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Abstract—Given a Boolean specification between a set of inputs and
outputs, the problem of Boolean functional synthesis is to synthesise
each output as a function of inputs such that the specification is
met. Although the past few years have witnessed intense algorithmic
development, accomplishing scalability remains the holy grail. The state-
of-the-art approach combines machine learning and automated reasoning
to synthesise Boolean functions efficiently. In this paper, we propose four
algorithmic improvements for a data-driven framework for functional
synthesis: using a dependency-driven multi-classifier to learn candidate
function, extracting uniquely defined functions by interpolation, variables
retention, and using lexicographic MaxSAT to repair candidates.

We implement these improvements in the state-of-the-art frame-
work, called Manthan. The proposed framework is called Manthan2.
Manthan2 shows significantly improved runtime performance compared
to Manthan. In an extensive experimental evaluation on 609 benchmarks,
Manthan2 is able to synthesise a Boolean function vector for 509 instances
compared to 356 instances solved by Manthan – an increment of 153
instances over the state-of-the-art. To put this into perspective, Manthan
improved on the prior state-of-the-art by only 76 instances.

I. INTRODUCTION

Given two sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}
of variables and a Boolean formula F (X,Y ) over X ∪ Y , the
problem of Boolean functional synthesis is to compute a vector
Ψ = 〈ψ1, . . . , ψm〉 of Boolean functions ψi (often called Skolem
functions) such that ∃Y F (X,Y ) ≡ F (X,Ψ(X)). Informally, given
a specification between inputs and outputs, the task is to synthesise a
function Ψ that maps each assignment of the inputs to an assignment
of the outputs so that the combined assignment meets the specification
(whenever such an assignment exists). With origins tracing to Boole’s
seminal work [12], functional synthesis is a fundamental problem in
computer science that has a wide variety of applications in areas such
as circuit synthesis [33], program synthesis [52], automated program
repair [31], cryptography [40], logic minimization [13], [14]. For
example, the relation F can specify the allowed behavior of a circuit
of interest and the function Ψ corresponds to the implementation of
the desired circuit. As pointed out by Jiang, Lin, and Hung [30],
relations can succinctly capture the conventional notion of don’t
cares. Furthermore, extracting functions from Boolean relations also
has applications in 2-level logic minimization under the Sum-of-
Products (SOP) representation [20], [28], [35].

Over the past two decades, functional synthesis has seen a
surge of interest, leading to the development of new approaches
that can be broadly classified into three categories: 1) incremental
determinization iteratively identifies variables with unique Skolem
functions and takes “decisions” on any remaining variables by adding
temporary clauses that make them deterministic [42], [43], [45]. 2)
Skolem functions can be obtained by eliminating quantifiers using
functional composition, and Craig interpolation can be applied to
reduce the size of composite functions [29], [30]. Although this
typically does not scale to large specifications, it was shown to work
well using ROBDDs in combination with carefully chosen variable
orderings [17], [53]. 3) CEGAR-style approaches start from an initial
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set of approximate Skolem functions, followed by a phase of counter-
example guided refinement to patch these candidate functions [5], [6],
[32]. With the right choice of initial functions, the CEGAR phase can
often be skipped entirely, a phenomenon that can be analyzed in terms
of knowledge compilation [4], [5].

Recently, we proposed a new data-driven approach Manthan [21].
Manthan relies on constrained sampling [51] to generate satisfying
assignments of the formula F , which are fed to a decision-tree
learning technique such that the learned classifiers represent potential
Skolem functions, called candidates. The candidates are repeatedly
tested for correctness and repaired in a subsequent CEGAR loop, with
a MaxSAT solver minimizing the number of repairs required for each
counterexample. While Manthan achieved significant improvement
of the state-of-the-art, a large number of problems remain beyond its
reach (and other synthesis engines).

The primary contribution of this work is to address scalability
barriers faced by Manthan. To this end, we propose the following
four crucial algorithmic innovations:

1) Interpolation-based Unique Function Extraction: We identify
a subset of variables with unique Skolem function and extract
these functions by interpolation, thereby reducing the number
of functions that need to be learned.

