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Abstract
Probabilistic inference via model counting has
emerged as a scalable technique with strong for-
mal guarantees, thanks to recent advances in
hashing-based approximate counting. State-of-the-
art hashing-based counting algorithms use an NP
oracle (SAT solver in practice), such that the num-
ber of oracle invocations grows linearly in the num-
ber of variables n in the input constraint. We
present a new approach to hashing-based approx-
imate model counting in which the number of ora-
cle invocations grows logarithmically in n, while
still providing strong theoretical guarantees. We
use this technique to design an algorithm for #CNF
with probably approximately correct (PAC) guar-
antees. Our experiments show that this algorithm
outperforms state-of-the-art techniques for approx-
imate counting by 1-2 orders of magnitude in run-
ning time. We also show that our algorithm can
be easily adapted to give a new fully polynomial
randomized approximation scheme (FPRAS) for
#DNF.

1 Introduction
Probabilistic inference is increasingly being used to reason
about large uncertain data sets arising from diverse applica-
tions including medical diagnostics, weather modeling, com-
puter vision and the like [Bacchus et al., 2003; Domshlak and
Hoffmann, 2007; Sang et al., 2004; Xue et al., 2012]. Given a
probabilistic model describing conditional dependencies be-
tween variables in a system, the problem of probabilistic in-
ference requires us to determine the probability of an event
of interest, given observed evidence. This problem has been
the subject of intense investigations by both theoreticians and
practitioners for more than three decades (see [Koller and
Friedman, 2009] for a nice survey).

Exact probabilistic inference is intractable due to the curse
of dimensionality [Cooper, 1990; Roth, 1996]. As a result,
researchers have studied approximate techniques to solve
real-world instances of this problem. Techniques based on
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Markov Chain Monte Carlo (MCMC) methods [Brooks et
al., 2011], variational approximations [Wainwright and Jor-
dan, 2008], interval propagation [Tessem, 1992] and ran-
domized branching choices in combinatorial reasoning al-
gorithms [Gogate and Dechter, 2007] scale to large prob-
lem instances; however they fail to provide rigorous ap-
proximation guarantees in practice [Ermon et al., 2014;
Kitchen and Kuehlmann, 2007].

A promising alternative approach to probabilistic inference
is to reduce the problem to discrete integration or constrained
counting, in which we count the models of a given set of con-
straints [Roth, 1996; Chavira and Darwiche, 2008]. While
constrained counting is known to be computationally hard,
recent advances in hashing-based techniques for approximate
counting have revived a lot of interest in this approach. The
use of universal hash functions in counting problems was first
studied in [Sipser, 1983; Stockmeyer, 1983]. However, the re-
sulting algorithms do not scale well in practice [Meel, 2014].
This leaves open the question of whether it is possible to de-
sign algorithms that simultaneously scale to large problem
instances and provide strong theoretical guarantees for ap-
proximate counting. An important step towards resolving this
question was taken in [Chakraborty et al., 2013b], wherein
a scalable approximate counter with rigorous approxima-
tion guarantees, named ApproxMC, was reported. In subse-
quent work [Ermon et al., 2013a; Chakraborty et al., 2014a;
Belle et al., 2015], this approach has been extended to finite-
domain discrete integration, with applications to probabilistic
inference.

Given the promise of hashing-based counting techniques
in bridging the gap between scalability and providing rigor-
ous guarantees for probabilistic inference, there have been
several recent efforts to design efficient universal hash func-
tions [Ivrii et al., 2015; Chakraborty et al., 2016a]. While
these efforts certainly help push the scalability frontier of
hashing-based techniques for probabilistic inference, the
structure of the underlying algorithms has so far escaped crit-
ical examination. For example, all recent approaches to prob-
abilistic inference via hashing-based counting use a linear
search to identify the right values of parameters for the hash
functions. As a result, the number of calls to the NP oracle
(SAT solver in practice) increases linearly in the number of
variables, n, in the input constraint. Since SAT solver calls
are by far the computationally most expensive steps in these



algorithms [Meel et al., 2016], this motivates us to ask: Can
we design a hashing-based approximate counting algorithm
that requires sub-linear (in n) calls to the SAT solver, while
providing strong theoretical guarantees?

The primary contribution of this paper is a positive answer
to the above question. We present a new hashing-based ap-
proximate counting algorithm, called ApproxMC2, for CNF
formulas, that reduces the number of SAT solver calls from
linear in n to logarithmic in n. Our algorithm provides SPAC,
strongly probably approximately correct, guarantees; i.e., it
computes a model count within a prescribed tolerance ε of
the exact count, and with a prescribed confidence of at least
1 − δ, while also ensuring that the expected value of the re-
turned count matches the exact model count. We also show
that for DNF formulas, ApproxMC2 gives a fully polynomial
randomized approximation scheme (FPRAS), which differs
fundamentally from earlier work [Karp et al., 1989].

Since the design of recent probabilistic inference al-
gorithms via hashing-based approximate counting can be
broadly viewed as adaptations of ApproxMC [Chakraborty
et al., 2013b], we focus on ApproxMC as a paradigmatic
representative, and show how ApproxMC2 improves upon
it. Extensive experiments demonstrate that ApproxMC2 out-
performs ApproxMC by 1-2 orders of magnitude in running
time, when using the same family of hash functions. We also
discuss how the framework and analysis of ApproxMC2 can
be lifted to other hashing-based probabilistic inference algo-
rithms [Chakraborty et al., 2014a; Belle et al., 2015]. Sig-
nificantly, the algorithmic improvements of ApproxMC2 are
orthogonal to recent advances in the design of hash func-
tions [Ivrii et al., 2015], permitting the possibility of com-
bining ApproxMC2-style algorithms with efficient hash func-
tions to boost the performance of hashing-based probabilistic
inference even further.

The remainder of the paper is organized as follows. We de-
scribe notation and preliminaries in Section 2. We discuss re-
lated work in Section 3. In Section 4, we present ApproxMC2
and its analysis. We discuss our experimental methodology
and present experimental results in Section 5. Finally, we
conclude in Section 6.

2 Notation and Preliminaries
Let F be a Boolean formula in conjunctive normal form
(CNF), and let Vars(F ) be the set of variables appearing in
F . The set Vars(F ) is also called the support of F . An
assignment σ of truth values to the variables in Vars(F ) is
called a satisfying assignment or witness of F if it makes F
evaluate to true. We denote the set of all witnesses of F by
RF . Given a set of variables S ⊆ Vars(F ), we use RF↓S to
denote the projection ofRF on S. Furthermore, given a func-
tion h : {0, 1}|Vars(F )| → {0, 1}m and an α ∈ {0, 1}m, we
use R〈F,h,α〉↓S to denote the projection on S of the witnesses
of F that are mapped to α by h, i.e. R(F∧(h(Y )=α))↓S , where
Y is a vector of support variables of F .

We write Pr [X : P] to denote the probability of outcome
X when sampling from a probability spaceP . For brevity, we
omit P when it is clear from the context. The expected value
of X is denoted E [X] and its variance is denoted V [X].

The constrained counting problem is to compute |RF↓S |
for a given CNF formula F and sampling set S ⊆ Vars(F ).
A probably approximately correct (or PAC) counter is a prob-
abilistic algorithm ApproxCount(·, ·, ·, ·) that takes as inputs
a formula F , a sampling set S, a tolerance ε > 0, and a
confidence 1 − δ ∈ (0, 1], and returns a count c such that
Pr
[
|RF↓S |/(1 + ε) ≤ c ≤ (1 + ε)|RF↓S |

]
≥ 1 − δ. The

probabilistic guaranteee provided by a PAC counter is also
called an (ε, δ) guarantee, for obvious reasons.

