U)

by Equation (2). Finally, we set ε := Ω(δ/2) so that
(1 + ε)2 ≤ (1 + δ) in order to get an approximation ratio
of (1 + δ).

The running time is polynomial in n and 1/δ because
we ran a polynomial-time approximation algorithm for
#KNAPSACK polynomially many times.

5.2 dTV(P,Q) Where Q Has O(1) Parameters
We will now extend to the case where Q has at most k distinct
parameters. Observe that U can be viewed as having k = 1
distinct parameters (equal to 1/2). Without loss of generality,
let Q =

⊗
i Bern(qi) = Bern(a1)

z1⊗· · ·⊗Bern(ak)
zk such

that z1 + · · ·+ zk = n. The main result of this section is the
following.
Theorem 11. There is an FPTAS for dTV(P,Q) where P is
an arbitrary product distribution and Q =

⊗
i Bern(qi) =

Bern(a1)
z1 ⊗ · · · ⊗Bern(ak)

zk such that z1 + · · ·+ zk = n.
For simplicity of exposition, we will show here the re-

sult for the simpler case when Q = Bern(a)n and relegate
the (very similar) proof of Theorem 11 to the extended ver-
sion [Bhattacharyya et al., 2022].
Theorem 12. There is an FPTAS for estimating dTV(P,Q)
where P is an arbitrary product distribution and Q =
Bern(a)n for an 0 ≤ a ≤ 1.

Our approach is to reduce this problem to #KNAPSACK
with fixed Hamming weights. If pi ≥ 1/2 for all i, then the
latter problem admits an FPTAS due to Lemma 3. In the sce-
nario where there is an i such that pi < 1/2 (in this case
the respective KNAPSACK weight wi is negative; see our dis-
cussion below), we can switch 0 and 1 in such coordinates
to obtain Bern(1 − pi) and Bern(1 − a), respectively. This
transformation does not change the distance. We show that
such instances can be reduced to #KNAPSACK with two fixed
Hamming weights.

Proof of Theorem 12. Let M be the set of indices i ∈ [n]
such that pi = 1. We have that dTV(P,Q) is equal to∑

x max (0, P (x)−Q(x)) or∑
S⊆[n]:M⊆S

max

(
0,
∏
i∈S

pi
∏
i/∈S

(1− pi)− a|S|(1− a)n−|S|

)

=
∏
i/∈M

(1− pi)
∑

S⊆[n]:M⊆S

max

0,
∏

i∈S\M

(
pi

1− pi

)

− 1∏
i/∈M (1− pi)

(1− a)n
(

a

1− a

)|S|
)

= A
∑

S⊆[n]:M⊆S

max

0,
∏

i∈S\M

wi −B

(
a

1− a

)|S|
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Figure 1: Reorganization trick: The area below the thick curve is calculated in two different ways.

for A :=
∏

i/∈M (1 − pi), wi := pi/ (1− pi), and B :=

(1− a)
n
/
∏

i/∈M (1− pi).
An argument similar to that of Theorem 9 (based again on

the fact that we use finite precision) can be used to show
that a normalized version of dTV(P,Q) lies in some inter-
val [1, V ) for V ≤ 2poly(n) which again we perceive as
[1, V ) =

⋃u
i=1[(1 + ε)i, (1 + ε)i+1) for u ≤ poly(n). This

enables us to use the same approach as in the proof of Theo-
rem 9. Specifically, we approximate dTV(P,Q) as A·mmin ·d
where d is defined as in Equation (3). We then approximate d
as in the proof of Theorem 9, with a notable difference being
that now we have to use Lemma 3 instead of Lemma 2 for the
#KNAPSACK instances to which we reduce the estimation of
dTV(P,Q).

Therefore, following Theorem 9, it would suffice to esti-
mate d. According to Equation (4), we shall approximate the
quantities tj := nu − nj (ni’s as in the proof of Theorem 9),
which here count the sets S ⊆ [n] such that∏

i∈S\M

wi ≤ B

(
a

1− a

)|S|

+ C =: D (5)

for C = C(j) = mmin · Y/(1 + ε)j and the corresponding
values of mmin and Y (see the proof of Theorem 9 for def-
initions). Notice how the cardinality |S| of S comes up in
the RHS of Equation (5). Since this quantity is not known
beforehand, we shall consider cases |S| = 1, . . . , n in the
#KNAPSACK instances that we will solve. This is the reason
we use Lemma 3 instead of Lemma 2.