2) Clustering-based Multi-Classification: We propose a
clustering-based approach that can take advantage of multi-
classification to learn candidate functions for sets of variables
at a time.

3) Learning and Repair over Determined Features: Whenever
it is determined that a candidate function for a variable is
indeed a Skolem function, we do not substitute for and eliminate
this variable, and instead retain it as a possible feature during
learning and repair. Our strategy stands in stark contrast to the
conventional wisdom that advocates variable elimination.

4) Lexicographic MaxSAT-based Dependency-Aware Repair:
We design a lexicographic MaxSAT-based strategy for identi-
fying repair candidates so as to take into account dependencies
among candidate functions.

To measure the impact of these proposed algorithmic innovations,
we implemented them in a system named Manthan2 and performed
an extensive evaluation on a benchmark suite used in prior studies [4],
[5], [21]. In terms of solved instances, the results are decisive. Out
of 609 instances, Manthan and CADET are able to solve 356 and
280 instances, in line with experimental results reported in prior work
that saw a 76 instance lead of Manthan over the then state-of-the-art
CADET [21]. Manthan2 solves 509 instances and thereby achieves
a dramatic improvement of 153 instances over Manthan, more than
doubling the already substantial increase in the number of solved
instances achieved by Manthan over CADET.

The rest of the paper is organized as follows: In Section II, we first
introduce notation and then provide some background on Manthan.In
Section III, we present an overview of the invocations implemented
in Manthan2, before giving a detailed algorithmic description in
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Section IV. We then describe the experimental methodology and
discuss results with respect to each of the technical contributions
of Manthan2 in Section V. We cover related work in Section VI.

II. BACKGROUND

We use lower case letters to denote propositional variables and
capital letters to denote sets of variables. Given a set {v1, . . . , vn}
of variables and 1 ≤ i ≤ j ≤ n, we write V j

i for the subset
{vi, vi+1, . . . , vj}. We use standard notation for logical connectives
such as ∧,∨ and ¬. A literal is a variable or a negated variable. A
formula ϕ is in Conjunctive Normal Form (CNF) if it is a conjunction
of clauses, where each clause is a disjunction of literals. We write
V ars(ϕ) to denote the set of variables used in ϕ. A satisfying
assignment of a formula ϕ is a mapping σ : V ars(ϕ) → {0, 1}
such that ϕ evaluates to True under σ. We write σ |= ϕ to denote
that σ is a satisfying assignment of ϕ. Given a subset V of variables,
we write σ[V ] to denote the restriction of σ to V . An unsatisfiable
core of a formula in CNF is a subset of clauses for which there is no
satisfying assignment. We use UnsatCore to denote an unsatisfiable
core when the formula is understood from the context.

For a given CNF formula in which some clauses are declared
as hard constraints and the rest are declared as soft constraints,
the problem of (partial) MaxSAT is to find an assignment of the
given formula that satisfies all hard constraints and maximizes
the number of satisfied soft constraints. Furthermore, lexicographic
partial MaxSAT, or LexMaxSAT for short, is a special case of partial
MaxSAT where there is a preference in the order in which to satisfy
the soft constraints.

A. Functional Synthesis

We assume a relational specification ∃Y F (X,Y ) such that X =
{x1, . . . , xn} and Y = {y1, . . . , ym}. We write F and F (X,Y )
interchangeably, and use F (X,Y )|yi=b to denote the result of
substituting b ∈ {0, 1} for yi in F (X,Y ).

a) Problem Statement: Given a specification ∃Y F (X,Y ) with
inputs X and outputs Y , the task of Boolean functional synthesis is
to find a function vector Ψ = 〈ψ1, . . . , ψm〉 such that ∃F (X,Y ) ≡
F (X,Ψ(X)). We refer to Ψ as a Skolem function vector and to the
function ψi as a Skolem function for yi.

We solve a slightly relaxed version of this problem by syn-
thesising a Skolem function vector 〈ψ1, . . . , ψm〉 such that yi =
ψi(X, y1, . . . , yi−1) for a given order y1, . . . , ym; this is ultimately
equivalent to synthesising Ψ(X), since each ψi(X, y1, . . . , yi−1) can
be transformed into a function depending only on X by substituting
the functions for y1, . . . , yi−1. We write ≺d to denote the (smallest)
partial order on the output variables Y such that yi ≺d yj if yj
appears in ψi, and say that yi depends on yj whenever yi ≺d yj .