For positive integers n and m, a special family of 2-
universal hash functions mapping {0, 1}n to {0, 1}m, called
Hxor(n,m), plays a crucial role in our work. Let y[i]
denote the ith component of a vector y. The family
Hxor(n,m) can then be defined as {h | h(y)[i] = ai,0 ⊕
(
⊕n

k=1 ai,k · y[k]), ai,k ∈ {0, 1}, 1 ≤ i ≤ m, 0 ≤
k ≤ n}, where ⊕ denotes “xor” and · denotes “and”.
By choosing values of ai,k randomly and independently,
we can effectively choose a random hash function from
Hxor(n,m). It was shown in [Gomes et al., 2007b] that
Hxor(n,m) is 3-universal (and hence 2-universal too). We
use h U←− Hxor(n,m) to denote the probability space ob-
tained by choosing a function h uniformly at random from
Hxor(n,m). The property of 2-universality guarantees that
for all α1, α2 ∈ {0, 1}m and for all distinct y1, y2 ∈ {0, 1}n,
Pr
[∧2

i=1 h(yi) = αi : h
U←− Hxor(n,m)

]
= 2−2m. Note

that ApproxMC [Chakraborty et al., 2013b] also uses the
same family of hash functions.

3 Related Work
The deep connection between probabilistic inference and
propositional model counting was established in the semi-
nal work of [Cooper, 1990; Roth, 1996]. Subsequently, re-
searchers have proposed various encodings to solve infer-
encing problems using model counting [Sang et al., 2004;
Chavira and Darwiche, 2008; Chakraborty et al., 2014a;
Belle et al., 2015; Chakraborty et al., 2015b]. What distin-
guishes this line of work from other inferencing techniques,
like those based on Markov Chain Monte Carlo methods [Jer-
rum and Sinclair, 1996] or variational approximation tech-
niques [Wainwright and Jordan, 2008], is that strong guaran-
tees can be offered while scaling to large problem instances.
This has been made possible largely due to significant ad-
vances in model counting technology.

Complexity theoretic studies of propositional model count-
ing were initiated by Valiant, who showed that the prob-
lem is #P-complete [Valiant, 1979]. Despite advances in
exact model counting over the years [Sang et al., 2004;
Thurley, 2006], the inherent complexity of the problem poses
significant hurdles to scaling exact counting to large prob-
lem instances. The study of approximate model counting
has therefore been an important topic of research for several
decades. Approximate counting was shown to lie in the third
level of the polynomial hierarchy in [Stockmeyer, 1983]. For
DNF formulas, Karp, Luby and Madras gave a fully polyno-
mial randomized approximation scheme for counting mod-
els [Karp et al., 1989]. For the general case, one can build
on [Stockmeyer, 1983] and design a hashing-based probably



approximately correct counting algorithm that makes polyno-
mially many calls to an NP oracle [Goldreich, 1999]. Unfor-
tunately, this does not lend itself to a scalable implementation
because every invocation of the NP oracle (a SAT solver in
practice) must reason about a formula with significantly large,
viz. O(n/ε), support.

In [Chakraborty et al., 2013b], a new hashing-based
strongly probably approximately correct counting algorithm,
called ApproxMC, was shown to scale to formulas with hun-
dreds of thousands of variables, while providing rigorous
PAC-style (ε, δ) guarantees. The core idea of ApproxMC is
to use 2-universal hash functions to randomly partition the
solution space of the original formula into “small” enough
cells. The sizes of sufficiently many randomly chosen cells
are then determined using calls to a specialized SAT solver
(CryptoMiniSAT [Soos et al., 2009]), and a scaled median
of these sizes is used to estimate the desired model count.
Finding the right parameters for the hash functions is cru-
cial to the success of this technique. ApproxMC uses a lin-
ear search for this purpose, where each search step invokes
the specialized SAT solver, viz. CryptoMiniSAT, O(1/ε2)

times. Overall, ApproxMC makes a total of O(n log(1/δ)
ε2 )

calls to CryptoMiniSAT. Significantly, and unlike the algo-
rithm in [Goldreich, 1999], each call of CryptoMiniSAT rea-
sons about a formula with only n variables.

The works of [Ermon et al., 2013b; Chakraborty et al.,
2014a; 2015a; Belle et al., 2015] have subsequently ex-
tended the ApproxMC approach to finite domain discrete
integration. Furthermore, approaches based on ApproxMC
form the core of various sampling algorithms proposed re-
cently [Ermon et al., 2013a; Chakraborty et al., 2014b;
2014a; 2015a]. Therefore, any improvement in the core algo-
rithmic structure of ApproxMC can potentially benefit several
other algorithms.

Prior work on improving the scalability of hashing-based
approximate counting algorithms has largely focused on im-
proving the efficiency of 2-universal linear (xor-based) hash
functions. It is well-known that long xor-based constraints
make SAT solving significantly hard in practice [Gomes et
al., 2007a]. Researchers have therefore investigated theo-
retical and practical aspects of using short xors [Gomes et
al., 2007a; Chakraborty et al., 2014b; Ermon et al., 2014;
Zhao et al., 2016].

Recently, Ermon et al. [Ermon et al., 2014] and Zhao
et al. [Zhao et al., 2016] have shown how short xor con-
straints (even logarithmic in the number of variables) can
be used for approximate counting with certain theoretical
guarantees. The resulting algorithms, however, do not pro-
vide PAC-style (ε, δ) guarantees. In other work with (ε, δ)
guarantees, techniques for identifying small independent sup-
ports have been developed [Ivrii et al., 2015], and word-level
hash functions have been used to count in the theory of bit-
vectors [Chakraborty et al., 2016a]. A common aspect of all
of these approaches is that a linear search is used to find the
right parameters of the hash functions, where each search step
involves multiple SAT solver calls. We target this weak link
in this paper, and drastically cut down the number of steps
required to identify the right parameters of hash functions.

Algorithm 1 ApproxMC2(F, S, ε, δ)

1: thresh← 1 + 9.84
(

1 + ε
1+ε

) (
1 + 1

ε

)2
;

2: Y ← BSAT(F, thresh, S);
3: if (|Y | < thresh) then return |Y |;
4: t← d17 log2(3/δ)e;
5: nCells← 2; C ← emptyList; iter← 0;
6: repeat
7: iter← iter + 1;
8: (nCells, nSols)←ApproxMC2Core(F, S, thresh, nCells);
9: if (nCells 6= ⊥) then AddToList(C, nSols× nCells);

10: until (iter < t);
11: finalEstimate← FindMedian(C);
12: return finalEstimate

This, in turn, reduces the SAT solver calls, yielding a scal-
able counting algorithm.

4 From Linear to Logarithmic SAT Calls
We now present ApproxMC2, a hashing-based approximate
counting algorithm, that is motivated by ApproxMC, but also
differs from it in crucial ways.

4.1 The Algorithm
Algorithm 1 shows the pseudocode for ApproxMC2. It takes
as inputs a formula F , a sampling set S, a tolerance ε (> 0),
and a confidence 1 − δ ∈ (0, 1]. It returns an estimate of
|RF↓S | within tolerance ε, with confidence at least 1 − δ.
Note that although ApproxMC2 draws on several ideas from
ApproxMC, the original algorithm in [Chakraborty et al.,
2013b] computed an estimate of |RF | (and not of |RF↓S |).
Nevertheless, the idea of using sampling sets, as described
in [Chakraborty et al., 2014b], can be trivially extended to
ApproxMC. Therefore, whenever we refer to ApproxMC in
this paper, we mean the algorithm in [Chakraborty et al.,
2013b] extended in the above manner.

