
GANAK: A Scalable Probabilistic Exact Model Counter∗

Shubham Sharma1 , Subhajit Roy1 , Mate Soos2 and Kuldeep S. Meel2
1Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India

2School of Computing, National University of Singapore

Abstract
Given a Boolean formula F , the problem of model
counting, also referred to as #SAT, seeks to com-
pute the number of solutions of F . Model counting
is a fundamental problem with a wide variety of ap-
plications ranging from planning, quantified infor-
mation flow to probabilistic reasoning and the like.
The modern #SAT solvers tend to be either based
on static decomposition, dynamic decomposition,
or a hybrid of the two. Despite dynamic decom-
position based #SAT solvers sharing much of their
architecture with SAT solvers, the core design and
heuristics of dynamic decomposition-based #SAT
solvers has remained constant for over a decade. In
this paper, we revisit the architecture of the state-of-
the-art dynamic decomposition-based #SAT tool,
sharpSAT, and demonstrate that by introducing a
new notion of probabilistic component caching and
the usage of universal hashing for exact model
counting along with the development of several
new heuristics can lead to significant performance
improvement over state-of-the-art model-counters.
In particular, we develop GANAK, a new scalable
probabilistic exact model counter that outperforms
state-of-the-art exact and approximate model coun-
ters sharpSAT and ApproxMC3 respectively, both
in terms of PAR-2 score and the number of in-
stances solved. Furthermore, in our experiments,
the model count returned by GANAK was equal to
the exact model count for all the benchmarks. Fi-
nally, we observe that recently proposed prepro-
cessing techniques for model counting benefit ex-
act model counters while hurting the performance
of approximate model counters.

1 Introduction
Given a Boolean formula F , the problem of propositional
model counting, also referred to as #SAT, seeks to com-
pute the number of solutions of F . Model counting is a
fundamental problem with a wide variety of applications
∗The open source tool along with benchmarks is available at

https://github.com/meelgroup/ganak

ranging from quantified information flow, network reliability,
planning, probabilistic reasoning, and the like [Roth, 1996;
Bacchus et al., 2003; Domshlak and Hoffmann, 2007; Gomes
et al., 2007; Meel et al., 2016; Dueñas-Osorio et al., 2017;
Biondi et al., 2018]. For example, given a graph G such that
each of its edges fails with some probability and two nodes, s
and t, the problem of computing probability of existence of a
path from s to t can be reduced to that of propositional model
counting [Dueñas-Osorio et al., 2017].

In his seminal paper, Valiant showed that #SAT is #P-
complete, where #P is the set of counting problems associ-
ated with NP decision problems [Valiant, 1979]. Theoretical
investigations of #P have led to the discovery of deep con-
nections in complexity theory, and there is strong evidence
for its hardness. In particular, Toda proved that every prob-
lem in the polynomial hierarchy could be solved by just one
call to a #P oracle; more formally, PH ⊆ P#P [Toda, 1989].

The earliest efforts to #SAT focused on extend-
ing the Davis-Putnam-Loveland-Longemann (DPLL) proce-
dure [Davis and Putnam, 1960] by incrementally comput-
ing the number of solutions and adding appropriate multi-
plicative factors after a partial solution was found [Birnbaum
and Lozinskii, 1999]. Subsequently, Relsat focused on par-
titioning the formula into components with a disjoint set of
variables. In a significant breakthrough, Sang et al. pio-
neered the idea of component caching combined with Con-
flict Driven Clause Learning (CDCL) architecture in their ex-
act counter Cachet [Sang et al., 2004; Sang et al., 2005b].
Thurley [Thurley, 2006] improved upon Cachet’s component
caching scheme along with tighter engineering integration
and developed sharpSAT. Several knowledge compilation-
based counters, often a hybrid of static and dynamic decom-
position, have been proposed over the past few years along
with novel techniques for preprocessing [Lagniez and Mar-
quis, 2014; Lagniez et al., 2016; Lagniez and Marquis, 2017].

Despite significant progress in model counting over the
years, the core components of the architecture of dynamic de-
composition based techniques have remained constant. Fur-
thermore, SAT solving have witnessed significant improve-
ments over the past decade owing to the development of new
heuristics [Marques-Silva and Sakallah, 1999; Moskewicz et
al., 2001; Eén and Sörensson, 2004]. Moreover, recent years
have witnessed the rise of approximate model counters owing
to the combination of hashing-based frameworks and use of

https://github.com/meelgroup/ganak


independent support [Stockmeyer, 1983; Gomes et al., 2007;
Chakraborty et al., 2013; Chakraborty et al., 2016; Soos and
Meel, 2019]. In this context, we revisit the architecture of the
state-of-the-art exact model counter, sharpSAT, and seek to
redesign the architecture and augment the existing techniques
with new heuristics.

The primary contribution of this paper is a novel ar-
chitecture, called GANAK1, that deviates significantly from
sharpSAT as follows:

1. We investigate the usage of universal hash functions for
exact model counting. To this end, we design, to the
best of our knowledge, the first probabilistic compo-
nent cache scheme and the first probabilistic exact model
counter. In particular, GANAK takes in a formula F and
a confidence parameter δ as input and returns count
such that count is the number of solutions of F with
confidence at least 1 − δ. Note that probabilistic exact
model counting is almost as hard as exact model count-
ing and significantly hard compared to probabilistic ap-
proximate model counting [Chakraborty et al., 2019].

2. We propose new branching heuristic that seek to achieve
the best of both worlds: perform branching on variables
so as to maximize cache hits and perform branching on
variables that lead to conflict as soon as possible.