First assume that wi ≥ 1 for every i (meaning that pi ≥
1/2 of logwi ≥ 0 for all i); we take logarithms (as in
Theorem 9) to reduce this to a #KNAPSACK instance (i.e.,∑

i∈S\M logwi ≤ logD) for every fixed |S| = 1, . . . , n.
The latter problems can be then solved by the algorithm of
Lemma 3 for k = 1 (in the notation of Lemma 3). Finally,
we take the sum of all these counts over the possible values of
|S| as our estimate of tj . Then our estimate for d will come
from Equation (4) for nu = 2n−|M |.

Now, if for some i we have wi < 1 (meaning that pi < 1/2
or logwi < 0 for some i), then we switch 0 and 1 in those

coordinates to get Bern(1−pi) and Bern(1−a), respectively.
Then, in Q, the first z coin biases are a and the last n−z coin
biases are 1 − a without loss of generality. In that case, as
before, dTV(P,Q) is

A
∑

S⊆[n]:M⊆S

max

0,
∏

i∈S\M

wi −B
∏
i∈S

vi

 ,

where wi ≥ 1 for every i and vi :=
qi

1−qi
whereby qi is equal

to a or 1− a depending on whether wi was originally ≥ 1 or
< 1, respectively.

In this case, for every S, its Hamming weight (if we iden-
tify a set S ⊆ [n] with its characteristic vector in {0, 1}n) in
its first z coordinates is s1 and in its last n − z coordinates
is s2. Therefore, it suffices to solve a #KNAPSACK instance
whereby the quantity

∏
i∈S\M wi − C is at most

B

(
a

1− a

)s1(1− a

a

)z−s1(1− a

a

)s2( a

1− a

)n−z−s2

for C = C(j) = mmin · Y/(1 + ε)j as before (see the proof
of Theorem 9). Note that Lemma 3 gives an algorithm for the
above #KNAPSACK problem as well.

We then sum over the counts corresponding to all possible
disjoint possibilities of s1 and s2 such that s1 + s2 = |S|,
for all possible values of |S|, to get our estimate of tj . Then,
as earlier, our estimate for d will come from Equation (4) for
nu = 2n−|M |.

6 Conclusion
We initiated a systematic study of the computational nature
of the TV distance, a widely used notion of distance between
probability distributions. Our findings are twofold: On the
one hand, we establish hardness results for exactly computing
(or approximating) the TV distance (Theorem 4; Theorem 8).
On the other hand, we present efficient deterministic approx-
imation algorithms (Theorem 9; Theorem 11; Theorem 12)
for its estimation in some special cases of product distribu-
tions. To conclude, the main open question that arises from
our work is: Does there exist an FPTAS for approximating the
total variation distance between two product distributions?
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A Proof of Lemma 3
The proof of Lemma 3 follows by adapting the work of
[Gopalan et al., 2010]. We first fix some notation and ter-
minology.

A (W,n)-branching program is a branching program of
width W over n Boolean input variables. A read-once
branching program (ROBP) is a branching program whereby
each input variable is accessed only once. A monotone
(W,n)-ROBP is a (W,n)-ROBP such that in each of its lay-
ers L the nodes of L are totally ordered under some relation
≺, and whenever u ≺ v for some nodes u and v it is the case
that the set of partial accepting paths that start u are a subset
of the the set of partial accepting paths that start at v.

Given a branching program M and a string z, the notation
M(z) denotes the output (“accept”/“reject”) of M on input z.

An implicit description of a monotone ROBP is a descrip-
tion according to which one can efficiently check the relative
order of two nodes under ≺ (within any layer), and given a
node u one can efficiently compute its neighbors.

The following notion of small-space sources was intro-
duced by [Kamp et al., 2006].

Definition 13 ([Kamp et al., 2006]). A width w small-space
source is described by a (w, n)-branching program D with an
additional probability distribution pv on the outgoing edges
associated with vertices v ∈ D. Samples from the source are
generated by taking a random walk on D according to pv’s
and outputting the labels of the edges traversed.

We require the following useful lemmas from [Gopalan et
al., 2010].

Lemma 14 ([Gopalan et al., 2010]). Given a ROBP M of
width at most W and a small-space source D of width at most
S, Prx∼D[M(x) = 1] can be computed exactly via dynamic
programming in time O(nSW ).

Lemma 15 ([Gopalan et al., 2010]). Given a (W,n)-ROBP
M , the uniform distribution over M ’s accepting inputs,
{x | M(x) = 1} is a width W small-space source.

We further require the following result from [Gopalan et
al., 2010].

