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Abstract
The problem of counting the number of solutions
of a DNF formula, also called #DNF, is a fun-
damental problem in AI with wide-ranging appli-
cations. Owing to the intractability of the exact
variant, efforts have focused on the design of ap-
proximate techniques. Consequently, several Fully
Polynomial Randomized Approximation Schemes
(FPRASs) based on Monte Carlo techniques have
been proposed. Recently, it was discovered that
hashing-based techniques too lend themselves to
FPRASs for #DNF. Despite significant improve-
ments, the complexity of the hashing-based FPRAS
is still worse than that of the best Monte Carlo
FPRAS by polylog factors. Two questions were left
unanswered in previous works: Can the complex-
ity of the hashing-based techniques be improved?
How do these approaches compare empirically?
In this paper, we first propose a new search pro-
cedure for the hashing-based FPRAS that removes
the polylog factors from its time complexity. We
then present the first empirical study of runtime be-
havior of different FPRASs for #DNF, which pro-
duces a nuanced picture. We observe that there is
no single best algorithm for all formulas and that
the algorithm with one of the worst time complexi-
ties solves the largest number of benchmarks.

1 Introduction
Constrained counting is a fundamental problem in artifi-
cial intelligence with a wide variety of applications rang-
ing from network reliability [Dueñas-Osorio et al., 2017],
probabilistic inference [Bacchus et al., 2003], probabilistic
databases [Dalvi and Suciu, 2007], quantified information
flow [Biondi et al., 2018], and the like. Given a set of con-
straints F , the problem of constrained counting seeks to com-
pute the total number of solutions to F . In this work, we focus
on the variant of constrained counting where F is expressed
in Disjunctive Normal Form (DNF), henceforth denoted as
∗Author names are ordered alphabetically by last name.
†This extended abstract is a short version of full paper in Con-
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DNF-Counting or #DNF. This problem is important in prac-
tice, as applications such as query evaluation in probabilistic
databases [Dalvi and Suciu, 2007] and failure-probability es-
timation of networks [Karger, 2001] reduce to it.

The problem of #DNF is known to be #P-
complete [Valiant, 1979], where #P is the class of counting
problems for decision problems in NP. Due to the intractabil-
ity of exact #DNF, the approximate variant of #DNF has been
studied extensively by both theoreticians and practitioners.
Of particular interest is to obtain (ε, δ) approximation, such
that the count returned by the approximation scheme is
within (1 + ε) factor of the exact count with confidence at
least 1− δ, where ε and δ are supplied by the user.

In their seminal paper, Karp and Luby [1983] proposed the
first Fully Polynomial Randomized Approximation Scheme
(FPRAS) for #DNF based on Monte Carlo sampling. We will
henceforth use the term KL Counter to denote the FPRAS
proposed by Karp et al. The time complexity of KL Counter
is quadratic in the number of cubes (i.e., disjuncts) and linear
in the number of the variables of the input formula F . Build-
ing on KL Counter, Karp, Luby and Madras [1989] proposed
an improved FPRAS, henceforth denoted as KLM Counter,
which has time complexity linear in the number of cubes.
Vazirani [2013] proposed a variant of KL Counter (denoted
Vazirani Counter) with same time complexity as KL Counter,
but combined with an enhancement proposed in [Dagum et
al., 2000], it requires fewer Monte Carlo samples than KL
Counter.

Recently, Chakraborty, Meel and Vardi [2016] showed
that the hashing-based framework, which was originally pro-
posed for approximate counting of CNF formulas, lends
to an FPRAS scheme for #DNF as well. In particu-
lar, Chakraborty et al. proposed a hashing-based scheme
called DNFApproxMC, whose time complexity was signif-
icantly worse than that of KLM Counter. Building on
Chakraborty et al., Meel, Shrotri and Vardi [2017] pro-
posed an improvement to DNFApproxMC, which we re-
fer to as SymbolicDNFApproxMC. The time complexity
of SymbolicDNFApproxMC is Õ(mn log(1/δ)/ε2), which is
within polylog factors of that of KLM Counter.

Two key questions however, are still unanswered: 1) Is it
possible to remove the polylog factors in the complexity of
SymbolicDNFApproxMC? 2) How do the various approaches
perform empirically? The desire to make an inquiry into the



runtime performance of different FPRAS is not just intellec-
tual; it stems from the fruitful results such a study has pro-
duced in the development of theory and tools for approximate
#CNF [Ermon et al., 2013; Meel, 2018]. Despite the fact that
some FPRAS have been around for over 30 years, a compre-
hensive experimental evaluation has not been performed for
#DNF, to the best of our knowledge.