There are several high-level similarities between
ApproxMC2 and ApproxMC. Both algorithms start by
checking if |RF↓S | is smaller than a suitable threshold (called
pivot in ApproxMC and thresh in ApproxMC2). This check
is done using subroutine BSAT, that takes as inputs a formula
F , a threshold thresh, and a sampling set S, and returns a
subset Y of RF↓S , such that |Y | = min(thresh, |RF↓S |).
The thresholds used in invocations of BSAT lie inO(1/ε2) in
both ApproxMC and ApproxMC2, although the exact values
used are different. If |Y | is found to be less than thresh, both
algorithms return |Y | for the size of |RF↓S |. Otherwise, a
core subroutine, called ApproxMCCore in ApproxMC and
ApproxMC2Core in ApproxMC2, is invoked. This subroutine
tries to randomly partition RF↓S into “small” cells using
hash functions from Hxor(|S|,m), for suitable values of m.
There is a small probability that this subroutine fails and
returns (⊥,⊥). Otherwise, it returns the number of cells,
nCells, into which RF↓S is partitioned, and the count of
solutions, nSols, in a randomly chosen small cell. The value
of |RF↓S | is then estimated as nCells × nSols. In order to
achieve the desired confidence of (1 − δ), both ApproxMC2



and ApproxMC invoke their core subroutine repeatedly,
collecting the resulting estimates in a list C. The number of
such invocations lies in O(log(1/δ)) in both cases. Finally,
both algorithms compute the median of the estimates in C to
obtain the desired estimate of |RF↓S |.

Despite these high-level similarities, there are key dif-
ferences in the ways ApproxMC and ApproxMC2 work.
These differences stem from: (i) the use of dependent hash
functions when searching for the “right” way of partition-
ing RF↓S within an invocation of ApproxMC2Core, and
(ii) the lack of independence between successive invocations
of ApproxMC2Core. We discuss these differences in detail
below.

Subroutine ApproxMC2Core lies at the heart of
ApproxMC2. Functionally, ApproxMC2Core serves the
same purpose as ApproxMCCore; however, it works dif-
ferently. To understand this difference, we briefly review
the working of ApproxMCCore. Given a formula F and a
sampling set S, ApproxMCCore finds a triple (m,hm, αm),
where m is an integer in {1, . . . |S| − 1}, hm is a hash
function chosen randomly from Hxor(|S|,m), and αm
is a vector chosen randomly from {0, 1}m, such that
|R〈F,hm,αm〉↓S | < thresh and |R〈F,hm−1,αm−1〉↓S | ≥ thresh.
In order to find such a triple, ApproxMCCore uses a linear
search: it starts from m = 1, chooses hm and αm ran-
domly and independently from Hxor(|S|,m) and {0, 1}m
respectively, and checks if |R〈F,hm,αm〉↓S | ≥ thresh. If so,
the partitioning is considered too coarse, hm and αm are
discarded, and the process repeated with the next value of m;
otherwise, the search stops. Let m∗, hm∗ and αm∗ denote the
values ofm, hm and αm, respectively, when the search stops.
Then ApproxMCCore returns |R〈F,hm∗ ,αm∗ 〉↓S | × 2m

∗
as the

estimate of |RF↓S |. If the search fails to find m, hm and αm
with the desired properties, we say that ApproxMCCore fails.

Every iteration of the linear search above invokes BSAT
once to check if |R〈F,hm,αm〉↓S | ≥ thresh. A straightfor-
ward implementation of BSAT makes up to thresh calls to a
SAT solver to answer this question. Therefore, an invocation
of ApproxMCCore makes O(thresh.|S|) SAT solver calls. A
key contribution of this paper is a new approach for choosing
hash functions that allows ApproxMC2Core to make at most
O(thresh. log2 |S|) calls to a SAT solver. Significantly, the
sizes of formulas fed to the solver remain the same as those
used in ApproxMCCore; hence, the reduction in number of
calls comes without adding complexity to the individual calls.

A salient feature of ApproxMCCore is that it randomly
and independently chooses (hm, αm) pairs for different val-
ues of m, as it searches for the right partitioning of RF↓S .
In contrast, in ApproxMC2Core, we randomly choose one
function h from Hxor(|S|, |S| − 1), and one vector α from
{0, 1}|S|−1. Thereafter, we use “prefix-slices” of h and α
to obtain hm and αm for all other values of m. Formally,
for every m ∈ {1, . . . |S| − 1}, the mth prefix-slice of
h, denoted h(m), is a map from {0, 1}|S| to {0, 1}m, such
that h(m)(y)[i] = h(y)[i], for all y ∈ {0, 1}|S| and for all
i ∈ {1, . . .m}. Similarly, the mth prefix-slice of α, denoted
α(m), is an element of {0, 1}m such that α(m)[i] = α[i]
for all i ∈ {1, . . .m}. Once h and α are chosen randomly,

Algorithm 2 ApproxMC2Core(F, S, thresh, prevNCells)

1: Choose h at random from Hxor(|S|, |S| − 1);
2: Choose α at random from {0, 1}|S|−1;
3: Y ← BSAT(F ∧ h(S) = α, thresh, S);
4: if (|Y | ≥ thresh) then return (⊥,⊥);
5: mPrev← log2 prevNCells;
6: m← LogSATSearch(F, S, h, α, thresh,mPrev);
7: nSols← |BSAT(F ∧ h(m)(S) = α(m), thresh, S)|;
8: return (2m, nSols);

ApproxMC2Core uses h(m) and α(m) as choices of hm and
αm, respectively. The randomness in the choices of h and
α induces randomness in the choices of hm and αm. How-
ever, the (hm, αm) pairs chosen for different values of m are
no longer independent. Specifically, hj(y)[i] = hk(y)[i] and
αj [i] = αk[i] for 1 ≤ j < k < |S| and for all i ∈ {1, . . . j}.
This lack of independence is a fundamental departure from
ApproxMCCore.

Algorithm 2 shows the pseudo-code for ApproxMC2Core.
After choosing h and α randomly, ApproxMC2Core checks
if |R〈F,h,α〉↓S | < thresh. If not, ApproxMC2Core fails
and returns (⊥,⊥). Otherwise, it invokes sub-routine
LogSATSearch to find a value of m (and hence, of
h(m) and α(m)) such that |R〈F,h(m),α(m)〉↓S | < thresh
and |R〈F,h(m−1),α(m−1)〉↓S | ≥ thresh. This ensures that
nSols computed in line 7 is |R〈F,h(m),α(m)〉↓S |. Finally,
ApproxMC2Core returns (2m, nSols), where 2m gives the
number of cells into which RF↓S is partitioned by h(m).

An easy consequence of the definition of prefix-slices is
that for all m ∈ {1, . . . |S| − 1}, we have R〈F,h(m),α(m)〉↓S ⊆
R〈F,h(m−1),α(m−1)〉↓S . This linear ordering is exploited by
sub-routine LogSATSearch (see Algorithm 3), which uses a
galloping search to zoom down to the right value of m, h(m)

and α(m). LogSATSearch uses an array, BigCell, to remem-
ber values of m for which the cell α(m) obtained after par-
titioning RF↓S with h(m) is large, i.e. |R〈F,h(m),α(m)〉↓S | ≥
thresh. As boundary conditions, we set BigCell[0] to 1 and
BigCell[|S| − 1] to 0. These are justified because (i) if
RF↓S is partitioned into 20 (i.e. 1) cell, line 3 of Algo-
rithm 1 ensures that the size of the cell (i.e. |RF↓S |) is
at least thresh, and (ii) line 4 of Algorithm 2 ensures that
|R〈F,h|S|−1,α|S|−1〉↓S | < thresh. For every other i, BigCell[i]
is initialized to ⊥ (unknown value). Subsequently, we set
BigCell[i] to 1 (0) whenever we find that |R〈F,h(i),α(i)〉↓S | is
at least as large as (smaller than) thresh.