Lemma 16 ([Gopalan et al., 2010]). Given a monotone
(W,n)-ROBP M , δ > 0, and a small-space source D over
{0, 1}n of width at most S, there exists an (O(n2S/δ), n)-
monotone ROBP M0 such that for all z, M(z) ≤ M0(z) and

Pr
z∼D

[M(z) = 1] ≤ Pr
z∼D

[M0(z) = 1]

≤ (1 + δ) Pr
z∼D

[M(z) = 1] .

Moreover, given an implicit description of M and a de-
scription of D, M0 can be constructed in deterministic time
O(n3S(S + logW ) log(n/δ)/δ).

The main take-away of Lemma 16 is that the number of ac-
cepting paths of M0 (under the distribution D) approximates
the number of accepting paths of M (under the distribution
D), and moreover M0 has small width.

We now turn to the proof of Lemma 3.

Proof of Lemma 3. Take M in Lemma 16 to be a ROBP
for KNAPSACK. In particular, M decides the validity of
the inequality

∑
i∈S ai ≤ b, which may be also written as∑

i∈[n] aixi ≤ b if we let xi = 1 if and only if i ∈ S. The
ROBP M has n+1 layers; layer 0 has a single start node. Ev-
ery other layer i has a node for each partial sum

∑
j≤i aixi.

For a node v in layer i − 1 and xi ∈ {0, 1}, the xi-th neigh-
bor of v is v + aixi. Naturally, the nodes in the last layer
are either rejecting (if their label is more than b) or accepting
(otherwise).

Note that M may have width W (at most) exponential in
n; this makes it prohibitive in terms of running time to di-
rectly use Lemma 14 in order to count KNAPSACK solutions.
Therefore, Lemma 16 comes handy here.

To apply Lemma 16, let us first note that M is monotone.
Indeed, we can define a total node ordering ≺ within each
layer of M as follows: Given two nodes u, v that both belong
to some layer of M , we define u ≺ v if and only if u > v.
This satisfies the requirements of a ROBP being monotone as
in this case the partial solutions that start at u are a subset of
the partial solutions that start at v, since the smaller partial
sum v allows for more flexibility with respect to the items
that we can add to its associated solution.

So by Lemma 16 we can construct in time O(n3S(S +
logW ) log(n/δ)/δ) some ROBP M0 which has width W0 =
O(n2S/δ) and is such that the probability that M0 is accept-
ing under the distribution D approximates the probability that
M is accepting under the distribution D.

By Lemma 15, the Hamming weight constraints of
Lemma 3 can be sampled by some small space source of
width at most S ≤ poly(n), since there is some ROBP of
width

∏k
i=1 (|Si|+ 1) ≤ (n+ 1)

k
= poly(n) that only ac-

cepts the set of strings that satisfy the Hamming weight con-
straints of Lemma 3.

This means that the width of M0, namely W0, is at most
O(poly(n) /δ), and that M0 can be constructed in time
O(poly(n) /δ) (since logW = O(poly(n))). By Lemma 14,
we can compute the probability that M0 is accepting under
the distribution D in time O(nSW0) = O(poly(n) /δ). Let
p denote this probability. As a last step, we multiply p by

k∏
i=1

(
|Si|
ri

)
,

which is the number of strings in the support of D (i.e., the
set of strings that have non-zero probability to be sampled by
D), to get the number of accepting paths of M0.

Since p = Prz∼D[M0(z) = 1] (1 + δ)-approximates
Prz∼D[M0(z) = 1], we get that the number of accepting
paths of M0 (1 + δ)-approximates the number of accepting
paths of M .

The result now follows from the fact that M is a ROBP for
KNAPSACK, so the number of accepting paths of M0 (1 + δ)-
approximates the number of KNAPSACK solutions.

Finally the running time of this procedure is polynomial in
n, logW , and 1/δ, which is polynomial in n and 1/δ since
the width of M is logW = poly(n).



B Proof of Theorem 4 (cont.)
B.1 Membership in #P
Let P and Q be two product distributions, specified by param-
eters p1, . . . , pn and q1, . . . , qn, respectively. Without loss of
generality we shall assume that these parameters are fractions
(as we only have some finite precision available). The goal is
to design a nondeterministic machine N that takes p1, . . . , pn
and q1, . . . , qn as inputs and is such that the number of its ac-
cepting paths (normalized by an appropriate quantity; see [de
Campos et al., 2020]) equals dTV(P,Q).