Moreover, we propose new heuristics: phase selection
heuristic, independent support, exponentially decaying ran-
domness and learn and start over, and perform extensive
experiments to study the effect of these heuristics, in iso-
lation and in combination. Finally, we use our experience
from the above study to build GANAK that inherits current
advancements in SAT solving and model counting, improves
upon them and contributes new ideas, thereby outperforming
state-of-the-art model counters. In particular, GANAK out-
performs state-of-the-art exact and approximate model coun-
ters sharpSAT and ApproxMC3 respectively, both in terms of
PAR-22 score and the number of instances solved. Moreover,
in our experiments, the model count returned by GANAK was
equal to the exact model count for all the benchmarks.

The rest of the paper is organized as follows: We introduce
notations and preliminaries in Section 2, discuss related work
in Section 3, present GANAK in Section 4 and perform the
theoretical analysis of GANAK in Section 5. We describe the
experimental methodology and discuss results in Section 6
and then we finally conclude in Section 7.

2 Notations and Preliminaries
Let F be a boolean formula in conjunctive normal form
(CNF), and let Vars(F ) and Cl(F ) be the set of variables and
clauses appearing in F . The set Vars(F ) is called the sup-
port of F . An assignment σ of truth values to the variables in
Vars(F ) is called a satisfying assignment or witness of F if it
makes F evaluate to true.

1 GANAK ( in Sanskrit) refers to a device that counts.
2PAR-2 scheme, that is, penalized average runtime, used in SAT-

2017 Competition [SAT, 2017], assigns a runtime of two times the
time limit (instead of a “not solved” status) for each benchmark not
solved by a solver.

Model counting. Given a formula F , we denote the set of
all witnesses of F as RF ; we refer to the cardinality of RF

as the model count of F (denoted as |RF |). Given a set of
variables S ⊆ Vars(F ) and a witness σ, we write σ↓S for the
projection of σ on S. We denote the set of all projections of
RF on S as RF↓S ; we refer to the cardinality of RF↓S as the
projected model count of F on S (denoted as |RF↓S |). Given
F , the problem of exact model counting is to compute |RF |.
Given F and δ ∈ (0, 1], probabilistic exact model counting
estimates count and guarantees that Pr

[
|RF | = count

]
≥

1− δ. A recent study of different relaxations of model count-
ing shows that probabilistic exact model counting is almost
as hard as exact model counting [Chakraborty et al., 2019].
Given F , a tolerance ε > 0 and a confidence 1 − δ ∈ (0, 1],
approximate model counting estimates count and guaran-
tees that Pr

[
|RF |/(1 + ε) ≤ count ≤ (1+ε)|RF |

]
≥ 1−δ.

The above definitions also apply for projected model count-
ing (|RF↓S |).

Component caching. Let varid(F ) and clid(F ) be the cor-
responding sets of indices of Vars(F ) and Cl(F ). A CNF
formula and components can be encoded as strings, omitting
satisfied clauses and assigned literals. As given in [Thurley,
2006], let standard encoding (STD) be the encoding such
that the literals in a clause are presented by their respective
labels and clauses are separated by ‘0’. Let, for example
F = (x3 ∨ x5 ∨ x6) ∧ (x1 ∨ x4 ∨ x6) ∧ (x2 ∨ x3 ∨ x6) then
its STD encoding will be (-3, -5, 6, 0, -1, 4, -6, 0, 2, 3, 6). Let
hybrid encoding (HC) be the encoding such that a component
is encoded by writing the increasing order of the set of in-
dices of associated variables and clauses into a set of strings.
For F , varid(F ) = {1, 2, 3, 4, 5, 6} and clid(F ) = {1, 2, 3}
so HC encoding of F will be (1, 2, 3, 4, 5, 6, 1, 2, 3). We will
use HC(·) and STD(·) to denote the Hybrid and Standard en-
codings of a component.

Hash functions. For positive integers n andm, letH(n,m)
denote the family of hash functions mapping {0, 1}n to
{0, 1}m. We use h

R←− H(n,m) to denote the proba-
bility space obtained by choosing a hash function h uni-
formly at random from H(n,m). We say that H(n,m) is
an universal family if for distinct y1, y2 ∈ {0, 1}n, we have
Pr[h(y1) = h(y2) : h

R←− H(n,m)] ≤ 1
2m . Similarly,

H(n,m) is ε−universal if for distinct y1, y2 ∈ {0, 1}n, we
have Pr[h(y1) = h(y2) : h

R←− H(n,m)] ≤ ε. In this
paper, we use a special class of ε−universal hash family,
called CLHash, owing to its efficient implementation in C++
for modern hardware [Lemire and Kaser, 2016]. Originally,
CLHash was proposed for m = 64 with ε = 2.004

264 but one
can extend this for arbitrary m (as long as m is a multiple
of 64) by defining a new hash family as a concatenation of
multiple hash functions from CLHash. We denote the gen-
eralized family as Hcl(n,m), which provides the following
formal guarantee: for distinct y1, y2 ∈ {0, 1}n, we have

Pr
[
h(y1) = h(y2) : h

R←− Hcl(n,m)
]
≤ 2.004

m
64

2m
(1)



3 Related Work
Complexity-theoretic studies on propositional model count-
ing were initiated by Valiant, who showed that the prob-
lem is #P-complete [Valiant, 1979]. Birnbaum and Lozin-
skii [Birnbaum and Lozinskii, 1999] introduced CDP which
incrementally counted the number of solutions by introduc-
ing the multiplication factors for each partial solution found,
eventually covering the entire solution space. Bayardo and
Pehoushek [Bayardo and Pehoushek, 2000] presented Relsat
in which they recursively identified the connected compo-
nents within a dynamically specified constraint graph, each
subproblem corresponding to a component is, then, solved
recursively. The solution counts of each connected compo-
nents are finally multiplied together to obtain the solution
count for the given formula. Sang et al. [Sang et al., 2004;
Sang et al., 2005a] used component caching, clause learning
and other new heuristics suitable for #SAT in their counter
Cachet. Thurley [Thurley, 2006] introduced new cache man-
agement schema in sharpSAT in which a new approach of
encoding components is used to improve cache utilization.