B. Definability

Definition 1 ( [34]): Let F (W ) be a formula, w ∈W , S ⊆W \w.
F (W ) defines w in terms of S if and only if there exists a formula
H(S) such that F (W ) |= w ↔ H(S). In such a case, H(S) is
called a definition of w on S in F (W ).

To this end, given F (W ) defined on W = {w1, w2, . . . wn}.
We create another set of fresh variables Z = {z1, z2, . . . zn}. Let
F (W 7→ Z) represent the formula where every wi ∈ W in F is
replaced by zi ∈ Z.

Lemma 1 (Padoa’s Theorem):

Let, I(W,Z, S, i) = F (W ) ∧ F (W 7→ Z) ∧

 ∧
wj∈S;j 6=i

(wj ↔ zj)


∧wi ∧ ¬zi

F defines wi ∈ W in terms of S if and only if I(W,Z, S, i) is
UNSAT.

C. Manthan: Background

We now give a brief overview of the state-of-the-art Boolean func-
tional synthesis tool Manthan [21]. Given a specification, Manthan
computes Skolem functions in several phases described below.

a) Preprocessing: A variable yi is positive unate (resp. nega-
tive unate) in F (X,Y ), if F (X,Y )|yi=0 ∧ ¬F (X,Y )|yi=1 (resp.
F (X,Y )|yi=1 ∧ ¬F (X,Y )|yi=0) is UNSAT [5]. The Skolem func-
tion for a positive unate (resp. negative unate) variable yi is the
constant function ψi = 1 (resp. ψi = 0). Manthan finds unates
as a preprocessing step.

b) Learning Candidates: Manthan adopts an adaptive
weighted sampling strategy to sample satisfying assignments of
F (X,Y ), which are used to learn decision tree classifiers. More
specifically, Manthan samples uniformly over the input variables X
while biasing the output variables Y towards a particular value. With
the data generated, Manthan learns approximate candidate functions
using a dependency driven binary classifier. To learn a candidate
function ψi corresponding to yi, Manthan considers the value of
yi in a satisfying assignment as a label, and values of X ∪ Ŷ as a
feature set to construct a decision tree dt, where Ŷ is the set of Y
variables, such that for yj of Ŷ , yj 6≺d yi. From the learned decision
tree dt, Manthan obtains the candidate function as the disjunction
of all the paths with leaf node label 1. For every yk occurring as
decision node in dt, Manthan updates the dependencies as yi ≺d yk.
Finally, Manthan extends the partial order ≺d to get a TotalOrder
of Y variables.

c) Verification: Manthan checks if the learned candidates are
Skolem functions or not by checking satisfiability of the error formula
E(X,Y, Y ′) defined as

E(X,Y, Y ′) = F (X,Y ) ∧ ¬F (X,Y ′) ∧ (Y ′ ↔ Ψ), (1)

where Y ′ = {y′1, . . . , y′m} is a set of fresh variables. It is readily ver-
ified that Ψ is a Skolem function vector if, and only if, E(X,Y, Y ′)
is UNSAT [32]. If E(X,Y, Y ′) is SAT and σ |= E(X,Y, Y ′), then
Manthan has a counterexample σ to fix.

d) Repairing Candidates: Manthan finds candidate functions
to repair by making a MaxSAT call with hard constraints F (X,Y )∧
(X ↔ σ[X]) and soft constraints (Y ′ ↔ σ[Y ′]). The output
variables associated with the soft constraints that are not satisfied
form a smallest subset of output variables whose candidate functions
need to change to satisfy the specification. Now, to repair a candidate
function ψi corresponding to output variable yi, Manthan constructs
another formula Gi(X,Y ) as

Gi(X,Y ) := (yi ↔ σ[y′i]) ∧ F (X,Y ) ∧ (X ↔ σ[X]) ∧ (Ŷ ↔ σ[Ŷ ]),
(2)

where Ŷ ⊂ Y is the set Ŷ = {TotalOrder[index(yi) +
1], · · · , TotalOrder[|Y |]}.