In this paper, we propose a new search technique for
hashing-based algorithms that improves the complexity of
SymbolicDNFApproxMC to O(mn log(1/δ)/ε2), which is
the same as KLM Counter. We also present the first empiri-
cal study of runtime behavior of different FPRASs for #DNF.
Similar to previous studies for SAT solvers, we experiment
on classes of randomly generated DNF formulas covering a
broad range of distribution parameters. Our results produce
a nuanced picture. Firstly, we observe that there is no single
best algorithm that outperforms all other algorithms for all
classes of formulas and input parameters. Second, we observe
that the algorithm with one of the worst time complexities,
DNFApproxMC, solves the largest number of benchmarks.
We believe that the above two results are significant as they
demonstrate a gap between runtime performance and theo-
retical time complexity of approximate techniques for #DNF.
Similar to studies of #CNF, this gap should serve as a guiding
light for designing new #DNF algorithms, and for analyzing
the structure of solution space of DNF formulas.

2 #DNF and Approximation Schemes
A formula F over boolean variables is in Disjunctive Nor-
mal Form (DNF) if it is a disjunction over conjunctions of
literals. We use #F to denote the number of solutions or sat-
isfying assignments of F Disjuncts in the formula are called
cubes. We will use n and m to denote the number of variables
and number of cubes in the input DNF formula, respectively.
We use w to denote the minimum of width over all the cubes
of the formula. A fully polynomial randomized approxima-
tion scheme (FPRAS) is a randomized algorithm that takes as
input a formula F , a tolerance ε ∈ (0, 1) and confidence pa-
rameter δ ∈ (0, 1) and outputs a random variable Y such that
Pr[(1− ε)#F ≤ Y ≤ (1 + ε)#F ] ≥ 1− δ and the running
time of the algorithm is polynomial in |F |, 1/ε, log(1/δ).

There is intense interest in practical applications of #DNF
and a number of algorithmic schemes have been designed to-
wards that end. The strongest guarantees on worst-case run-
ning time are provided by FPRASs, yet there does not exist a
comprehensive experimental evaluation comparing them. In
this work, we perform the first such empirical study of run-
time behavior of different FPRASs. Before delving into the
experiments, we briefly discuss the two main paradigms –
Monte Carlo sampling and hashing – for developing FPRASs
for #DNF. We will also present a new search technique that
improves the theoretical and practical running time of the
hashing-based approach.

2.1 Monte Carlo Framework
Algorithms built on Monte Carlo framework are randomized
algorithms whose output can be wrong with a certain (usually
small) probability [Babai, 1979]. Typically, these algorithms

Algorithm 1 Monte-Carlo-Count(A, U)

1: Y ← 0
2: repeat N ∝ |U|

|A| times
3: Select an element t ∈ U uniformly at random
4: if t ∈ A then
5: Y ← Y + 1

N

6: Z ← Y × |U|
7: return Z

rely on drawing independent random samples to obtain nu-
merical results. We refer the reader to [Motwani and Ragha-
van, 2010] for further details. In the context of counting, the
abstract Monte Carlo framework for finding cardinality of a
set A in the universe U is shown in Algorithm 1.

In the context of this work, we haveA is the set of solution
of the input DNF formula F . We can employ Algorithm 1 by
defining U to be the set of all assignments over n variables.
Algorithm 1 is an FPRAS if the number of samples N , and
the time taken by line 3 and 4 are polynomial in the size of
input. However, this is not true in general for DNF formulas,
as #F can be exponentially smaller than 2n.

The key insight by Karp et al. is to transform the uni-
verse U into a different universe U ′ while preserving the
number of solutions and ensuring that |U ′|

#F is polynomially
bounded. Different transformations and enumeration pro-
cedures gave rise to 3 different FPRASs, namely the KL
Counter, KLM Counter and the Vazirani Counter. The best
worst-case complexity is achieved by KL Counter, which is
O(mn log(1/δ)/ε2).

2.2 Hashing Framework
The number of solutions of Boolean formulas that arise in
practice is typically extremely large, and it is infeasible to
enumerate them all. The key idea behind hashing-based
counting is to partition the solution space of a given formula
into roughly equal sized cells such that the number of solu-
tions in a cell is not too large. Counting the solutions in a
cell by enumeration is now feasible, and we can estimate the
total count by extrapolating the count of a randomly chosen
cell by the total number of cells in the partition. The use
of 2-universal hash functions [Carter and Wegman, 1977] for
partitioning ensures that the solutions are roughly evenly di-
vided amongst cells, which is necessary for obtaining theo-
retical guarantees on the final count.

This abstract hashing-based counting framework called
ApproxMC is illustrated in Algorithm 2. The procedure takes
as input a Boolean formula F , tolerance ε and confidence δ,
and outputs an approximate count within (ε, δ) bounds of the
true count of F . A low-confidence estimate of the true count
is obtained in lines 5-12, which is boosted to the required con-
fidence δ, by taking the median of Iterations = O(log( 1δ ))
counts on line 13.