Techniques based on BDDs and their variants [Minato,
1993], d-DNNF representation [Darwiche, 2004; Muise et
al., 2012; Lagniez and Marquis, 2017] and treewidth of graph
representation of formula [Samer and Szeider, 2007] have
also been used to compute exact model counts. Recently
hashing based techniques have been used to perform approxi-
mate model counting [Stockmeyer, 1983; Gomes et al., 2007;
Chakraborty et al., 2013; Chakraborty et al., 2016; Soos and
Meel, 2019]. The core idea of hashing-based frameworks is
to employ 2-universal hash functions to partition the solution
space into roughly equal small cells, wherein a cell is called
small if the number of the solutions in the cell is less than
or equal to an appropriately computed threshold, denoted by
thresh; a SAT solver is then employed to check if a cell is
small by enumerating solutions until either there are no more
solutions or thresh + 1 solutions have been enumerated.
Then the model count is approximated by using the number
of cells and number of solutions found in a cell.

4 GANAK
GANAK inherits the strength of a state-of-the-art model
counter, sharpSAT, and is equipped with the following new
algorithmic advances:

1. PCC: Probabilistic component caching
2. CSVSADS: New variable branching heuristic
3. PC: New phase selection heuristic
4. IS: Independent support heuristic
5. EDR: Exponentially decaying randomness heuristic
6. LSO: Learn and start over heuristic

We first describe the core algorithm and then delve into a
detailed discussion on each of the above heuristics.

4.1 Core Algorithm
GANAK (Algorithm 1) takes a CNF formula F and a confi-

dence parameter δ ∈ (0, 1] to return the estimate of |RF |with
confidence at least 1− δ. GANAK uses ε-universal hash fam-
ily, Hcl(n,m), with n = Vars(F ) and m = 64 (line 2). It,

Algorithm 1 GANAK(F, δ)
1: m← 64
2: SetHash(Vars(F ),m, 2)
3: count← Counter(F, δ)
4: while count = −1 do
5: m← 2×m
6: SetHash(Vars(F ),m, 2)
7: count← Counter(F, δ)

8: return count

Algorithm 2 Counter(F, δ)
1: m← GetHashRange()
2: t← NumComponents()

3: if 2 log2(t) > log2(δ) +m
(
1− log2(2.004)

64

)
then

4: return −1
5: l← DecideLiteral(F )
6: for lit← {l,¬l} do
7: F|lit ← UnitPropagation(F, lit)
8: if F|lit contains an empty clause then
9: count[lit]← 0 . CDCL is done

10: else
11: count[lit]← 1
12: Comps← DisjointComponents(F|lit)
13: for C ← Comps do
14: hash← h(HC(C))
15: count← GetCache(hash)
16: if count = NOT FOUND then
17: count← Counter(C, δ)

18: count[lit] = count[lit]× count
19: if count = 0 then
20: break
21: hash← h(HC(F ))
22: CacheStore(hash, count[l] + count[¬l])
23: return count[l] + count[¬l]

then, invokes the subroutine Counter that takes the formula F
and a confidence parameter δ, returning the estimate of |RF |
if the range of the hash family is sufficient to establish the
probabilistic bounds; otherwise, it returns -1. The algorithm
loops on Counter, doubling the range of the hash family in
every iteration, till Counter returns successfully (lines 4–7).

The subroutine Counter (Algorithm 2) is a recursive pro-
cedure that attempts to compute an estimate of |RF |, assum-
ing an access to a hash family Hcl(n,m). The key idea be-
hind the probabilistic component cache is to use a hash family
of sufficient range such that the probability of a collision in
the entire execution of the subroutine, Counter, is at most δ.
To this end, Counter uses the subroutine NumComponents()
to compute the total number of components cached so far.
Counter returns -1 if the number of components is too large
for the probability of collision to be at most δ (lines 3–4).

Subsequently, in line 5, Counter chooses a literal l from
the set of unassigned literals to branch on using a variable
branching heuristic and phase selection heuristic, and then,
counts the number of solutions for F|l and F|¬l, where F|l
and F|¬l are residual formulas obtained by assigning l to
true and false respectively. Each subproblem, F|l and
F|¬l make use of component caching to achieve runtime effi-



ciency. In particular, a subproblem is broken into components
that are disjoint sets of clauses such that no two components
share a variable. Then, each component is solved indepen-
dently (lines 13–20) and the model count of a subproblem
(F|l or F|¬l) is calculated as a product of model counts of
each of its components. For each component, first the cache
is examined to see if this component was encountered and
solved earlier in the search (line 15), in which case the count
is simply fetched from the cache; otherwise, the component
is recursively solved. The count of a component is achieved
via a running product of count of each of its disjoint compo-
nents (line 18). If any component C has a model count of 0,
then the model count of subproblem will be 0, in which case
Counter skips the remaining components of that subproblem
(lines 19–20). Finally, the model count of F which is the sum
of model counts of Fl and F¬l is returned after storing it into
the cache (lines 21–23).

4.2 Probabilistic Component Caching
sharpSAT uses the HC schema [Thurley, 2006] to encode the
component in the string to reduce the space over previous
proposals [Sang et al., 2004]. However, this encoding still
consumes significant memory to store the codes.

GANAK employs Probabilistic Component Caching (PCC)
to further reduce the space required to store the codes,
thereby increasing the effective cache capacity with a small
(bounded) probability of returning incorrect model counts.
GANAK calculates anm-bit hash of HC encoding of a compo-
nent using the family Hcl(n,m) and store this hash with the
corresponding model-count of that component in the cache.

4.3 Variable Branching Heuristic
The performance of CDCL-based SAT and #SAT solvers is
largely dependent on variable branching heuristics. Mod-
ern SAT and #SAT solvers employ the popular VSADS
score, that combines the merits of Dynamic Largest Com-
bined Sum (DLCS) and Variable State Independent Decaying
Sum (VSIDS) [Sang et al., 2005a]; VSADS acts more like
DLCS when there are fewer conflicts and more like VSIDS
when there are more conflicts.