In the context of probabilistic hashing-based counting al-
gorithms like ApproxMC, it has been observed [Meel, 2014]
that the “right” values of m, hm and αm for partitioning
RF↓S are often such that m is closer to 0 than to |S|. In ad-
dition, repeated invocations of a hashing-based probabilistic
counting algorithm with the same input formula F often ter-
minate with similar values of m. To optimize LogSATSearch
using these observations, we provide mPrev, the value of m
found in the last invocation of ApproxMC2Core, as an input
to LogSATSearch. This is then used in LogSATSearch to lin-



Algorithm 3 LogSATSearch(F, S, h, α, thresh,mPrev)

1: loIndex← 0; hiIndex← |S| − 1; m← mPrev;
2: BigCell[0]← 1; BigCell[|S| − 1]← 0;
3: BigCell[i]← ⊥ for all i other than 0 and |S| − 1;
4: while true do
5: Y ← BSAT(F ∧ (h(m)(S) = α(m)), thresh, S);
6: if (|Y | ≥ thresh) then
7: if (BigCell[m+ 1] = 0) then return m+ 1;
8: BigCell[i]← 1 for all i ∈ {1, . . .m};
9: loIndex← m;

10: if (|m−mPrev| < 3) then m← m+ 1;
11: else if (2.m < |S|) then m← 2.m;
12: else m← (hiIndex +m)/2;
13: else
14: if (BigCell[m− 1] = 1) then return m;
15: BigCell[i]← 0 for all i ∈ {m, . . . |S|};
16: hiIndex← m;
17: if (|m−mPrev| < 3) then m← m− 1;
18: else m← (m+ loIndex)/2;

early search a small neighborhood of mPrev, viz. when |m−
mPrev| < 3, before embarking on a galloping search. Specif-
ically, if LogSATSearch finds that |R〈F,h(m),α(m)〉↓S | ≥
thresh after the linear search, it keeps doubling the value of
m until either |R〈F,h(m),α(m)〉↓S | becomes less than thresh,
or m overshoots |S|. Subsequently, binary search is done by
iteratively bisecting the interval between loIndex and hiIndex.
This ensures that the search requires O(log2m

∗) calls (in-
stead of O(log2 |S|) calls) to BSAT, where m∗ (usually
� |S|) is the value of m when the search stops. Note also
that a galloping search inspects much smaller values of m
compared to a naive binary search, if m∗ � |S|. Therefore,
the formulas fed to the SAT solver have fewer xor clauses (or
number of components of h(m)) conjoined with F than if a
naive binary search was used. This plays an important role in
improving the performance of ApproxMC2.

In order to provide the right value of mPrev to
LogSATSearch, ApproxMC2 passes the value of nCells re-
turned by one invocation of ApproxMC2Core to the next
invocation (line 8 of Algorithm 1), and ApproxMC2Core
passes on the relevant information to LogSATSearch (lines
5–6 of Algorithm 2). Thus, successive invocations of
ApproxMC2Core in ApproxMC2 are no longer independent
of each other. Note that the independence of randomly
chosen (hm, αm) pairs for different values of m, and the
independence of successive invocations of ApproxMCCore,
are features of ApproxMC that are exploited in its analy-
sis [Chakraborty et al., 2013b]. Since these independence
no longer hold in ApproxMC2, we must analyze ApproxMC2
afresh.

4.2 Analysis
Lemma 1. For 1 ≤ i < |S|, let µi = RF↓S/2

i. For every
β > 0 and 0 < ε < 1, we have the following:

1. Pr
[
|R〈F,h(i),α(i)〉↓S | − µi| ≥ ε

1+εµi

]
≤ (1+ε)2

ε2µi

2. Pr
[
|R〈F,h(i),α(i)〉↓S | ≤ βµi

]
≤ 1

1+(1−β)2µi

Proof. For every y ∈ {0, 1}|S| and for every α ∈ {0, 1}i,
define an indicator variable γy,α,i which is 1 iff h(i)(y) =
α. Let Γα,i =

∑
y∈RF↓S

(γy,α,i), µα,i = E [Γα,i] and
σ2
α,i = V [Γα,i]. Clearly, Γα,i = |R〈F,h(i),α〉↓S | and µα,i =

2−i|RF↓S |. Note that µα,i is independent of α and equals
µi, as defined in the statement of the Lemma. From the
pairwise independence of h(i)(y) (which, effectively, is a
randomly chosen function from Hxor(|S|, i)), we also have
σ2
α,i ≤ µα,i = µi. Statements 1 and 2 of the lemma then

follow from Chebhyshev inequality and Paley-Zygmund in-
equality, respectively.

Let B denote the event that ApproxMC2Core either re-
turns (⊥,⊥) or returns a pair (2m, nSols) such that 2m ×
nSols does not lie in the interval

[
|RF↓S |
1+ε , |RF↓S |(1 + ε)|

]
.

We wish to bound Pr [B] from above. Towards this end,
let Ti denote the event

(
|R〈F,h(i),α(i)〉↓S | < thresh

)
, and let

Li and Ui denote the events
(
|R〈F,h(i),α(i)〉↓S | <

|RF↓S |
(1+ε)2i

)
and

(
|R〈F,h(i),α(i)〉↓S | >

|RF↓S |
2i (1 + ε

1+ε )
)

, respectively.
Furthermore, let m∗ denote the integer blog2 |RF↓S | −
log2

(
4.92

(
1 + 1

ε

)2)c.
Lemma 2. The following bounds hold:

1. Pr[Tm∗−3] ≤ 1
62.5

2. Pr[Lm∗−2] ≤ 1
20.68

3. Pr[Lm∗−1] ≤ 1
10.84

4. Pr[Lm∗ ∪ Um∗ ] ≤ 1
4.92

Proof. Note that Pr[Tm∗−3] =
Pr
[
|RF,hm∗−3,αm∗−3 | ≤ thresh

]
. Noting that thresh <

3
2pivot. Using Lemma 1 and putting β = 3/8 and
µm∗−3 ≥ 4pivot (ensuring βµm∗−3 ≥ thresh), we get
Pr[Tm∗−3] ≤ 1

1+25/64∗8∗4∗4.92 ≤
1

62.5

To compute Pr[Lm∗−2], we employ Lemma 1 with
µm∗−2 ≥ 2pivot and β = 1

1+ε to obtain Pr[Lm∗−2] ≤
1

1+( ε
1+ε )

22pivot ≤
1

20.68 . Similarly, we obtain Pr[Lm∗−1] ≤
1

1+( ε
1+ε )

2pivot ≤
1

10.84 .

Finally, since Pr[Lm∗ ∪ Um∗ ] =

Pr
[
||RF,hm∗ ,αm∗ | − µm∗ | ≥ ε

1+εµm∗
]
, we em-

ploy Lemma 1 with µm∗ ≥ pivot/2. Therefore,
Pr[Lm∗ ∪ Um∗ ] ≤ 1/4.92.

Lemma 3. Pr [B] ≤ 0.36

Proof sketch. For any event E, let E denote its com-
plement. For notational convenience, we use T0 and
U|S| to denote the empty (or impossible) event, and T|S|
and L|S| to denote the universal (or certain) event. It
then follows from the definition of B that Pr [B] ≤
Pr
[⋃

i∈{1,...|S|}
(
Ti−1 ∩ Ti ∩ (Li ∪ Ui)

)]
.