Let M be the product of the denominators of all parameters
p1, . . . , pn, q1, . . . , qn and their complements 1−p1, . . . , 1−
pn, 1 − q1, . . . , 1 − qn. The non-deterministic machine N
first guesses an element i ∈ {0, 1}n in the sample space of
P and Q, computes |P (i) − Q(i)| by using the parameters
p1, . . . , pn, q1, . . . , qn, then guesses an integer 0 ≤ z ≤ M ,
and finally accepts if and only if 1 ≤ z ≤ M |P (i) − Q(i)|.
(Note that M |P (i) − Q(i)| = |M · P (i)−M ·Q(i)| is an
integer.)

It follows that

dTV(P,Q) =
1

2

∑
i∈{0,1}n

|P (i)−Q(i)|

=
number of accepting paths of N

2M

since the number of accepting paths of N is∑
i∈{0,1}n

(M |P (i)−Q(i)|) = M
∑

i∈{0,1}n

|P (i)−Q(i)|

= M · 2dTV(P,Q).

B.2 Proof of Claim 6
For Claim 6 to hold, observe that we want β to be at most
|v−P (x)|
v+P (x) for every x, so that P (x) ̸= v. Since both v and
P (x) have nm-bit representations, both |v − P (x))| and
v + P (x) have nm-bit representations. Thus |v−P (x)|

v+P (x) can
be represented as a 2nm-bit fraction. Since this fraction is
not zero, and the smallest 2nm-bit fraction is 1

22nm , choosing
β := 1

23nm suffices.

B.3 Case B: v ≥ 2−n

First, let us define distributions P̂ = Bern(p̂1) ⊗ · · · ⊗
Bern(p̂n) and Q̂ = Bern(q̂1) ⊗ · · · ⊗ Bern(q̂n) as follows:
p̂i := pi for i ∈ [n], p̂n+1 := 1

v2n ; q̂i := 1
2 for i ∈ [n], and

q̂n+1 := 1.
We now have that dTV

(
P̂ , Q̂

)
is equal to

1
2

∑
x

∣∣∣P̂ (x)− Q̂(x)
∣∣∣ or∑

x

max
(
0, P̂ (x)− Q̂(x)

)
=
∑
x

max

(
0, P (x)

1

v2n
− 1

2n

)
+
∑
x

max

(
0, P (x)

(
1− 1

v2n

))

=
∑
x

max

(
0, P (x)

1

v2n
− 1

2n

)
+ 1− 1

v2n
.

As earlier, we define two more distributions P ′ and Q′, by
making use of Claim 6. The new distributions P ′ and Q′ are
such that p′i := pi for i ∈ [n], p′n+1 := 1

v2n , and p′n+2 :=
1
2 + β; q′i := 1/2 for i ∈ [n], q′n+1 := 1, and q′n+2 := 1

2 − β.
We have the following claim which implies that

#PMFEQUALS is in PTIME if computing the TV distance
is in PTIME.

Claim 17. We have that |{x | P (x) = v}| is equal to
2n−1

β

(
dTV(P

′, Q′)− dTV

(
P̂ , Q̂

))
.

Proof. By our previous discussion we know that dTV(P
′, Q′)

is equal to
∑

x max(0, P ′(x)−Q′(x)), and for that matter
equal to∑

x

max

(
0, P (x)

1

v2n

(
1

2
+ β

)
− 1

2n

(
1

2
− β

))
+
∑
x

max

(
0, P (x)

1

v2n

(
1

2
− β

)
− 1

2n

(
1

2
+ β

))
+
∑
x

max

(
0, P (x)

(
1− 1

v2n

)(
1

2
+ β

))
+
∑
x

max

(
0, P (x)

(
1− 1

v2n

)(
1

2
− β

))
=
∑
x

max

(
0, P (x)

1

v2n

(
1

2
+ β

)
− 1

2n

(
1

2
− β

))
+
∑
x

max

(
0, P (x)

1

v2n

(
1

2
− β

)
− 1

2n

(
1

2
+ β

))
+
∑
x

max

(
0, P (x)

(
1− 1

v2n

))
=

∑
x:P (x)≥v

max

(
0, P (x)

1

v2n

(
1

2
+ β

)
− 1

2n

(
1

2
− β

))

+
∑

x:P (x)>v

max

(
0, P (x)

1

v2n

(
1

2
− β

)
− 1

2n

(
1

2
+ β

))
+ 1− 1

v2n
,

by Claim 6, or

=
∑

x:P (x)=v

max

(
0, P (x)

1

v2n

(
1

2
+ β

)
− 1

2n

(
1

2
− β

))

