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Abstract
The current generation of symbolic reasoning tech-
niques excel at the qualitative tasks (i.e., when
the answer is Yes or No); such techniques suf-
ficed for traditional systems whose design sought to
achieve deterministic behavior. In contrast, modern
computing systems crucially rely on the statistical
methods to account for the uncertainty in the en-
vironment, and to reason about behavior of these
systems, there is need to look beyond qualitative
symbolic reasoning techniques. We will discuss
our work focused on the development of the next
generation of automated reasoning techniques that
can perform higher-order tasks such as quantitative
measurement, sampling of representative behavior,
and automated synthesis of systems.
From a core technical perspective, our work builds
on the SAT revolution, which refers to algorith-
mic advances in combinatorial solving techniques
for the fundamental problem of satisfiability (SAT),
i.e., whether it is possible to satisfy a given set
of constraints. The SAT revolution offers the op-
portunity to develop scalable techniques for prob-
lems that lie beyond SAT from complexity perspec-
tive and, therefore, stand to benefit from the avail-
ability of powerful SAT engines. Our work seeks
to enable a Beyond SAT revolution via design of
scalable techniques for three fundamental problems
that lie beyond SAT: constrained counting, con-
strained sampling, and automated synthesis.

1 Formal Definitions
In constrained counting, the task is to count the total weight,
subject to a given weight function, of the set of solutions of
input constraints. In constrained sampling, the task is to sam-
ple randomly, subject to a given weight function, from the
set of solutions of input constraints. In the case of automated
synthesis, given a set of constraints capturing the functional
specification between inputs and outputs, the task is to con-
struct a program (represented as a circuit) whose outputs meet
the desired specification.

In order to state the problems formally, we introduce some
necessary notations. Let X = {x1, x2, . . . xn} be the set of

proositional variables, F be a formula over X , and weight
function W : {0, 1}n 7→ [0, 1]. To ease the notations, we
overload W to denote the weight of a literal, assignment
or formula, depending on the context. Let sol(F ) repre-
sent the set of satisfying assignments of F and let W (F ) =∑

σ∈sol(F ) W (σ). The weight function is often presented im-
plicitly. One such formulation is where weights are assigned
to literals and the weight of an assignment is the product of
weights of its literals. For a variable xi a weight function W ,
we use W (xi) and W (¬xi) to denote the non-negative, real-
valued weights of the positive and negative literals such that
W (xi)+W (¬xi) = 1; Thus, for an assignment σ we denote
W (σ) =

∏
xi∈σ W (xi)

∏
xi /∈σ W (¬xi)

Definition 1 (Constrained Counting). Given F and W , com-
pute W (F )

Definition 2 (Constrained Sampling). Given F and W , sam-
ple σ ∈ sol(F ) such that Pr[σ is output] = W (σ)

W (F )

In order to define the problem of synthesis formally, we
introduce another set Y of propositional variables and now
consider F (X,Y ) to be defined over X ∪ Y .
Definition 3 (Functional Synthesis). Given F , determine G
such that ∀X (∃Y F (X,Y ) ↔ F (X,G(X)))

Counting, sampling, and synthesis are fundamental prob-
lems with numerous applications including in probabilistic
reasoning, machine learning, planning, statistical physics,
computational biology, inexact computing, quantitative in-
formation flow analysis and constrained-random verification.
We refer the reader to [Meel et al., 2016; Golia et al., 2020]
and references therein for details on applications.

2 Constrained Counting
Constrained counting is known to be computationally
hard [Valiant, 1979; Jerrum and Sinclair, 1996; Toda, 1989].
Significant effort has therefore been invested in theoretical
work on studying the complexity of approximate variants
of these problems. Key theoretical results pertaining to ap-
proximate counting were already known as early as the early
1980s [Stockmeyer, 1983; Jerrum et al., 1986]. In a sem-
inal paper [Stockmeyer, 1983], Stockmeyer introduced the
idea of using pairwise independent hash functions [Carter and
Wegman, 1977] to reduce the approximate counting prob-
lem to polynomially many propositional satisfiability (SAT)
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calls. While theoretically elegant, translating the proposed
technique to practice suffered from the requirement of a pro-
hibitively large number of invocations of a SAT-solver to per-
form symbolic reasoning on input formulas. This meant that
the technique could not be translated to practical tools that
could be applied to industrial-scale problems.