The crux of the framework is a search for the right number
of hash constraints on line 6. The number of hash constraints
p returned by the search procedure is guaranteed to be such
that the number of solutions in the cell is not too large, yet
the tolerance is as required. The loop on line 8 is used to



Algorithm 2 ApproxMC(F, ε, δ)

1: Threshold← O( 1
ε2 );

2: Iterations← O(log( 1δ ));
3: CountList← emptyList;
4: repeat Iterations times
5: h← SampleHashFunction();
6: p← Search(F,Threshold);
7: count← 0;
8: while True do
9: if EnumerateNextSol(F ∧ hp) 6= ⊥ then

10: count = count+ 1;
11: else break;
12: AddToList(CountList, count× 2p);
13: Y ← FindMedian(CountList);
14: return Y ;

exhaustively enumerate all the solutions in the cell (F ∧ hp).
Concrete counting algorithms for a class of formulas

can be obtained from the above framework by choosing
an appropriate family of 2-universal hash functions along
with the corresponding procedures SampleHashFunction
(line 5), Search (line 6) and EnumerateNextSol (line 9).
Chakraborty et al. [2016] obtained an FPRAS for DNF for-
mulas with complexity O((mn3 + mn2/ε2) log n log(1/δ)),
using Random XOR hash functions, Gaussian Elimination
for EnumerateNextSol, and binary-search for Search. We
denote the resulting algorithm as DNFApproxMC. In our ex-
periments, we augmented DNFApproxMC with Row-Echelon
Hash family (proposed in [Meel et al., 2017]), which im-
proves the complexity from cubic to quadratic in n leading
to better performance on all benchmarks.

The algorithm SymbolicDNFApproxMC proposed in
[Meel et al., 2017] achieves better worst-case time com-
plexity, made possible by three improvements over the
original DNFApproxMC algorithm, namely Row Echelon
hash functions, Symbolic Hashing and Stochastic Cell-
Counting. The complexity of SymbolicDNFApproxMC is
Õ(mn log(1/δ)/ε2).

3 Reverse Search for Hashing-Based
Algorithms

A close inspection of the SymbolicDNFApproxMC algo-
rithm in [Meel et al., 2017] reveals that the polylog fac-
tors in the complexity analysis stems from the use of bi-
nary search which redundantly explores the same part of
the solution space. We proposed a new search tech-
nique called ReverseSearch, that removes the polylog fac-
tors (hidden in the Õ notation) from the complexity of
SymbolicDNFApproxMC to make it at par with the complex-
ity achieved KLM Counter, and also improves its running
time in practice.

Theorem 1. The complexity of SymbolicDNFApproxMC,
when invoked with ReverseSearch is O(mn log(1/δ)/ε2)

(See [Meel et al., 2018] for full proof). Naturally, one
wonders whether employing ReverseSearch leads to gains

in performance in practice. We compared the running
times of SymbolicDNFApproxMC with BinarySearch and
with ReverseSearch over wide classes of randomly gen-
erated DNF formulas with 100, 000 variables, number of
cubes ranging from 10, 000 to 800, 000 and cube-widths
ranging from 3 to 43. Figure 1 shows a scatter-plot of
the results. A point (in blue) in the plot corresponds
to one DNF formula in our test set. Its y-coordinate
represents the time taken by SymbolicDNFApproxMC
using ReverseSearch, while its x-coordinate represents
time taken using BinarySearch. It can be seen that
SymbolicDNFApproxMC with ReverseSearch is roughly
four or five times faster than with BinarySearch. Therefore in
the empirical study we describe next, we use ReverseSearch
in all experiments involving SymbolicDNFApproxMC.
Henceforth, we denote SymbolicDNFApproxMC with
ReverseSearch as just SymbolicDNFApproxMC. Note,
however, that DNFApproxMC does not benefit from
ReverseSearch (Fig. 2). In fact, a simple linear search
works best since our implementation buffers solutions which
obviates the need for other searches.

4 Empirical Evaluation
The objective of our experimental evaluation was to seek an
answer for the following four key questions:

1. Runtime Variation: How does the running time of the
algorithms vary across different benchmarks?

2. Benchmarks Solved: How many benchmarks can the al-
gorithms solve overall?

3. Accuracy: How accurate are the returned counts?

4. ε− δ Scalability: How do the algorithms scale with the
input tolerance and confidence?

To the best of our knowledge, there is no publicly-available
standardized set of benchmarks for #DNF. This prevents
adoption of algorithms in practice, which in turn affects
benchmark availability. To break this vicious cycle, we con-
duct our study on random DNF formulas covering a broad
range of parameters. We only present results on Runtime
Variation and Benchmarks Solved; see [Meel et al., 2018]
for full details.