If Gi(X,Y ) turns out to be UNSAT, then Manthan constructs a
repair formula β as the conjunction of all unit clauses of an UnsatCore
of Gi(X,Y ). Depending on the current valuation of the candidate
function ψ, Manthan strengthens or weaken the candidate by the
repair formula β. Otherwise, if Gi(X,Y ) is SAT, Manthan looks
for other candidate functions to repair instead.

During the repair phase, Manthan uses self-substitution [29] as a
fallback: whenever more than 10 iterations are needed for repairing a
particular candidate, Manthan directly synthesises a Skolem function
for that variable via self-substitution.



III. OVERVIEW

In this section, we provide an overview of our primary contribu-
tions in Manthan2, building on the Manthan [21] infrastructure.

A. Interpolation-based Unique Function Extraction

In order to reduce Manthan’s reliance on data-driven learning,
we seek to identify a subset Z ⊆ Y and the corresponding Skolem
function vector Φ such that Φ can be extended to a valid Skolem
function vector Ψ. In the following, we call such a Z a determined
set. Observe that unate variables form a determined set Z. To grow Z
further, we rely on the notion of definability, and iteratively identify
the variables yi ∈ Y such that yi is definable in terms of rest
of the variables such that its definition ψi respects the dependency
constraints imposed by the definitions of variables in Z. To extract the
corresponding definitions, we rely on the Padoa’s theorem (Lemma 1)
to check whether yi is definable in terms of rest of the variables
and then employ interpolation-based extraction of the corresponding
definition [49].

The usage of unique function extraction significantly reduces the
number of variables for which Manthan2 needs to learn and repair
the candidates since unique functions do not need to undergo refine-
ment. While our primary motivation for unique function extraction
was to reduce the over-reliance on learning, it is worth emphasizing
that interpolation-based extraction is also able to compute compli-
cated functions with large size; these functions would require a
prohibitive number of samples and as such lie beyond the scope of
a practical learning-based technique.

We close by highlighting the importance of allowing yi to depend,
subject to dependency constraints, on other Y variables. Consider,
X = {x1} and Y = {y1, y2}, and let F (X,Y ) := (y1 ∨ y2) ∧
(¬y1 ∨¬y2). Neither y1 nor y2 is defined by x1. But y2 is definable
in terms of {y1} (and therefore, also {x1, y1}) with its corresponding
Skolem function ψ2(x1, y1) := ¬y1.

Impact: For over 40% of our benchmarks, Manthan2 was able
to extract Skolem functions for at least 95% of total variables via
unique function extraction.

B. Learning and Repair over Determined Features

As mentioned in the previous section, we focus on constructing
a determined set Z consisting of unates and variables with unique
functions. All the variables in Z can be eliminated by substituting
them with their corresponding definitions (in case of unates, the
definition is a constant: True or False). Variable elimination has a
long history as an effective preprocessing strategy [4], [5], [11], [21],
and, following this tradition, Manthan performs variable elimination
wherever possible. In particular, it eliminates unates as well as
variables for which definitions can be obtained via syntactic gate
extraction techniques.

While substituting for variables in Z does not affect the existence
of Skolem functions for variables yi ∈ Y \ Z, the size of these
functions can increase substantially when they are not allowed to
depend on variables in Z. We also observe that variables in Z
can considered as determined features and the Skolem functions for
some yi ∈ Y \ Z can be efficiently represented in Z. For example,
consider the following scenario: let X = {x1, x2}, Y = {y1, y2} and
F (X,Y ) = (y1∨y2)∧(¬y1∨¬y2)∧(y1 ↔ (x1⊕x2)). Observe that
the Skolem function for y2 in terms of X in the transformed formula
F (x1, x2, y2) will have to be learned as ¬(x1⊕x2). However, when

x1

x2 11

01 10

0 1

0 1

Fig. 1: Multi-Classification: learned decision tree with labels {y1, y2}
and features {x1, x2}

allowing learning over y1, then the desired Skolem function for y2
can simply be learned as ¬y1.1

Further, every iteration of our repair phase adds clauses over
the literals in the formula, and therefore allowing a repair clause
to contain a variable yi ∈ Z with definition ψi increases the
expressiveness of the clauses during the repair phase, akin to bounded
variable addition.