The enhanced cache capacity that we are able to buy out
of PCC makes it imperative to incorporate the cache state of
the solver as a guide for branching decisions in order to get
better cache utilization. Therefore, we design a new heuris-
tic, Cache State and Variable State Aware Decaying Sum
(CSVSADS), that combines the cache state of the solver with
the power of VSADS. Our heuristic is based on the following
observation: whenever we branch on a variable, vi, the sub-
sequently generated components under that decision cannot
contain vi. CSVSADS attempts to improve the cache hit-rate
by discouraging branching on variables whose components
are recently added to the cache.
We define two parameters to guide our branching heuristic:

• CacheScore: The CacheScore prioritizes variables
whose components were not recently added to the cache.
Whenever a cache-hit or cache-store is encountered, the
CacheScore (initialized to zero) of all the variables that
occur in that component is decremented. Further, the

CacheScore of all the variables is periodically incre-
mented by a constant factor.
• heparam: This establishes a heuristic equivalence pa-

rameter for VSADS, allowing us to select variables that
excel on both of their CacheScore and VSADS score.
heparam shrinks dynamically as the cache gets filled
(and vice-versa) via a user-defined parameter α, i.e.
heparam = α ×%CacheFull, where %CacheFull is the
currently occupied component cache with respect to the
maximum allowable component cache size (in percent-
age). GANAK uses α = 0.1 (selected empirically).

CSVSADS sorts the variables by their VSADS score and se-
lects a variable that has the highest CacheScore among the
variables that lie in the top heparam percent.

4.4 Phase Selection Heuristic
Modern #SAT solvers have successfully used the DLIS
scheme for phase selection [Sang et al., 2004; Thurley, 2006].
For each variable v, DLIS maintains the number of occur-
rences of positive (|v|) and negative (|¬v|) literals in the for-
mula; DLIS performs phase selection in accordance to the fre-
quency of the positive or negative literals (max(|v|, |¬v|)).

Our heuristic attempts to use randomization to weaken the
DLIS heuristic in situations where DLIS is not overwhelm-
ingly assertive about the polarity of a variable. We main-
tain a cache, PolarityCache (similar to [Pipatsrisawat and
Darwiche, 2007]), that records the variable polarities which
have been assigned values in the past. Any time the solver
branches on a variable, we select a phase as follows:

• Given a variable vi, if the DLIS score in favor of one of
the polarities (vi or ¬vi) is not overwhelmingly high3,
and vi is present in the PolarityCache, we reduce our
“trust” on the DLIS score by selecting a phase uniformly
at random from {DLIS(vi), true, false}; DLIS(vi)
returns the polarity from DLIS for the variable vi.
• Otherwise, we use the default DLIS heuristic.

4.5 Independent Support
An independent support, I ⊆ Vars(F ), is a subset of the
support such that, for σ1, σ2 ∈ RF , if σ1↓I = σ2↓I then
σ1 = σ2 [Chakraborty et al., 2014]. In other words, the truth
values of variables in I uniquely determine the truth value of
every variable in Vars(F ) \ I in every satisfying assignment.
Note that |RF | = |RF↓I |. Now, if the variables in the In-
dependent Support (I) are selected as the decision variables,
the residual formula has only two possibilities: either the for-
mula is satisfiable (SAT) with only one satisfying assignment,
or the formula is unsatisfiable (UNSAT).

GANAK leverages I in the following manner: if the resid-
ual formula is SAT, we set a model count to one at the last
decision variable in the independent support; otherwise, we
set the model count to zero. We, then, simply backtrack to
the appropriate decision level.

3we consider a value overwhelmingly high if the frequency of the
positive literal of vi exceeds that of the negative literal by a factor of
two (or vice versa).



If the size of the independent support is small, we need
fewer decisions to reach the residual formula. Hence, it is de-
sirable to apply the above algorithm on the minimum indepen-
dent support. As computing the minimum independent sup-
port is overly expensive, we use the MIS [Ivrii et al., 2015] al-
gorithm for computing the minimal independent support. We
apply the following techniques to further bring down the cost:
• We apply the above algorithm only on hard instances.

We consider an instance hard if it encounters less than
500 conflicts while taking 5 million decisions;
• Since MIS is an anytime algorithm, i.e it always returns

a sound independent support (I) for a given time budget,
we ran MIS with a time out of 100 seconds (determined
empirically).

We found that independent support is an extremely strong
heuristic (see section 6).

4.6 Exponentially Decaying Randomness
Randomization is quite popular in SAT solvers in being able
to find easily searchable portions of the search space [Gomes
et al., 1998]. Previous studies [Sang et al., 2005a] have
shown that the aggressive usage of randomization is not suit-
able for #SAT as the entire solution space has to be searched.
The question of whether randomization can be helpful during
initial search process, however, was still unresolved. To in-
vestigate further, we design a new heuristic, called EDR, that
exponentially decays randomness as the solver progresses
through the problem. Our heuristic introduces an exponen-
tially increasing heuristic equivalence parameter eiheparam,
such that: eiheparam = 100−10e(−0.0001×#Decisions). EDR
sorts the variables by their VSADS score and selects a vari-
able randomly from the top eiheparam percentage. To our
mild surprise, we found that EDR severely degrades runtime
performance and perhaps, one can argue that no form of ran-
domization is suitable for #SAT (see section 6).