We now wish to simplify the upper bound of Pr [B] ob-
tained above. In order to do this, we use three observations,
labeled O1, O2 and O3 below, which follow from the defini-
tions of m∗, thresh and µi, and from the linear ordering of
R〈F,h(m),α(m)〉↓S .

O1: ∀i ≤ m∗ − 3, Ti ∩ (Li ∪ Ui) = Ti and Ti ⊆ Tm∗−3,

O2: Pr[
⋃
i∈{m∗,...|S|} Ti−1 ∩ Ti ∩ (Li ∪ Ui)] ≤

Pr[Tm∗−1 ∩ (Lm∗ ∪ Um∗)] ≤ Pr[Lm∗ ∪ Um∗ ],
O3: For i ∈ {m∗− 2,m∗− 1}, since thresh ≤ µi(1 + ε

1+ε ),
we have Ti ∩ Ui = ∅.

Using O1, O2 and O3, we get Pr[B] ≤ Pr[Tm∗−3] +
Pr[Lm∗−2]+Pr[Lm∗−1]+Pr[Lm∗∪Um∗ ]. Using the bounds
from Lemma 2, we finally obtain Pr [B] ≤ 0.36.

Note that Lemma 3 holds regardless of the order in which
the search in LogSATSearch proceeds. Our main theorem
now follows from Lemma 3 and from the count t of invoca-
tions of ApproxMC2Core in ApproxMC2 (see lines 4-10 of
Algorithm 1).

Theorem 4. Suppose ApproxMC2(F, S, ε, δ) returns c after
making k calls to a SAT solver. Then Pr[|RF↓S |/(1 + ε) ≤
c ≤ (1 + ε)|RF↓S |] ≥ 1− δ, and k ∈ O( log(|S|) log(1/δ)

ε2 ).

Note that the number of SAT solver calls in
ApproxMC [Chakraborty et al., 2013b] lies inO( |S| log(1/δ)ε2 ),
which is exponentially worse than the number of calls in
ApproxMC2, for the same ε and δ. Furthermore, if the for-
mula F fed as input to ApproxMC2 is in DNF, the subroutine
BSAT can be implemented in PTIME, since satisfiability
checking of DNF + XOR is in PTIME. This gives us the
following result.

Theorem 5. ApproxMC2 is a fully polynomial randomized
approximation scheme (FPRAS) for #DNF.

Note that this is fundamentally different from FPRAS for
#DNF described in earlier work, viz. [Karp et al., 1989].

4.3 Generalizing beyond ApproxMC

So far, we have shown how ApproxMC2 significantly reduces
the number of SAT solver calls vis-a-vis ApproxMC, without
sacrificing theoretical guarantees, by relaxing independence
requirements. Since ApproxMC serves as a paradigmatic rep-
resentative of several hashing-based counting and probabilis-
tic inference algorithms, the key ideas of ApproxMC2 can be
used to improve these other algorithms too. We discuss two
such cases below.

PAWS [Ermon et al., 2013a] is a hashing-based sampling
algorithm for high dimensional probability spaces. Similar
to ApproxMC, the key idea of PAWS is to find the “right”
number and set of constraints that divides the solution space
into appropriately sized cells. To do this, PAWS iteratively
adds independently chosen constraints, using a linear search.
An analysis of the algorithm in [Ermon et al., 2013a] shows
that this requires O(n log n) calls to an NP oracle, where n
denotes the size of the support of the input constraint. Our ap-
proach based on dependent constraints can be used in PAWS
to search out-of-order, and reduce the number of NP oracle

calls from O(n log n) to O(log n), while retaining the same
theoretical guarantees.

Building on ApproxMC, a weighted model counter called
WeightMC was proposed in [Chakraborty et al., 2014a].
WeightMC has also been used in other work, viz. [Belle et al.,
2015], for approximate probabilistic inference. The core pro-
cedure of WeightMC, called WeightMCCore, is a reworking
of ApproxMCCore that replaces |RF↓S | with the total weight
of assignments in RF↓S . It is easy to see that the same re-
placement can also be used to extend ApproxMC2Core, so
that it serves as the core procedure for WeightMC.

5 Evaluation
To evaluate the runtime performance and quality of approxi-
mations computed by ApproxMC2, we implemented a proto-
type in C++ and conducted experiments on a wide variety
of publicly available benchmarks. Specifically, we sought
answers to the following questions: (a) How does runtime
performance and number of SAT invocations of ApproxMC2
compare with that of ApproxMC ? (b) How far are the counts
computed by ApproxMC2 from the exact counts?

Our benchmark suite consisted of problems arising from
probabilistic inference in grid networks, synthetic grid-
structured random interaction Ising models, plan recognition,
DQMR networks, bit-blasted versions of SMTLIB bench-
marks, ISCAS89 combinational circuits, and program syn-
thesis examples. For lack of space, we discuss results for
only a subset of these benchmarks here. The complete set of
experimental results and a detailed analysis can be found in
Appendix.

We used a high-performance cluster to conduct experi-
ments in parallel. Each node of the cluster had a 12-core 2.83
GHz Intel Xeon processor, with 4GB of main memory, and
each experiment was run on a single core. For all our experi-
ments, we used ε = 0.8 and δ = 0.2, unless stated otherwise.
To further optimize the running time, we used improved es-
timates of the iteration count t required in ApproxMC2 by
following an analysis similar to that in [Chakraborty et al.,
2013a].

5.1 Results
Performance comparison: Table 1 presents the performance
of ApproxMC2 vis-a-vis ApproxMC over a subset of our
benchmarks. Column 1 of this table gives the benchmark
name, while columns 2 and 3 list the number of variables and
clauses, respectively. Columns 4 and 5 list the runtime (in
seconds) of ApproxMC2 and ApproxMC respectively, while
columns 6 and 7 list the number of SAT invocations for
ApproxMC2 and ApproxMC respectively. We use “–” to de-
note timeout after 8 hours. Table 1 clearly demonstrates that
ApproxMC2 outperforms ApproxMC by 1-2 orders of magni-
tude. Furthermore, ApproxMC2 is able to compute counts
for benchmarks that are beyond the scope of ApproxMC.
The runtime improvement of ApproxMC2 can be largely at-
tributed to the reduced (by almost an order of magnitude)
number of SAT solver calls vis-a-vis ApproxMC.

There are some large benchmarks in our suite for which
both ApproxMC and ApproxMC2 timed out; hence, we did



Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls
tutorial3 486193 2598178 12373.99 – 1744 –
case204 214 580 166.2 – 1808 –
case205 214 580 300.11 – 1793 –
case133 211 615 18502.44 – 2043 –

s953a 15 7 602 1657 161.41 – 1648 –
llreverse 63797 257657 1938.1 4482.94 1219 2801

lltraversal 39912 167842 151.33 450.57 1516 4258
karatsuba 19594 82417 23553.73 28817.79 1378 13360

enqueueSeqSK 16466 58515 192.96 2036.09 2207 23321
progsyn 20 15475 60994 1778.45 20557.24 2308 34815
progsyn 77 14535 27573 88.36 1529.34 2054 24764

sort 12125 49611 209.0 3610.4 1605 27731
LoginService2 11511 41411 26.04 110.77 1533 10653

progsyn 17 10090 27056 100.76 4874.39 1810 28407
progsyn 29 8866 31557 87.78 3569.25 1712 28630

LoginService 8200 26689 21.77 101.15 1498 12520
doublyLinkedList 6890 26918 17.05 75.45 1615 10647

Table 1: Performance comparison of ApproxMC2 vis-a-vis ApproxMC. The runtime is reported in seconds and “–” in a column
reports timeout after 8 hours.