We conclude that, contrary to conventional wisdom, variables in
the determined set Z should not be eliminated and instead should be
retained as features for the learning and repair phases of Manthan2.

Impact: The retention of variables in the determined set allows
Manthan2 to solve 25 more benchmarks.

C. Clustering-based Multi-Classification

For some of the benchmarks, Manthan spends ∼ 74% of its time
in learning the candidate functions. To reduce this learning time,
Manthan2 uses the following strategy:

1) Partition the set of Y variables into disjoint subsets,
2) Use a multi-classifier (instead of a binary-classifier) to learn

candidate Skolem functions for each partition.
For example, let X = {x1, x2} and Y = {y1, y2} in ∃Y F (X,Y ).

Figure 1 shows the learned decision tree with labels {y1, y2}, and
features {x1, x2}. The expected number of classes to learn two Y
variables is 22 = 4, but as shown in Figure 1, the decision tree
classifies the labels into 3 classes 〈01, 10, 11〉. The candidate function
ψ1 corresponding to y1 is the disjunction of paths from root to leaf
node with label of y1 being 1, i.e, the classes 10 and 11. Hence, the
candidate function ψ1 := (¬x1∧x2)∨ (x1). Similarly, the candidate
function ψ2 for y2 is ψ2 := (¬x1 ∧ ¬x2) ∨ (x1).

The candidate Skolem function for a variable yi of a chosen subset
is obtained as the disjunction of all the paths from the root to leaf node
with a label of yi being 1. We further update the partial dependency
as yi ≺d yj , for all yj variables occurring in ψi. Now, let us consider
the case with two different subsets {y1, y2} and {y3, y4}, and also
assume that y1 ≺d y3, then the feature set to learn {y3, y4} would
be {X, y2}. The feature set to learn a chosen subset would include
a variable yj , only if yj 6≺d yi for every variable yi of the subset.

An important question that remains to be answered is how should
the variable partitioning be driven? The intuition behind our ap-
proach lies in the fact that low cohesion among variables in a
partition would impose fewer constraints, leading to larger trees and
multiplying the number of classes. Therefore, in some sense, we
would like to learn related variables together. Manthan2 uses the
distance in the primal graph [47] to cluster Y variables into disjoint
subsets, such that variables in a subset are closely related.

1There is an analogy with the role of latent features in machine learning,
which allow for the compact representation of a model but must first be
computed from observable features: elimination of variables with unique
Skolem functions turns observable features into latent features that must be
recovered by the learning algorithm.



Impact: We observe a decrease of 252 seconds in the PAR-2 score
by using a multi-classifier to learn a subset of variables together over
learning one candidate at a time.

D. Lexicographic MaxSAT-based Dependency-Aware Repair

Let us start by demonstrating a troublesome scenario for Manthan
on the same running example as above: X = {x1, x2} and Y =
{y1, y2} and let F (X,Y ) = (y1∨y2)∧(¬y1∨¬y2) in ∃Y F (X,Y ),
with the candidates ψ1 = 1 and ψ2 = 1, and TotalOrder = {y1, y2}.
As the candidates are not yet Skolem functions, Manthan starts off
by identifying a candidate for repair by invoking MaxSAT with hard
constraints F (X,Y )∧ (X ↔ σ[X]) and soft constraints (y1 ↔ 1)∧
(y2 ↔ 1), where σ is a satisfying assignment of the error formula (1).
As either y1 or y2 can be flipped to fix the counterexample σ, let
us assume MaxSAT does not satisfy the soft constraint (y2 ↔ 1),
thereby selecting ψ2 for repair.