We introduced a novel universal-hashing based paradigm,
ApproxMC, wherein the problem of constrained counting
over a n-dimensional space is reduced to solving a small
number of queries to a combinatorial solver wherein each
query is the underlying set of constraints augmented with
randomly generated parity constraints [Chakraborty et al.,
2013b; Chakraborty et al., 2014a; Chakraborty et al., 2016a;
Chakraborty et al., 2016b; Soos and Meel, 2019; Agrawal et
al., 2020; Wang et al., 2020; Soos et al., 2020]. The core
idea of ApproxMC is to use pairwise independent hash func-
tions, expressed as randomly generated XOR constraints, to
randomly partition the solution space of the original formula
into “small” enough cells. The sizes of sufficiently many ran-
domly chosen cells are then determined using calls to a SAT
solver, and a scaled median of these sizes is used to estimate
the desired total weight. Consequently, ApproxMC provides
(ε, δ)-guarantees, i.e., the computed value is within (1 + ε)-
factor approximation with confidence at least 1 − δ for any
user-provided values of ε and δ.
ApproxMC seeks to build on the success of modern SAT

solvers, and therefore, has led to novel and unconventional
algorithmic constructs. For example, prior work used inde-
pendence among different SAT queries as a central compo-
nent, which was preferred owing to the ease of theoretical
analysis. In contrast, we have focused on the introduction of
dependence among different SAT-solver queries to maximize
the sharing of information among different calls by an un-
derlying incremental SAT solver [Chakraborty et al., 2016b].
The use of hash functions that allow dependent SAT-solver
queries also allows a linear search to be replaced by a loga-
rithmic search. The sizes of XOR constraints in the formulas
that are fed to a modern SAT solver have a significant impact
on the running time of the solver. By exploiting the connec-
tion between definability of formulas and variance of the dis-
tribution of solutions in a cell defined by 3-wise independent
hash functions, we introduced an algorithmic technique, MIS,
that reduced the size of required XOR constraints dramati-
cally and improved the runtime performance of ApproxMC
by orders of magnitude. We further exploited a beautiful con-
nection between concentration measures of XOR-based hash
functions and isoperimetric inequalities on Boolean hyper-
cubes to resolve the long-standing open problem of the design
of logarithmic size XORs that provide the desired theoretical
guarantees and achieve practical scalability [Meel, 2020].

A fundamental contribution of our approach is its gen-
eralizability. In particular, if the set of constraints is ex-
pressed in Disjunctive Normal Form (DNF), ApproxMC di-
rectly yields a Fully Polynomial Randomized Approximation
Scheme (FPRAS) for counting – the only known FPRAS for
DNF that does not involve Monte Carlo steps [Chakraborty
et al., 2016b]. The resulting approach has also been demon-
strated to be superior in performance to the classical Monte
Carlo technique [Meel et al., 2018]. Furthermore, we demon-

strated ApproxMC can be lifted to count the minimal unsatis-
fiable subsets of a given formula, which is an important met-
ric of diagnosis of faults in a system.