4.7 Learn and Start Over
Modern SAT solvers use random restarts [Gomes et al.,
1998] aggressively in search of a good variable ordering that
can quickly lead to a satisfiable assignment. It is, how-
ever, not clear if restarts can be beneficial for model count-
ing as #SAT solvers have to traverse the complete solu-
tion space; moreover, the dismal performance of EDR fur-
ther seems to discourage randomization, and thus the very
idea of restarts. Surprisingly, we found that restarts indeed
help #SAT in many instances. Our new technique, Learn
and Start Over (LSO), adapts random restarts for #SAT as
follows: firstly, instead of invoking restarts multiple times,
we invoke it only once after the first 5000 decisions. Sec-
ondly, we learn from the previous invocation by maintaining
all the scores obtained in the previous run—VSADS score,
CacheScore, and the complete state of the component cache
and the PolarityCache to explore different and better ordering
of decision variables.

5 Theoretical Analysis
Theorem 1. Given a propositional formula F , confi-
dence parameter δ ∈ (0, 1] and a family of hash func-

tions Hcl(n,m) suppose GANAK(F, δ) returns count then
Pr [|RF | = count] ≥ 1− δ.

Proof. Let C = {c1, · · · , ct} be the set of total number of
components generated in the run of GANAK(F, δ), and t =
|C|. We define a relation ≺ such that for ci, cj ∈ C, ci ≺ cj
if ci is cached before cj in a run of GANAK(F, δ). Let us
consider pairs, Ĉ = {(ci, cj) | ci, cj ∈ C, ci ≺ cj}. Now,

given (ci, cj) ∈ Ĉ and h R←− Hcl(n,m), let Aij represent a
collision between two components ci and cj under h(HC(·)),
i.e. ci 6= cj and h(HC(ci)) = h(HC(cj)). Let A be the
event that there is at least one collision in a run of GANAK
i.e. A =

⋃
(ci,cj)∈Ĉ Aij . Hence, Ā represents the event such

that the count returned by GANAK(F, δ) is equal to |RF |.

Now, Pr[A] = Pr[∪(ci,cj)∈ĈAij ] ≤
∑

(ci,cj)∈Ĉ

Pr[Aij ]

Hence, Pr[A] ≤
(
t

2

)
2.004

m
64

2m
(by Equation 1)

So, Pr[Ā] ≥ 1− t22.004
m
64

2m

From Algorithm 1 and 2, 2 log2(t)−m
(

1− log2(2.004)
64

)
≤

log2(δ). So, log2

(
t22.004

m
64

2m

)
≤ log2(δ) =⇒ t22.004

m
64

2m ≤

δ. Therefore, 1 − t22.004
m
64

2m ≥ 1 − δ =⇒ Pr[Ā] ≥ 1 − δ

6 Evaluation
We evaluate the runtime performance of GANAK on 2031
publicly available benchmarks arising from a wide range of
applications of model counting such as probabilistic reason-
ing, plan recognition, DQMR networks, ISCAS89 combi-
natorial circuits, quantified information flow, logistics, and
the like as have been previously employed in studies on
model counting [Brglez et al., 1989; Sang et al., 2005b;
Chakraborty et al., 2016; Lagniez and Marquis, 2017]. All
our experiments were conducted on a high-performance com-
puter cluster, with each node consists of E5-2690 v3 CPU
with 24 cores and 96GB of RAM. We used 24 cores per node
with memory limit set to 4GB per core and all individual in-
stances for each tool were executed on a single core. For
our experiments, we set δ = 0.05 (for GANAK), a maximum
component cache size of 2GB (for sharpSAT and GANAK)
and a timeout of 5000 seconds (for all the tools). All other
parameters are set to their default values.
We attempt to answer the following research questions:

1. What is the impact of different configurations of our
heuristics?

2. How does GANAK perform with respect to the state-
of-the-art exact and approximate model counters for
model counting (|RF |) and projected model counting
(|RF↓S |)?

3. Empirically, in what percentage of the benchmarks, the
model-count returned by GANAK deviates from the ex-
act model-count?



Our experiments demonstrate that GANAK performs best
when all the heuristics (except EDR) are enabled. GANAK
outperforms state-of-the-art exact (sharpSAT) and approxi-
mate (ApproxMC3) model counters, both in terms of PAR-2
score and the number of instances solved. Finally, in our ex-
periments, the model count returned by GANAK was equal to
the exact model count for all the benchmarks.

6.1 Impact of Configurations of Heuristics
In order to better understand the performance of GANAK, we
investigate the impact of different configurations of heuris-
tics. Our preliminary experiments demonstrated that the
usage of EDR severely downgrades the performance of
GANAK, and therefore, we eliminated EDR from further anal-
ysis. We performed exhaustive experiments by turning each
of the remaining heuristics—PCC, CSVSADS, PC, IS and
LSO—on or off independently on 1650 benchmarks.

Figure 1a shows a heat-map on PAR-2 scores for each con-
figuration of heuristics; a lower PAR-2 score, i.e. a tilt to-
wards the red end of the spectrum, exhibits favorable configu-
rations. Figure 1b represent the comparison between GANAK
versus the baseline configuration that has all the heuristics
turned off: for each configuration, the numerator indicates
the number of benchmarks on which the respective config-
uration performs better than the baseline (vice-versa for the
denominator); we only report results on the benchmarks that
take at least 1 second to run and that deviate by at least 10%
by runtime across the respective configurations.

Figure 1 illustrate that GANAK works best when all the
heuristics are turned on. Further analysis reveals that IS is the
strongest heuristic; PCC, i.e. enabling probabilistic compo-
nent caching, comes a close second. Interestingly, PCC starts
performing well only when IS is turned on, showing a strong
synergy between these two heuristics. We believe that the
reason behind this is that IS restricts the decision variables to
a small, well-chosen set, thereby helping the solver achieve
better utilization for the cached components.

The spectrum shift on the top-right eight cells illustrates
that CSVSADS starts improving the performance of the
solver in presence of PCC and IS; as CSVSADS aims to im-
prove cache utilization, this trend is understandable. Finally,
the shift in the spectrum towards the red end as we move top
and right, exhibits the effectiveness of PC and LSO. Though
LSO does not seem to have much effect on the PAR-2 score,
Figure 1b demonstrates that switching on LSO increases the
number of instances on which GANAK performs better than
the baseline.