In order to repair ψ2, Manthan constructs the formula G2 (2) as
G2 = F (X,Y )∧ (X ↔ σ[X])∧ (y2 ↔ 1). As G2 is not allowed to
constrain over y1, it turns out as SAT, hence adding ψ1 as a candidate
to repair. Therefore, to fix the counterexample σ, Manthan fails to
repair the candidate, and requires an additional repair iteration. This
scenario could have been averted and the counterexample σ can be
fixed in the same repair iteration if ψ1 was selected before ψ2

Manthan2 uses LexMaxSAT [27] to satisfy the soft constraints in
accordance to the TotalOrder. For the aforementioned problem, if the
soft constraint y1 ↔ 1 takes preference over y2 ↔ 1, Manthan2
would pick candidate corresponding to y1 as a repair candidate.
Therefore, the use of LexMaxSAT in finding repair candidates
reduces the required number of iterations to fix a counterexample.

However, LexMaxSAT can be expensive [7], [38]. To avoid fre-
quent LexMaxSAT calls, Manthan2 first computes a list of candidates
to repair using unweighted MaxSAT. This list can grow whenever a
formula Gi turns out to be SAT. Once its size exceeds a certain
threshold, Manthan2 recomputes another set of repair candidates us-
ing LexMaxSAT. In particular, LexMaxSAT is used only if Manthan2
has to fix many candidates in a single repair iteration due to an
ordering constraint.

Impact: We observe a decrease of more than 100 seconds in the
PAR-2 score by using LexMaxSAT.

IV. ALGORITHM

In this section, we present a detailed algorithmic description of
Manthan2. Manthan2 takes a formula F (X,Y ), and returns a
Skolem function vector. Manthan2 considers fixed values for k and
s, where k is the maximum edge distance that is used to cluster Y
variables together, and s is the maximum number of Y variables that
can be learned together.
Manthan2 is presented in Algorithm 1, it starts off by extracting

Skolem functions for unates and uniquely defined variables of the
formula F (X,Y ) at line 3. The set U represents all the Y variables
that are either unate or have unique Skolem functions. At line 4,
Manthan2 generates the required number of samples. Next, at line 5,
Manthan2 calls subroutine ClusterY to cluster the Y variables
that are not in U . ClusterY returns a list, subsetY, that represents
different subsets of Y variables for which the candidates would be
learned together. To learn the candidate functions for each subsets,
Manthan2 calls subroutine CandidateSkF at line 7. CandidateSkF
also updates the dependencies among Y variables as per the learned
candidate functions. Manthan2 now finds a total order TotalOrder
of Y variables in accordance with dependencies among the Y
variables at line 8. Manthan2 then checks the satisfiability of the

error formula E(X,Y, Y ′), and if E(X,Y, Y ′) is SAT, it calls
subroutine FindRepairCandidates to find the list of candidates to
repair at line 13. Then at line 15, it calls subroutine RepairSkF
to repair the candidates. This process is continued until the error
formula E(X,Y, Y ′) is UNSAT, and then, Manthan2 returns a
Skolem function vector. Note that if U = Y , that is, if all Y variables
are either unate or uniquely defined, then Manthan2 terminates after
UniDef.
Manthan2 uses subroutines GetSamples, FindOrder and

RepairSkF as described in [21].2 And like Manthan, Manthan2
uses self-substitution [29] as a fallback (see Section II). We will
now discuss the newly introduced subroutines.

1) UniDef: Algorithm 2 presents the subroutine UniDef. It as-
sumes access to the following two subroutines:

1) FindUnates, which takes a formula F (X,Y ) as input and
returns a list of unates and their corresponding Skolem functions.

2) FindUniqueDef, which takes a formula F (X,Y ), a variable
yi, and a defining set X, y1, . . . , yi−1 as input, and determines
whether the given variable yi is defined with respect to the
defining set or not. If the variable yi is defined, FindUniqueDef
returns true, along with the extracted definition ψi. Otherwise,
it returns false (and an empty definition).

UniDef first calls FindUnates to find the unates and their cor-
responding Skolem functions at line 1. Then, it calls subroutine
FindUniqueDef with defining set {X, y1, . . . , yi−1} for each ex-
istentially quantified variable yi which is not unate at line 5.
If FindUniqueDef returns true, UniDef adds yi to the set uni-
var at line 7. UniDef adds variables occurring in ψi to the list
dependson[yi] at line 10.