Data Streams and Counting We established a deep and
natural connection between constrained counting and F0

estimation [Pavan, 2021]. Given a stream of sets a =
a1, a2, . . . , am wherein each set ai ⊆ Ω the zeroth frequency
moment, denoted as F0, of a is the number of distinct ele-
ments appearing in a, i.e., |∪i ai|. F0 computation is a funda-
mental problem in data streaming with a rich history of prior
work. In particular, we design a recipe to transform streaming
algorithms for F0 estimation to those for constrained count-
ing. Such a transformation yields new (ε, δ)-approximate al-
gorithms for constrained counting, which are different from
currently known algorithms, and vice versa. In a folow-up
work, we designed the first algorithm with poly(log |Ω|,m)-
space and time complexity for the case where each ai al-
lows efficient (i.e., poly(log |Ω|,m)-time complexity) access
to membership, sampling, and counting [Meel, 2021]. In
particular, our result resolved the open problem of the exis-
tence of poly(log |Ω|,m)-space and time complexity algo-
rithms for Klee’s measure problem in discrete settings.

2.1 Applications
Quantitative Verification of Neural Networks Given a
system N and a property P , the classical verification method-
ology focuses on the qualitative question of detecting whether
there exists some input for which the output of N does not
satisfying P . While the qualitative verification methodol-
ogy has been dominant paradigm in the context of traditional
hardware and software systems wherein presence of bug is
often viewed unacceptable, the advent of neural networks re-
quires a rethinking given the statistical guarantees on the be-
havior of these systems. We proposed the notion of quantita-
tive verification to capture how often a property P is satisfied
by a network N [Baluta et al., 2019; Baluta et al., 2021].
We demonstrated how the framework can be applied in the
context of properties such as robustness, susceptibility to tro-
jan attacks, and fairness. As a concrete example, an analyst
can analyze whether a statistically significant number of ad-
versarial examples exist for a given input under user-defined
distributions of perturbations. We have designed the first scal-
able framework, called NPAQ, with formal guarantees of cor-
rectness for binarized neural networks [Baluta et al., 2019;
Dudek et al., 2020]. NPAQ reduces the problem of quanti-
tative verification of binarized neural networks to projected
model counting, therefore allowing us to rely on the scalabil-
ity of ApproxMC.

Resilience of Critical Infrastructure The availabil-
ity of critical facilities and utility services, such as
power, telecommunications, water, gas, and transporta-
tion is crucial to an increasingly connected world.
Natural disasters often result in disruption of underly-
ing networks. We introduced a new approach, RelNet,
to measure the resilience of underlying systems in
events of natural disasters [Duenas-Osorio et al., 2017;
Paredes et al., 2019]. The approach relies on the repre-
sentation of the problem of computation of resilience as
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constrained counting over the configurations of the edges
in the underlying graph. The computational engine of
RelNet was applied to ten power transmission networks
powering small to medium sized cities in the states of Texas,
Florida, California, Tennessee, Georgia, and South Carolina.
Our approach was successfully applied to obtain the first
theoretically sound estimates of resilience in these power
transmission networks.

Quantitative Information Flow Analysis: Quantitative in-
formation flow analysis is a powerful code-analysis tech-
nique to detect leakage of secret program information to pub-
lic program outputs. A specific fragment of the program
(e.g., a function, or the whole program) is modeled as an
information-theoretic channel from its input to its output. To
compute the maximum amount of information that can leak
from the program fragment of interest, a constrained counter
is used to determine the number of distinct outputs of the frag-
ment (e.g., return values of the function, or the outputs of the
program). By counting the number of cases where informa-
tion is leaked, an information-theoretic estimate of the quan-
tified information flow can be obtained [Biondi et al., 2018].