not include these in Table 1. Importantly, for a signifi-
cant number of our experiments, whenever ApproxMC or
ApproxMC2 timed out, it was because the algorithm could ex-
ecute some, but not all required iterations of ApproxMCCore
or ApproxMC2Core, respectively, within the specified time
limit. In all such cases, we obtain a model count within the
specified tolerance, but with reduced confidence. This sug-
gests that it is possible to extend ApproxMC2 to obtain an
anytime algorithm. This is left for future work.
Approximation quality: To measure the quality of approx-
imation, we compared the approximate counts returned by
ApproxMC2 with the counts computed by an exact model
counter, viz. sharpSAT [Thurley, 2006]. Figure 1 shows
the model counts computed by ApproxMC2, and the bounds
obtained by scaling the exact counts with the tolerance fac-
tor (ε = 0.8) for a small subset of benchmarks. The y-
axis represents model counts on log-scale while the x-axis
represents benchmarks ordered in ascending order of model
counts. We observe that for all the benchmarks, ApproxMC2
computed counts within the tolerance. Furthermore, for each
instance, the observed tolerance (εobs) was calculated as
max(AprxCount

|RF↓S | − 1, 1 − |RF↓S |
AprxCount ), where AprxCount is

the estimate computed by ApproxMC2. We observe that the
geometric mean of εobs across all benchmarks is 0.021 – far
better than the theoretical guarantee of 0.8. In comparison,
the geometric mean of the observed tolerance obtained from
ApproxMC running on the same set of benchmarks is 0.036.

6 Conclusion
The promise of scalability with rigorous guarantees has
renewed interest in hashing-based counting techniques for
probabilistic inference. In this paper, we presented a new
approach to hashing-based counting and inferencing, that al-
lows out-of-order-search with dependent hash functions, dra-
matically reducing the number of SAT solver calls from lin-
ear to logarithmic in the size of the support of interest. This
is achieved while retaining strong theoretical guarantees and

1.0e+03

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

 5  10  15  20  25  30  35  40

So
lu

tio
n 

C
ou

nt

Benchmarks

ApproxMC2
ExactCount*1.8
ExactCount/1.8

Figure 1: Quality of counts computed by ApproxMC2

without increasing the complexity of each SAT solver call.
Extensive experiments demonstrate the practical benefits of
our approach vis-a-vis state-of-the art techniques. Combin-
ing our approach with more efficient hash functions promises
to push the scalability horizon of approximate counting fur-
ther.
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Table 2 presents an extended version of Table 1.



Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls
case106 204 509 133.92 – 2377 –
case35 400 1414 215.35 – 1809 –

case146 219 558 4586.26 – 1986 –
tutorial3 486193 2598178 12373.99 – 1744 –
case202 200 544 149.56 – 1839 –
case203 214 580 165.17 – 1800 –
case205 214 580 300.11 – 1793 –

s953a 15 7 602 1657 161.41 – 1648 –
s953a 7 4 533 1373 16218.67 – 1832 –

case 1 b14 1 238 681 132.47 – 1814 –
case 2 b14 1 238 681 129.95 – 1805 –

case119 267 787 906.88 – 2044 –
case133 211 615 18502.44 – 2043 –

case 3 b14 1 238 681 125.69 – 1831 –
case204 214 580 166.2 – 1808 –
case136 211 615 9754.08 – 2026 –
llreverse 63797 257657 1938.1 4482.94 1219 2801

lltraversal 39912 167842 151.33 450.57 1516 4258
karatsuba 19594 82417 23553.73 28817.79 1378 13360

enqueueSeqSK 16466 58515 192.96 2036.09 2207 23321
20 15475 60994 1778.45 20557.24 2308 34815
77 14535 27573 88.36 1529.34 2054 24764

sort 12125 49611 209.0 3610.4 1605 27731
LoginService2 11511 41411 26.04 110.77 1533 10653

81 10775 38006 158.93 10555.13 2220 33954
17 10090 27056 100.76 4874.39 1810 28407
29 8866 31557 87.78 3569.25 1712 28630

LoginService 8200 26689 21.77 101.15 1498 12520
19 6993 23867 126.23 11051.95 1827 31352

Pollard 7815 41258 12.8 16.55 1023 695
7 6683 24816 84.1 5332.76 2062 31195

doublyLinkedList 6890 26918 17.05 75.45 1615 10647
tree delete 5758 22105 8.87 33.84 1455 7647

35 4915 10547 77.53 6074.75 2028 32096
80 4969 17060 76.88 5039.37 2389 30294

ProcessBean 4768 14458 213.78 15558.75 2296 33493
56 4842 17828 126.96 1024.36 2218 22988
70 4670 15864 68.18 1026.99 2307 23902

ProjectService3 3175 11019 190.98 19626.24 1715 36762
32 3834 13594 49.86 1102.68 1882 21835
55 3128 12145 90.33 7623.13 1810 28322
51 3708 14594 86.9 1538.87 2091 22115

109 3565 14012 77.69 917.19 1752 21104
NotificationServiceImpl2 3540 13425 22.2 74.76 2265 15186

aig insertion2 2592 10156 13.18 120.56 2412 16729
53 2586 10747 32.29 248.26 1885 17680

ConcreteActivityService 2481 9011 6.01 33.56 1619 13072
111 2348 5479 42.49 567.25 1884 20383

aig insertion1 2296 9326 24.91 127.94 2416 16779
case 3 b14 2 270 805 90.88 18114.84 2028 31194

ActivityService2 1952 6867 2.74 13.09 1542 9700
IterationService 1896 6732 3.39 16.74 1572 10570

squaring7 1628 5837 323.58 8774.17 1791 29298
ActivityService 1837 5968 2.39 11.62 1633 9606

10 1494 2215 135.04 4759.18 2020 30270
case 2 b14 2 270 805 90.17 13479.3 2002 31179
PhaseService 1686 5655 2.45 12.03 1617 9649

squaring9 1434 5028 308.34 6131.25 1718 29324
case 1 b12 2 827 2725 129.03 9964.91 1808 29328

UserServiceImpl 1509 5009 1.49 7.1 1480 7707
27 1509 2707 34.96 130.23 1885 17489

squaring8 1101 3642 250.2 9963.56 1784 29386
case 2 b12 2 827 2725 122.64 7967.12 1803 29342
case 1 b14 2 270 805 89.69 10777.71 2038 31187
case 0 b12 2 827 2725 134.65 8362.19 1808 29340

IssueServiceImpl 1393 4319 2.48 13.37 1589 10469
squaring10 1099 3632 290.64 6208.98 1773 29391
squaring11 966 3213 324.63 11111.49 1795 29280
s953a 3 2 515 1297 165.81 11968.07 1826 33920
squaring29 1141 4248 135.4 1290.88 2002 18662
squaring3 885 2809 281.29 8836.68 1802 27618
squaring28 1060 3839 129.46 1164.31 2091 18685
squaring6 885 2809 233.72 5799.3 1753 27580

s1196a 15 7 777 2165 73.26 2577.71 1938 23097
squaring30 1031 3693 117.53 1134.18 2006 18668

Continued on next page



Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls

squaring1 891 2839 227.03 5145.1 1787 27557
squaring4 891 2839 274.71 6094.24 1774 27646
squaring2 885 2809 240.35 5112.72 1805 27577
squaring5 885 2809 352.17 6477.17 1819 27559