6.2 Comparison with Other Tools
Figure 2 show cactus plots comparing the performance of
GANAK with the state-of-the-art exact (sharpSAT) and ap-
proximate (ApproxMC3) model counters on a total of 2031
benchmarks. We present the number of instances on x-axis
and the time taken on y-axis; a point (x, y) implies that a
solver took less than or equal to y seconds to perform model
counting on x benchmarks.

Model Counting Over All Variables (|RF |)
For exact model counting, we use two preprocessing tools,
pmc equipped with #eq [Lagniez and Marquis, 2014] and

Benchmark Vars Clauses sharpSAT ApproxMC3 GANAK
diagStencilClean 378131 2110471 23.58 17.39 23.58

06A-2 3857 15028 0.75 28.38 0.27
50-10-1-q 460 720 1129.78 318.34 118.64

4 11.pm 5steps 80376 42689 36.26 TO 0.96
90-42-1-q 8652 13776 250.53 TO 126.55

orchain220 2433 3562 1321.57 TO 74.99
75-18-6-q 1548 2448 TO TO 154.55

orchain211 2929 4259 TO TO 4311.17

Table 1: Runtime comparison of competing model counters in sec-
onds for model counting over all variables when benchmarks are
pre-processed with B+E.

B+E [Lagniez et al., 2016]. In both cases, GANAK is
able to perform model counting on more benchmarks (1500
and 1587 with pmc(#eq) and B+E, respectively) than any
of the state-of-the-art tools: (1385, 1519) were solved by
sharpSAT and (1141, 1165) by ApproxMC34) within a time-
out of 5000s. Moreover, GANAK achieves the lowest PAR-2
scores of (0.61×, 0.52×) of ApproxMC3 and (0.83×, 0.88×)
of sharpSAT. Table 1 compares GANAK with the competing
tools for the best performing setting (i.e., preprocessed with
B+E) on a subset5 of our benchmarks. Columns 2 (3) pro-
vide the number of variables (clauses) while the subsequent
columns represent the time taken by the respective tools. Fig-
ure 2a and Table 1 clearly demonstrates that GANAK com-
prehensively outperforms both sharpSAT (on which it is built
upon) and ApproxMC3.

Projected Model Counting (|RF↓S |)
We perform projected model counting on our benchmarks
with S ⊆ Vars(F ), where S is provided in the DIMACS
files preceded by “c ind”. We implement projected model
counting in a manner similar to that of IS, where the deci-
sions are taken only on variables from S. We disable our IS
heuristic when we perform projected model counting on S.
As sharpSAT did not support projected model counting, we
added this support to enable comparison. For pre-processing,
we used pmc equipped with eq that preserves the equivalence
across the formulas.

Figure 2b compares the competing model counters on
the benchmarks without and with pmc(eq) pre-processing.
Again, GANAK is able to perform model counting on more
benchmarks (1290 and 1411 without and with pmc(eq), re-
spectively) than sharpSAT (1137, 1302) and ApproxMC3
(1151, 1124) within a timeout of 5000s. Moreover, GANAK
achieves the lowest PAR-2 scores of (0.83×, 0.68×) of
ApproxMC3 and (0.84×, 0.86×) of sharpSAT. Table 2 com-
pares GANAK with the competing tools for projected model
counting on the best performing setting (i.e., preprocessed
with pmc(eq)) on a subset of our benchmarks.

The preprocessing enabled by pmc(eq) seems to favor
CDCL based model counters than hashing-based model coun-
ters; both sharpSAT and GANAK solve more instances with
pmc(eq), whereas the performance of ApproxMC3, in fact,

4Since ApproxMC3 requires a sampling set, for a fair compari-
son, we use the independent support computed by MIS (ran with a
timeout of 100s) as the sampling set.

5Detailed data of all benchmarks with all the settings is available
at https://github.com/meelgroup/ganak.

https://github.com/meelgroup/ganak


3020

3025

2495

2491

3015

3020

2462

2463

3008

3006

2474

2480

3009

3004

2453

2474

3008

3009

2382

2406

3004

2998

2367

2379

2989

2990

2368

2379

2989

2996

2359

2359

00

01

10

11

000 001 010 011 100 101 110 111
PCC−CSVSADS−PC

IS
−L
SO

2400
2600
2800
3000

PAR2

(a) Heatmap on the PAR-2 scores achieved on different configura-
tions on the heuristics. (Best viewed in color)

0
0

25
34

120
44

139
61

36
30

53
42

148
56

150
69

65
112

76
104

168
122

181
130

75
92

74
105

174
116

177
127

23
2

45
27

152
35

163
57

51
21

62
30

176
52

176
67

77
87

77
99

193
109

196
123

82
88

88
90

199
107

205
114

00

01

10

11

000 001 010 011 100 101 110 111
PCC−CSVSADS−PC

IS
−L

SO

Solver
GANAK
SharpSAT

# of instances
0

60

120

180

(b) Number of instances on which a configuration performs better
than baseline (all heuristics turned off). (Best viewed in color)

Figure 1: Impact of different configurations of heuristics. The 0 (1) bits indicate off (on) condition of a particular heuristic.