3 Constrained Sampling
We exploited the inter-reducibility of constrained count-
ing and sampling and the properties of 3-wise independent
hash functions to design the first scalable constrained sam-
pler, UniGen, that can sample solutions of a given set of
propositional a set of constraints [Chakraborty et al., 2013a;
Chakraborty et al., 2014b; Chakraborty et al., 2015; Soos et
al., 2020]. Unlike prior approaches pioneered that either re-
quired a linear number of calls to a constrained counter or
computationally prohibitive steps of inverting n-wise inde-
pendent hash functions, UniGen requires a single call to a
constrained counter and employs hash functions that can be
inverted reasonably efficiently in practice using state-of-the-
art SAT solvers. The algorithm first invokes a constrained
counter, viz. ApproxMC, to get an approximate count of the
size of the solution space. Having this count enables au-
tomatically determining the parameters for using 3-wise in-
dependent hash functions, expressed as random XOR con-
straints. These constraints are used to partition the solution
space in such a way that a randomly chosen cell is “small”
enough in expectation, and the solutions in it can be enu-
merated by an existing SAT solver and sampled accordingly.
While this yields a provably almost uniform sampling, the
practical performance is, surprisingly, even better: in partic-
ular, for benchmarks where the ideal distribution can be gen-
erated using exhaustive enumeration, the distributions from
UniGen are statistically indistinguishable from the ideal dis-
tributions [Chakraborty et al., 2014b].

Distribution Testing-Driven Development Given the
widespread applications of sampling, scalability remains a
major challenge despite recent developments in the commu-
nity, including UniGen. Consequently, for applications where
samplers such as UniGen do not scale, the samplers based on
heuristics and lacking theoretical analysis are the last resort.
Recognizing the gap between the existence of heuristic-based

samplers and lack of testing tools with rigorous guarantees,
we initiated Barbarik project that combines distribution test-
ing paradigm with modeling of the behavior of solvers to de-
sign a tester that can provably test whether a given sampler’s
output distribution is uniform or not [Chakraborty and Meel,
2019; Meel et al., 2020; Pote, 2021]. We demonstrated that
Barbarik is able to successfully reject samplers’ whose distri-
bution is far from uniform and would accept samplers such
as UniGen. Next, we pursued a test-driven methodology in
the design of CMSGen [Golia et al., 2021c], a sampler based
on state of the art SAT solver, whose theoretical analysis is
beyond the reach of the currently existing techniques but for
which Barbarik returns accept. Crucially, CMSGen is able to
achieve significant scalability in comparison to existing sam-
plers with theoretical guarantees, and thereby achieving the
right trade-off between scalability and sample quality.

3.1 Applications
Testing of Highly Configurable Software Systems The
widespread and diverse usage has led to the design of
highly configurable software systems operating in diverse
environments. A fundamental problem is the generation of
test configurations that maximize coverage while respecting
constraints that rule out invalid configurations. Building on
the scalability of our samplers, we proposed an adaptive
weighted sampling approach, called baital, that achieves
significantly higher t-wise coverage [Baranov et al., 2020].

Hardware-Design Verification: Every major Electronic
Design Automation company employs simulation-based
techniques for functional verification, which heavily de-
pend on the quality of test inputs with which the design is
simulated. The standard industrial approach is constrained-
random verification, in which random solutions of carefully
crafted constraints are used as test inputs. Prior techniques
either fail to provide theoretical guarantees on the quality
of test inputs generated or fail to scale beyond toy designs.
We extended our hashing-based framework, UniGen, to
design a scalable distributed method for test-input gener-
ation that comes with rigorous approximation guarantees
on the quality of generated stimuli [Chakraborty et al., 2015].

4 Functional Synthesis
Functional synthesis concerns with the automatic synthesis of
programs (also represented as circuits) that provably meet the
end user’s functional requirements. We introduced a novel
data-driven approach, manthan, that combines advances in
machine learning and formal methods [Golia et al., 2020;
Golia et al., 2021b]: we rely on machine learning to gen-
erate candidate functions and then rely on formal methods to
repair the generated candidate functions to synthesize func-
tions that provably meet the end user’s functional require-
ments. manthan consists of three phases: we first exploit the
recent advances in constrained sampling to generate samples
from the given relational specification, say R(X,Y ) over in-
puts X and outputs Y . Next, we cast the functional synthesis
as a classification problem wherein the input variables (X)
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in samples correspond to features while output variables (Y )
correspond to labels. Consequently, the generated samples
are fed as training data, and the learned classifier is encoded
as a Boolean function. Often, machine learning techniques
are capable of generating almost correct and our approach
relies on advances in SAT and MaxSAT to generate a coun-
terexample if the generated candidate functions do not satisfy
specification. In contrast to the traditional approach of coun-
terexample guided abstraction refinement (CEGAR), wherein
a refinement is applied for the generated counterexample, we
employ MaxSAT solver to search for a more generalizable
counterexample. Finally, we employ the UNSAT core to re-
pair the generated function, and we terminate once the re-
paired function satisfies the specification.