GuidanceService 988 3088 3.59 17.08 1632 13115
case 1 b14 3 304 941 109.46 7432.67 1829 28444
s1488 15 7 941 2783 1.57 5.02 1553 5867
squaring26 894 3187 102.08 787.16 1997 17569

case 3 b14 3 304 941 104.65 6821.33 1815 28424
case201 200 544 221.78 16171.04 1814 32970

squaring25 846 2947 110.25 791.63 2074 17437
tree delete3 795 2734 46.39 562.39 1595 20763
s1488 7 4 872 2499 1.46 5.43 1523 6891
squaring27 837 2901 110.1 714.37 2028 17337
s1488 3 2 854 2423 1.8 6.51 1501 5527

case 2 b14 3 304 941 114.36 6643.4 1815 28443
s1238a 15 7 773 2210 66.87 713.17 1841 22792
case 0 b11 1 340 1026 123.65 6398.95 1777 29323
s1196a 7 4 708 1881 76.44 917.27 1800 22442
s1196a 3 2 690 1805 62.64 827.91 1711 22177
s1238a 7 4 704 1926 66.48 716.53 1813 22545

case 1 b11 1 340 1026 124.08 5754.05 1810 29352
s1238a 3 2 686 1850 77.88 895.66 1848 23171

GuidanceService2 715 2181 2.37 15.56 1605 13252
squaring23 710 2268 74.37 429.83 2358 15911
squaring22 695 2193 71.75 466.91 2357 15891
squaring20 696 2198 78.24 466.67 2357 15813
squaring21 697 2203 81.89 460.94 2451 15877
squaring24 695 2193 80.76 462.12 2363 15849
s832a 15 7 693 2017 6.01 29.68 1608 14808
s820a 15 7 685 1987 2.52 12.0 1483 12488
s832a 7 4 624 1733 2.47 11.66 1543 12713
s832a 3 2 606 1657 1.26 6.71 1717 11449
s820a 7 4 616 1703 2.41 9.83 1435 12328
s820a 3 2 598 1627 1.19 5.75 1646 10746

case34 409 1597 124.7 2665.47 1818 27561
s420 15 7 366 994 81.34 2011.14 2060 24871

case6 329 996 113.94 3233.94 2043 25750
s420 new 15 7 351 934 73.18 1897.5 2054 24885

case131 432 1830 76.96 1293.21 1852 24230
s420 7 4 312 770 82.7 2373.55 2049 24887

s420 new1 15 7 366 994 79.42 1732.28 2053 24868
case121 291 975 112.0 3046.07 1809 29418

case 0 b12 1 427 1385 67.81 914.84 1880 22212
squaring50 500 1965 31.92 190.39 2388 16703
squaring51 496 1947 37.45 230.85 2094 16804

case 1 b12 1 427 1385 66.94 866.66 1894 22152
case 2 b12 1 427 1385 63.55 797.71 1882 22206

s420 new1 7 4 312 770 85.19 2045.89 2061 24869
case125 393 1555 86.17 1324.85 2306 23975
case123 267 980 58.88 1625.83 2250 23066
case143 427 1592 71.83 696.46 2139 19449

s420 new 7 4 312 770 74.5 1485.23 2054 24887
case105 170 407 227.36 7361.33 2330 32045
case114 428 1851 24.83 151.71 1854 17679
case115 428 1851 29.09 173.42 1888 17659
case116 438 1881 31.59 156.56 1897 17636

s526a 15 7 453 1304 20.35 67.56 1887 15811
s526 15 7 452 1303 17.69 58.43 1898 15861
case126 302 1129 74.05 1312.09 2316 23068

s420 new 3 2 294 694 88.48 1577.85 2052 24925
s420 new1 3 2 294 694 93.87 1590.05 2053 24485

s420 3 2 294 694 97.18 1399.45 2052 24933
s526a 7 4 384 1020 13.39 46.53 1805 15711

case57 288 1158 57.97 703.78 1647 21193
s444 15 7 377 1072 8.43 26.74 1634 14897

case62 291 1165 71.35 833.88 1973 22174
s526 7 4 383 1019 20.55 44.41 1820 15200
s526 3 2 365 943 7.66 24.51 1964 14977
s526a 3 2 366 944 12.45 26.09 1772 15219
s382 15 7 350 995 22.29 67.46 1763 16207

registerlesSwap 372 1493 0.42 0.33 1018 685
s510 15 7 340 948 20.59 56.42 1840 16558
s510 7 4 316 844 18.06 73.38 1842 16622
case117 309 1367 0.75 3.44 1712 8665
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case122 314 1258 17.59 67.53 1963 16806
case111 306 1358 0.62 2.86 1519 7686
case118 309 1367 0.84 3.44 1933 8650
case113 309 1367 0.93 3.77 1972 8624
s510 3 2 298 768 15.14 74.08 1871 16667
s349 15 7 285 829 13.18 76.65 1906 15850
s444 7 4 308 788 18.25 62.97 1766 16260
s298 15 7 292 870 0.86 4.08 1756 9569

case2 296 1116 10.08 39.7 1662 14956
s344 15 7 284 824 12.76 60.94 1887 15837

case3 294 1110 11.52 40.84 1648 14935
case110 287 1263 0.69 2.74 1776 7771
s444 3 2 290 712 6.48 18.76 1601 14909
s382 7 4 281 711 7.83 28.86 1538 14832
s382 3 2 263 635 5.33 21.47 1624 14915
case109 241 915 5.53 24.43 1711 13172
case132 236 708 22.7 94.67 1683 14076
s298 7 4 223 586 0.67 3.42 1690 9492
case135 236 708 19.74 68.81 1659 13858
case56 202 722 1.84 10.02 1676 13176

s298 3 2 205 510 0.59 2.92 1747 8670
case108 205 800 0.87 4.15 1731 9554
s344 7 4 215 540 14.53 47.24 1875 15887
case54 203 725 2.49 10.56 1679 13197
case5 176 518 72.42 474.93 2103 18572
case1 187 681 0.73 3.8 1726 10331
case46 176 660 0.64 3.53 1726 9572
case44 173 651 0.61 3.52 1754 9548

case124 133 386 66.62 653.36 1730 20333
s344 3 2 197 464 12.37 38.68 1896 15915
s349 7 4 216 545 41.0 39.31 1893 15854
case68 178 553 1.12 5.25 1744 10430

s349 3 2 198 469 18.26 40.07 1862 15841
s27 15 7 32 103 0.0 0.07 0 612

case8 160 525 9.68 37.17 1883 15874
case53 132 395 0.67 4.18 1741 11410
case55 149 442 2.18 8.88 1667 13128
case51 132 395 0.66 3.76 1740 11220
case38 143 568 0.34 1.31 1641 5956

case112 137 520 0.5 2.17 1975 8668
case52 132 395 0.85 3.83 1743 11357
case22 126 411 0.27 1.22 1516 6856
case21 126 411 0.28 1.2 1526 6808
case47 118 328 1.11 5.47 1756 11378
case45 116 421 0.29 1.49 1496 7662
case7 116 365 0.57 2.83 1739 10475
case43 116 421 0.31 1.54 1517 7726
case11 105 371 0.28 1.48 1458 7719
case4 103 316 0.37 1.71 1900 8515
case63 96 299 0.36 1.75 1630 8621
case64 93 285 0.4 1.85 1927 8748
case58 96 299 0.42 1.79 1884 8704
case59 93 285 0.39 1.75 1927 8723
s27 7 4 24 63 0.0 0.06 0 594
case59 1 93 285 0.39 1.69 1972 8642
case134 60 146 0.37 2.34 1710 11336
case101 72 178 2.12 10.02 1666 14100
case100 72 178 2.0 8.73 1675 14072
case23 77 235 0.22 0.7 1604 5034
case17 77 235 0.22 0.69 1608 5069

case137 60 146 0.52 2.43 1779 11219
case32 52 146 0.15 0.76 1372 4106

case127 36 104 0.01 0.06 0 509
case128 36 104 0.01 0.06 0 541
case25 68 195 0.18 0.44 1323 3266
case30 68 195 0.18 0.43 1341 3259
case26 53 148 0.16 0.55 1352 4120
case36 64 208 0.15 0.34 1338 2426
case27 52 146 0.15 0.51 1369 4156
case31 53 148 0.16 0.52 1374 4125
case29 65 190 0.15 0.28 1181 2360
case24 65 190 0.17 0.28 1227 2267
case33 51 143 0.18 0.52 1369 4199
case28 51 143 0.18 0.48 1316 4153
s27 3 2 20 43 0.02 0.08 0 588
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case103 32 86 0.12 0.24 1233 2349
case102 34 92 0.15 0.25 1215 2357