4.1 Runtime Variation
We present a graph of the running time vs. the number of
cubes for w = 3, 23 as well as for non-uniform cube-widths.
This is shown in Figs. 3, 4, and 5 respectively. Each data
point in the graphs represents the average running time of
an algorithm over the 20 random formulas that were gener-
ated with the corresponding n, m and w. For w = 3, we
see that DNFApproxMC vastly outperforms other algorithms,
while in Fig. 4 we see that the performance of Monte Carlo
methods improves. For non-uniform widths, we see that the
DNFApproxMC is again the best performer.

4.2 Benchmarks Solved
Fig. 6 shows the cactus plot of all the different algorithms.



0 100 200 300 400 500

SymbolicDNFApproxMC w/ Binary Search

0

100

200

300

400

500
S
y
m
b
o
lic
D
N
FA

p
p
ro
x
M
C
 w
/ 
R
e
v
e
rs
e
 S
e
a
rc
h

Figure 1: Running time of SymbolicDNFApproxMC:
ReverseSearch vs. BinarySearch
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Figure 2: Running time of DNFApproxMC:
ReverseSearch vs. LinearSearch
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Figure 3: Runtime Variation: DNFApproxMC is the best per-
former. Rest timeout.
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Figure 4: Runtime Variation: KLM Counter and KL Counter are
the best performers

We present the number of benchmarks on x–axis and the to-
tal time taken on y–axis. A point (x, y) implies that x bench-
marks took less than or equal to y seconds to solve. We see
that DNFApproxMC completes all 1080 benchmarks in under
350 seconds which is well within the time limit of 500 sec-
onds. Other algorithms time out on at least 100 benchmarks.

5 Discussion
The Runtime Variation experiments show that the perfor-
mance of Monte Carlo FPRAS and SymbolicDNFApproxMC
is adversely affected by cube width, while DNFApproxMC
is consistent across all benchmarks, as evidenced by the
Benchmarks Solved. The reason for this behavior, is that
the former crucially depend on the density of solutions,
which varies exponentially with cube-width for randomly
generated formulas. On the other hand the running time of
DNFApproxMC does not depend as heavily on the solution
density which is also apparent in the experiment on formulas
with non-uniform cube-widths (Fig. 5).

In the full version, we show that in terms of ε Scalability,
DNFApproxMC performs better than other approaches due to
the use of efficient data structures to buffer solutions, while
the Monte Carlo algorithms scale substantially better with

δ, which can be attributed to the overhead in repeating the
core hashing sub-procedure for boosting confidence. Vazirani
Counter achieves the best accuracy for a given (ε, δ); how-
ever this comes at a price as it solved the least number of
benchmarks. Note that the maximum observed error was
much lower than the input ε for all 5 algorithms.

In summary, KLM Counter and KL Counter are the al-
gorithms of choice when solution density in the transformed
space is known to be high. However, when there is no infor-
mation about the formula or when solutions density is known
to be low, DNFApproxMC is a safe bet.

6 Concluding Remarks
Designing counters for #DNF has been of practical and the-
oretical interest, owing to various applications in AI. Build-
ing on Chakraborty et al. [2016], Meel et al. [2017] proposed
a hashing-based algorithm, SymbolicDNFApproxMC, whose
time complexity was shown to be within polylog factors of
the best known Monte Carlo schemes. Meel et al. left two key
questions answered: (1) Are hashing techniques as powerful
as Monte Carlo?, and (2) How do they compare empirically?

We provide positive answers to these questions. In partic-
ular, we first introduced a new reverse-search technique that
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Figure 5: Runtime Variation: DNFApproxMC domi-
nates other algorithms
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Figure 6: Benchmarks Solved: DNFApproxMC solved
all benchmarks

makes the time complexity of a hashing-based FPRAS at par
with the state-of-the art Monte Carlo techniques. This leads
to up to 4 − 5× gains over the previous scheme proposed by
Meel et al. [2017]. Moreover, reverse-search for hashing is
not limited to #DNF, and maybe applied to #CNF as well.

We also provided the first empirical study of the various
Monte Carlo and hashing-based FPRASs for #DNF. Our anal-
ysis leads to two important observations not apparent from
the theoretical analysis alone: (1) There is no panacea; dif-
ferent algorithms are well suited for different formula types
and input parameters; and (2) DNFApproxMC is robust across
different classes of formulas, despite poor complexity.

Owing to comprehensive testing on a wide array of formula
classes and input parameters, we believe that these observa-
tions will carry over to real-world benchmarks as well. These
observations illustrate a gap between theory and practice of
#DNF which we hope will kick-start further empirical inves-
tigations and serve as a blueprint for future work on #DNF.
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