4.1 Applications
Program Synthesis The approach of combining formal
methods and machine learning has led to dramatic scalability:
on the standard suite of 609 instances, the prior state of the art
techniques ranged from 210 to 280 instances while manthan
can solve 509 instances; therefore, manthan is the only func-
tional synthesis technique to solve more than 300 instances.
Motivated by the impressive scalability, we turned our at-
tention to program synthesis tasks commonly represented in
Syntax Guided Synthesis (SyGuS) form. We demonstrated
that the problem of program synthesis, represented in SyGuS,
reduces to functional synthesis when there are no restrictions
on the grammar [Golia et al., 2021a]. Our reduction allows
us to transform manthan as a state of the art approach for
program synthesis tasks over bit-vector theory.

Scalable Interpretable Rule Learning We developed
MLIC, a scalable interpretable decision rule learning frame-
work that provides a precise control of accuracy vs. in-
terpretability [Malioutov and Meel, 2018; Ghosh and Meel,
2019]. The key strength of the framework lies its ability to
separate the modeling from the optimization and therefore
has applications in a wide variety of interpretable classifica-
tion formulations, including group-sparsity and having prior
knowledge on variable importance. We observed that a ma-
jor bottleneck to scalability of MLIC is the size (i.e., number
of clauses) of optimization query, which would be linear in
the number of samples in the training data. To achieve scal-
ability, we introduced a novel partitioning-based incremental
optimization solving approach that achieves scalability by in-
voking optimization solver linearly many times wherein each
query is over a fixed size formula. The resulting open-source
tool can now handle problems involving up to million sam-
ples in training data.

5 Data-Driven System Design
The modern SAT solvers are designed to be general purpose
but the algorithmic frameworks for Beyond SAT present op-
portunities for tighter integration between solvers and algo-
rithms so as to allow the solvers to exploit the structure of the
queries. We exploit such opportunities via new paradigms for
SAT sovlers, and the resulting tight coupling leads to signifi-
cant scalability gains.

Native Support for Parity (XOR) Constraints The con-
strained counting and sampling techniques heavily rely on the
usage of pairwise independent hash functions encoded as ran-
dom XOR (parity) constraints. Consequently, the SAT solver
is queried with conjunction of CNF and XOR constraints,
also known as CNF-XOR formulas. Profiling of counters and
samplers revealed that over 99% of the runtime is consumed
by the underlying SAT solvers, thereby critically highlighting
the need for efficient design of solvers with native support
for CNF-XOR formulas. We introduced a novel framework,
called bird, which put forth an unconventional architecture:
bird first blasts the XOR constraints into CNF so that the en-
tire formula is available to the solver in CNF [Soos and Meel,
2019; Soos et al., 2020]. Furthermore, after every inprocess-
ing step, bird recovers XOR constraints so that CDCL can be
performed with on-the-fly Gauss-Jordan Elimination on the
recovered XOR constraints. Our specialized data structure
operations based on matrix row handling achieve efficient
propagation and conflict checking of XOR constraints. Our
project on verification of Binarized Neural Networks (BNN)
showed that BNNs can be encoded naturally into Pseudo-
Boolean (PB) constraints, and highlighted the need for count-
ing tool with native support for PB. Consequently, we devel-
oped LinPB, a PB solver with native support for PB-XOR
formulas [Yang and Meel, 2021], and ApproxMC augmented
with LinPB is able to handle significantly larger neural net-
works.
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