+
∑

x:P (x)>v

max

(
0, P (x)

1

v2n

(
1

2
+ β

)
− 1

2n

(
1

2
− β

))

+
∑

x:P (x)>v

max

(
0, P (x)

1

v2n

(
1

2
− β

)
− 1

2n

(
1

2
+ β

))
+ 1− 1

v2n



= 2β
1

2n
|{x | P (x) = v}|

+
∑
x

max

(
0, P (x)

1

v2n
− 1

2n

)
+ 1− 1

v2n

=
β

2n−1
|{x | P (x) = v}|+ dTV

(
P̂ , Q̂

)
by Claim 17. That is, |{x | P (x) = v}| is equal to

2n−1
(
dTV(P

′, Q′)− dTV

(
P̂ , Q̂

))
β

.

C Proof of Theorem 11
Let M be the set of indices i ∈ [n] such that pi = 1. First,
assume that pi ≥ 1/2 for all i. We have that dTV(P,Q) is∑

S⊆[n]:M⊆S

max

(
0,
∏
i∈S

pi
∏
i/∈S

(1− pi)

− az111 (1− a1)
z10 · · · azk1

k (1− ak)
zk0

)
,

where zi = zi0 + zi1 and zi0 and zi1 denote the counts of
0’s and 1’s respectively in the characteristic vector of S that
correspond to the ai parameter.

Continuing our manipulation, we see that dTV(P,Q) is
equal to

∏
i/∈M

(1− pi)
∑

S⊆[n]:M⊆S

max

(
0,

∏
i∈S\M

(
pi

1− pi

)

−
az111 (1− a1)

z10 · · · azk1

k (1− ak)
zk0∏

i/∈M (1− pi)

)

= A
∑

S⊆[n]:M⊆S

max

(
0,

∏
i∈S\M

wi

−B ·
k∏

i=1

azi1i (1− ai)
zi0

)

for A :=
∏

i/∈M (1 − pi), wi := pi/ (1− pi), and B :=
1/
∏

i/∈M (1− pi).
An argument similar to that of Theorem 9 (based again on

the fact that we use finite precision) can be used to show
that a normalized version of dTV(P,Q) lies in some inter-
val [1, V ) for V ≤ 2poly(n) which again we perceive as
[1, V ) =

⋃u
i=1[(1 + ε)i, (1 + ε)i+1) for u ≤ poly(n). This

enables us to use the same approach as in the proof of Theo-
rem 9. Specifically, we approximate dTV(P,Q) as A·mmin ·d
where d is defined as in Equation (3). We then approximate d
as in the proof of Theorem 9, with a notable difference being
that now we have to use Lemma 3 instead of Lemma 2 for the
#KNAPSACK instances to which we reduce the estimation of
dTV(P,Q).

Therefore, following Theorem 9, it would suffice to esti-
mate d. According to Equation (4), we shall approximate the

quantities tj := nu − nj (ni’s as in the proof of Theorem 9),
which here count the sets S ⊆ [n] such that

∏
i∈S\M

wi ≤ B

k∏
i=1

azi1i (1− ai)
zi0 + C =: D (6)

for C = C(j) = mmin · Y/(1 + ε)j , for the corresponding
values of mmin and Y (see the proof of Theorem 9).

We perform this counting as follows. We partition the 2n

values of S ⊆ [n] into subsets corresponding to every pos-
sibility of zi1’s and zi0’s between 0 and zi, so that |S| =∑k

i=1 zi1. Hence there are at most
∏k

i=1 (zi + 1) ≤ (n+ 1)
k

many parts. For each such part, we solve a #KNAPSACK in-
stance with the following constraints:
(a) Each zi1 and zi0 correspond to a fixed possibility deter-

mined by S.
(b) It is the case that

∏
i∈S\M wi ≤ D for some D deter-

mined by j and the zi1’s and zi0’s as in Equation (6).
Therefore for each part the number of corresponding
KNAPSACK solutions can be approximately counted in poly-
nomial time by the algorithm of Lemma 3. Our estimate for
tj then is the sum of all of these estimates, which will still
be (1 + ε)-approximate. Then (as in Theorem 9 and Theo-
rem 12) our final estimate for d will come from Equation (4)
for nu = 2n−|M |.

Now, if there is any pi < 1/2, then we work with (1 −
pi) and (1 − qi) at that particular coordinate and repeat the
argument outlined above; this effectively doubles the number
of parameters to 2k and the resulting algorithm would still
run in polynomial time for k = O(1).
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