700 800 900 1000 1100 1200 1300 1400 1500 1600

instances

0

1000

2000

3000

4000

5000

C
P
U

 t
im

e
 (

s
)

GANAK(B+E)

SharpSAT(B+E)

GANAK(pmc+#eq)

SharpSAT(pmc+#eq)

ApproxMC3(B+E)

ApproxMC3(pmc+#eq)

(a) GANAK versus competing model-counters for model counting
on all variables

700 800 900 1000 1100 1200 1300 1400 1500 1600

instances

0

1000

2000

3000

4000

5000

C
P
U

 t
im

e
 (

s
)

GANAK(pmc+eq)

SharpSAT(pmc+eq)

GANAK

ApproxMC3

SharpSAT

ApproxMC3(pmc+eq)

(b) GANAK versus competing model-counters for projected model
counting

Figure 2: Cactus plots comparing the performance of different model counters. (Best viewed in color)

Benchmark Vars Clauses sharpSAT ApproxMC3 GANAK
s713 509 1056 3836.79 2.18 3693.49

case120 284 618 11.11 2.60 11.06
pm-4-steps 98746 12006 10.01 11.53 9.93
orchain42 1385 1943 73.8 TO 0.11

orchain168 1661 2333 4144.27 TO 0.10
75-15-8-q 1065 777 4952.46 TO 180.25
50-14-4-q 924 880 TO TO 198.0
75-17-4-q 1377 985 TO TO 202.45

Table 2: Runtime comparison of competing model counters in
seconds for projected model counting when benchmarks are pre-
processed with pmc(eq).

deteriorates. Furthermore, the existence of benchmarks
where ApproxMC3 outperforms GANAK indicates the poten-
tial for hybrid approaches and calls for deeper investigation
for demystifying the performance of counting techniques.

7 Conclusion
GANAK demonstrates that #SAT solvers can significantly
benefit from probabilistic component caches, especially when
ably supported by heuristics like IS, CSVSADS, PC and LSO.
In particular, we are able to outperform exact (sharpSAT) and
approximate (ApproxMC3) model counters both in terms of
PAR-2 score and the number of instances solved. This is a

significant contribution as we are able to solve many more
of the hardest instances for a #P-complete problem. We be-
lieve that the heuristics proposed in this paper will also ben-
efit exhaustive DPLL and CDCL based knowledge compila-
tion frameworks and related tools (like c2d [Darwiche, 2004],
DSHARP [Muise et al., 2012], D4 [Lagniez and Marquis,
2017], KUS [Sharma et al., 2018] and WAPS [Gupta et al.,
2019]); we intend to investigate this in the future.

Acknowledgements

This research is supported in part by the National Re-
search Foundation Singapore under its AI Singapore Pro-
gramme (Award Number: [AISG-RP-2018-005]) and the
NUS ODPRT Grant [R-252-000-685-133]. The com-
putational work for this article was performed on re-
sources of the National Supercomputing Centre, Singa-
pore (https://www.nscc.sg/). Part of this research work
was done during a visit of the first author at NUS, Singa-
pore. We are thankful to Nutanix Software India Pvt. Ltd.
(https://www.nutanix.in/) for supporting the conference reg-
istration and travel of the first author.

https://www.nscc.sg/
https://www.nutanix.in/


References
[Bacchus et al., 2003] Fahiem Bacchus, Shannon Dalmao, and To-

niann Pitassi. Algorithms and complexity results for #SAT and
Bayesian inference. In Proc. of FOCS, pages 340–351, 2003.

[Bayardo and Pehoushek, 2000] Roberto J. Bayardo, Jr. and
Joseph Daniel Pehoushek. Counting Models Using Connected
Components. In Proc. of AAAI, pages 157–162, 2000.

[Biondi et al., 2018] Fabrizio Biondi, Michael Enescu, Annelie
Heuser, Axel Legay, Kuldeep S. Meel, and Jean Quilbeuf. Scal-
able approximation of quantitative information flow in programs.
In Proc. of VMCAI, pages 71–93, 2018.

[Birnbaum and Lozinskii, 1999] Elazar Birnbaum and Eliezer L.
Lozinskii. The Good Old Davis-Putnam Procedure Helps Count-
ing Models. J. Artif. Int. Res., pages 457–477, 1999.

[Brglez et al., 1989] Franc Brglez, David Bryan, and Krzysztof
Kozminski. Combinational profiles of sequential benchmark cir-
cuits. In Proc. of ISCAS, pages 1929–1934, 1989.

[Chakraborty et al., 2013] Supratik Chakraborty, Kuldeep S. Meel,
and Moshe Y. Vardi. A Scalable Approximate Model Counter. In
Proc. of CP, pages 200–216, 2013.

[Chakraborty et al., 2014] Supratik Chakraborty, Kuldeep S. Meel,
and Moshe Y. Vardi. Balancing scalability and uniformity in SAT
witness generator. In Proc. of DAC, pages 1–6, 2014.

[Chakraborty et al., 2016] Supratik Chakraborty, Kuldeep S. Meel,
and Moshe Y. Vardi. Algorithmic Improvements in Approximate
Counting for Probabilistic Inference: From Linear to Logarith-
mic SAT Calls. In Proc. of IJCAI, pages 3569–3576, 2016.

[Chakraborty et al., 2019] Supratik Chakraborty, Kuldeep S. Meel,
and Moshe Y. Vardi. On the Hardness of Probabilistic Inference
Relaxations. In Proc. of AAAI, 2019.

[Darwiche, 2004] Adnan Darwiche. New Advances in Compiling
CNF to Decomposable Negation Normal Form. In Proc. of ECAI,
pages 318–322, 2004.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam. A
computing procedure for quantification theory. J. ACM, pages
201–215, 1960.

[Domshlak and Hoffmann, 2007] Carmel Domshlak and Jörg Hoff-
mann. Probabilistic planning via heuristic forward search and
weighted model counting. JAIR, pages 565–620, 2007.

[Dueñas-Osorio et al., 2017] Leonardo Dueñas-Osorio, Kuldeep S.
Meel, Roger Paredes, and Moshe Y. Vardi. Counting-based relia-
bility estimation for power-transmission grids. In Proc. of AAAI,
2017.

[Eén and Sörensson, 2004] Niklas Eén and Niklas Sörensson. An
Extensible SAT-solver. In Proc. of SAT, pages 502–518, 2004.