TR b14 2 linear 1570 4963 – – 331 –
tableBasedAddition 1026 961 – – 317 –

case144 765 2340 – – 339 –
case 1 b14 even 1304 4057 – – 289 –

63 7242 24379 – – 421 –
TR b14 1 linear 1287 3950 – – 341 –

case18 579 1815 – – 423 –
s35932 15 7 17918 44709 – – 332 –
s35932 7 4 17849 44425 – – 340 –

case14 247 649 – – 423 –
case130 644 2056 – – 423 –
s838 3 2 598 1414 – – 422 –
case141 4155 11758 – – 342 –

s5378a 7 4 3697 8448 – – 287 –
case 1 ptb 2 2851 9506 – – 327 –

reverse 75641 380869 – – 322 –
s38417 3 2 25528 57586 – – 319 –
s641 15 7 576 1399 – – 1268258 –

case42 903 2735 – – 304 –
case 1 b12 even3 4157 13049 – – 323 –

tree delete2 15573 59561 – – 299 –
isolateRightmost 10057 35275 – – 306 –

case12 737 2310 – – 400 –
case1 b14 even3 1318 4093 – – 331 –
case 2 b12 even1 2681 8492 – – 330 –

s15850a 3 2 10908 24476 – – 324 –
case 3 4 b14 even 1532 4761 – – 319 –

s13207a 3 2 9368 20559 – – 271 –
aig traverse 82247 331100 – – 347 –

30 29621 112297 – – 324 –
lldelete1 198239 803606 – – 345 –

71 5670 14616 – – 418 –
case104 3666 11589 – – 333 –
case9 279 753 – – 423 –

TR b14 even linear 8809 28200 – – 351 –
s13207a 7 4 9386 20635 – – 316 –
tree delete1 34998 135565 – – 271 –

case 0 b12 even2 2669 8460 – – 326 –
case 0 ptb 2 3391 11089 – – 284 –
case 0 b14 1 812 3000 – – 333 –

57 6917 23549 – – 410901 –
case 1 b12 even2 2669 8460 – – 311 –

s15850a 15 7 10995 24836 – – 323 –
s9234a 7 4 6313 14555 – – 290 –

case145 219 558 – – 2498760 –
s9234a 15 7 6382 14839 – – 287 –

TR b12 even7 linear 8633 28088 – – 347 –
case19 397 1126 – – 424 –

logcount 19126 68146 – – 352 –
jburnim morton 101241 378557 – – 358 –

s1423a 15 7 864 2248 – – 329 –
case120 284 851 – – 2509415 –

s5378a 3 2 3679 8372 – – 298 –
case 2 b12 even2 2669 8460 – – 329 –

case 2 ptb 2 2848 9498 – – 317 –
case138 849 2253 – – 310 –
case212 1189 3477 – – 322 –

TR b14 even2 linear 10329 33008 – – 338 –
case 2 b12 even3 4157 13049 – – 307 –

squaring41 4185 13599 – – 345 –
case139 846 2163 – – 313 –

squaring40 4173 13539 – – 342 –
case 1 b12 even1 2681 8492 – – 329 –

case39 245 650 – – 420 –
case41 245 650 – – 424 –

s838 7 4 616 1490 – – 424 –
case37 1084 3159 – – 306 –

case207 824 2128 – – 287 –
s641 3 2 489 1039 – – 396 –

84 15678 70956 – – 339 –
s38584 3 2 23405 57394 – – 321 –
tree delete4 12389 47486 – – 328 –

case20 397 1126 – – 424 –
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s713 3 2 509 1117 – – 303 –
case140 488 1222 – – 289 –
case208 824 2128 – – 301 –
case49 1510 6505 – – 423 –

TR b14 even3 linear 8809 28200 – – 347 –
ConcreteRoleAffectationService 395951 1520924 – – 349 –

s38584 7 4 23423 57470 – – 333 –
case61 282 753 – – 423 –

s713 7 4 527 1193 – – 883153 –
case50 843 3288 – – 423 –

TR ptb 1 linear 1969 6288 – – 424 –
xpose 35519 159328 – – 218 –

case 1 ptb 1 966 3035 – – 424 –
110 18570 63471 – – 311 –
54 21726 73499 – – 338 –

llinsert2 116345 454527 – – 334 –
s15850a 7 4 10926 24552 – – 315 –

case107 618 1661 – – 315 –
tree insert insert 5835 22436 – – 423 –

s38417 15 7 25615 57946 – – 314 –
compress 44901 166948 – – 1302 –

TR b12 even2 linear 8633 28088 – – 332 –
signedAvg 30335 91854 – – 327 –
s713 15 7 596 1477 – – 449 –
s1423a 3 2 777 1888 – – 334 –

case210 872 2937 – – 287 –
s38417 7 4 25546 57662 – – 329 –

case 0 b12 even1 2681 8492 – – 325 –
s641 7 4 507 1115 – – 1825384 –
case142 2457 7305 – – 320 –

TR b12 2 linear 2426 8373 – – 400 –
squaring42 4173 13539 – – 337 –
squaring60 5186 16134 – – 343 –
s9234a 3 2 6295 14479 – – 287 –

case3 b14 even3 1304 4057 – – 322 –
case211 869 2929 – – 290 –
case213 648 1891 – – 268 –

TR ptb 2 linear 3857 12774 – – 424 –
case 2 ptb 1 963 3027 – – 424 –

case10 328 878 – – 329 –
case214 645 1883 – – 424 –

s13207a 15 7 9455 20919 – – 309 –
case 1 4 b14 even 1532 4761 – – 327 –

107 8948 40147 – – 324 –
tree insert search 82202 319077 – – 346 –
case 0 b12 even3 4157 13049 – – 324 –

case209 1189 3477 – – 424 –
TR device 1 even linear 2447 7612 – – 342 –

tree search 81080 315697 – – 332 –
case 0 ptb 1 1507 4621 – – 424 –
squaring70 882 2663 – – 339 –

case15 296 774 – – 328 –
s35932 3 2 17831 44349 – – 360 –

log2 185178 716257 – – 360 –
s838 15 7 685 1774 – – 424 –

s5378a 15 7 3766 8732 – – 291 –
case40 245 650 – – 422 –

s38584 15 7 23492 57754 – – 325 –
partition 151795 689327 – – 343 –

TR b12 even3 linear 8633 28088 – – 339 –
TR b14 3 linear 1942 6228 – – 348 –

TR device 1 linear 1249 3927 – – 347 –
TR b12 1 linear 1914 6619 – – 317 –

s1423a 7 4 795 1964 – – 333 –
squaring12 1507 5210 – 8419.06 423 31880
squaring16 1627 5835 – 9926.56 423 31778
squaring14 1458 5009 – 13892.48 423 31842