[Gomes et al., 1998] Carla P. Gomes, Bart Selman, and Henry
Kautz. Boosting Combinatorial Search Through Randomization.
In Proc. of AAAI, pages 431–437, 1998.

[Gomes et al., 2007] Carla P. Gomes, Ashish Sabharwal, and Bart
Selman. Near-Uniform sampling of combinatorial spaces using
XOR constraints. In Proc. of NIPS, pages 481–488, 2007.

[Gupta et al., 2019] Rahul Gupta, Shubham Sharma, Subhajit Roy,
and Kuldeep S. Meel. WAPS: Weighted and Projected Sampling.
In Proc. of TACAS, pages 59–76, 2019.

[Ivrii et al., 2015] Alexander Ivrii, Sharad Malik, Kuldeep S. Meel,
and Moshe Y. Vardi. On computing minimal independent support
and its applications to sampling and counting. Constraints, 2015.

[Lagniez and Marquis, 2014] Jean-Marie Lagniez and Pierre Mar-
quis. Preprocessing for propositional model counting. In Proc of
AAAI, pages 2688–2694, 2014.

[Lagniez and Marquis, 2017] Jean-Marie Lagniez and Pierre Mar-
quis. An Improved Decision-DNNF Compiler. In Proc. of IJCAI,
pages 667–673, 2017.

[Lagniez et al., 2016] Jean-Marie Lagniez, Emmanue Lonca, and
Pierre Marquis. Improving Model Counting by Leveraging De-
finability. In Proc. of IJCAI, pages 751–757, 2016.

[Lemire and Kaser, 2016] Daniel Lemire and Owen Kaser. Faster
64-bit universal hashing using carry-less multiplications. Journal
of Cryptographic Engineering, pages 171–185, 2016.

[Marques-Silva and Sakallah, 1999] J. P. Marques-Silva and K. A.
Sakallah. GRASP: a search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers, pages 506–521, 1999.

[Meel et al., 2016] Kuldeep S. Meel, Moshe Y. Vardi, Supratik
Chakraborty, Daniel J Fremont, Sanjit A Seshia, Dror Fried,
Alexander Ivrii, and Sharad Malik. Constrained Sampling and
Counting: Universal Hashing Meets SAT Solving. In Proc. of
Beyond NP Workshop, 2016.

[Minato, 1993] S. Minato. Zero-Suppressed BDDs for Set Manip-
ulation in Combinatorial Problems. In Proc. of DAC, pages 272–
277, 1993.

[Moskewicz et al., 2001] Matthew W Moskewicz, Conor F Madi-
gan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engi-
neering an efficient SAT solver. In Proc. of DAC, pages 530–535,
2001.

[Muise et al., 2012] Christian Muise, Sheila A. McIlraith,
J. Christopher Beck, and Eric I. Hsu. Dsharp: Fast d-DNNF
Compilation with sharpSAT. In Proc. of CAI, pages 356–361,
2012.

[Pipatsrisawat and Darwiche, 2007] Knot Pipatsrisawat and Adnan
Darwiche. A Lightweight Component Caching Scheme for Sat-
isfiability Solvers. In Proc. of SAT, pages 294–299, 2007.

[Roth, 1996] Dan Roth. On the hardness of approximate reasoning.
Artificial Intelligence, pages 273–302, 1996.

[Samer and Szeider, 2007] Marko Samer and Stefan Szeider. Al-
gorithms for Propositional Model Counting. In Proc. of LPAR,
pages 484–498, 2007.

[Sang et al., 2004] Tian Sang, Fahiem Bacchus, Paul Beame,
Henry A Kautz, and Toniann Pitassi. Combining component
caching and clause learning for effective model counting. In
Proc. of SAT, 2004.

[Sang et al., 2005a] Tian Sang, Paul Beame, and Henry Kautz.
Heuristics for Fast Exact Model Counting. In Proc. of SAT, pages
226–240, 2005.

[Sang et al., 2005b] Tian Sang, Paul Beame, and Henry Kautz. Per-
forming Bayesian inference by weighted model counting. In
Prof. of AAAI, pages 475–481, 2005.

[SAT, 2017] Proc. of SAT Competition 2017: Solver and Bench-
mark Descriptions. University of Helsinki, Department of Com-
puter Science, 2017.

[Sharma et al., 2018] Shubham Sharma, Rahul Gupta, Subhajit
Roy, and Kuldeep S. Meel. Knowledge Compilation meets Uni-
form Sampling. In Proc. of LPAR, pages 620–636, 2018.

[Soos and Meel, 2019] Mate Soos and Kuldeep S. Meel. BIRD:
Engineering an Efficient CNF-XOR SAT Solver and its Appli-
cations to Approximate Model Counting. In Proc of AAAI, 2019.

[Stockmeyer, 1983] Larry Stockmeyer. The complexity of approx-
imate counting. In Proc. of STOC, pages 118–126, 1983.

[Thurley, 2006] Marc Thurley. SharpSAT: counting models with
advanced component caching and implicit BCP. In Proc. of SAT,
pages 424–429, 2006.



[Toda, 1989] Seinosuke Toda. On the computational power of PP
and (+)P. In Proc. of FOCS, pages 514–519, 1989.

[Valiant, 1979] Leslie G. Valiant. The Complexity of Enumera-
tion and Reliability Problems. SIAM J. Comput., pages 410–421,
1979.


	Introduction
	Notations and Preliminaries
	Related Work
	GANAK
	Core Algorithm
	Probabilistic Component Caching
	Variable Branching Heuristic
	Phase Selection Heuristic
	Independent Support
	Exponentially Decaying Randomness
	Learn and Start Over

	Theoretical Analysis
	Evaluation
	Impact of Configurations of Heuristics
	Comparison with Other Tools
	Model Counting Over All Variables (|RF|)
	Projected Model Counting (|RF "3223379 S|)


	Conclusion