2) ClusterY: Algorithm 3 presents the subroutine ClusterY, it
takes formula the F (X,Y ), k : an edge distance parameter, s :
maximum allowed size of a cluster of Y variables, and U : list of
unate and uniquely defined Y variables, and it returns a list of all
subsets of Y that would be learned together. ClusterY assumes access
to a subroutine kHopNeighbor, which takes a graph, a variable y, and
an integer k as input, and returns all variables within distance k of
y in the graph.

2Note that the subroutines FindRepairCandidates, and RepairSkF are
referred to as MaxSATList and RefineSkF in [21].

Algorithm 1 Manthan2(F(X,Y))

1: Ψ← {ψ1 = ∅, . . . , ψ|Y | = ∅}
2: dependson ← {}
3: U, Ψ, dependson ← UniDef(F(X,Y),Ψ,dependson)
4: Σ← GetSamples(F(X,Y))
5: subsetY ← ClusterY(F(X,Y),k,s,U)
6: for each chunk ∈ subsetY do
7: Ψ, dependson ← CandidateSkF(Σ,F(X,Y), Ψ, chunk,

dependson)
8: TotalOrder ← FindOrder(dependson)
9: repeat

10: E(X,Y, Y ′)← F (X,Y ) ∧ ¬F (X,Y ′) ∧ (Y ′ ↔ Ψ)
11: ret, σ ← CheckSat(E(X,Y,Y’))
12: if ret = SAT then
13: ind ← FindRepairCandidates(F(X,Y),σ,TotalOrder)
14: for yk ∈ ind do
15: Ψ← RepairSkF(F(X,Y),σ,Ψ,TotalOrder)
16: until ret = UNSAT
17: return Ψ



Algorithm 2 UniDef(F(X,Y),Ψ,dependson)

1: Ψ, unates ← FindUnates(F(X,Y))
2: univar ← ∅
3: for yi ∈ Y \ unates do
4: definingvar ← X ∪ {y1, . . . , yi−1}
5: ret, def ← FindUniqueDef(F(X,Y),yi,definingvar)
6: if ret = true then
7: univar ← univar ∪ yi
8: ψi ← def
9: for yj ∈ ψi do

10: dependson[yi] ← dependson[yi] ∪ yj
11: return unates ∪ univar, Ψ, dependson

Algorithm 3 ClusterY(F(X,Y),k,s,U)

1: graph = ∅
2: for each clause of F (X,Y ) do
3: if 〈yi, yj〉 pair in clause then
4: if yi 6∈ U and yj 6∈ U then
5: AddEdge(graph,yi,yj)
6: subsetY = ∅
7: for yi ∈ Y do
8: while k ≥ 0 do
9: chunk ← kHopNeighbor(graph,yi,k)

10: if size(chunk) ≤ s then
11: break
12: k ← k − 1

13: subsetY ← subsetY.add(chunk)
14: for yj ∈ chunk do
15: RemoveNode(graph,yj)
16: return subsetY

ClusterY first creates a graph graph with Y \U as vertex set and
edges between variables yi and yj that share a clause in F (X,Y ).
ClusterY then calls subroutine kHopNeighbor for each variable yi.
The set of variables returned by kHopNeighbor is stored as chunk.
If the size of chunk is greater than s, ClusterY reduces the value of
k by one at line 12, and calls kHopNeighbor again with the updated
value of k. Otherwise, ClusterY adds chunk to subsetY at line 13.
Finally at line 15, ClusterY removes the nodes corresponding to each
variable of chunk from graph.

3) CandidateSkF: Pseudocode for this routine is deferred to the
technical report [22]. It takes a set Σ of samples, F (X,Y ), Ψ: a
candidate function vector, chunk: the set of variables to learn candi-
dates, and dependson: a partial dependency vector as input, and finds
the candidates corresponding to each of the variables yi in chunk.
CandidateSkF assumes access to subroutines CreateDecisionTree
and Path as described by Golia et al. [21]. The following are the
additional subroutines used by CandidateSkF.

1) LeafNodes, which takes a decision tree dt as an input and returns
a list of leaf nodes of dt.

2) Label(yi, l), which takes a variable yi and a leaf node l as input,
and returns 1 if the class label corresponding to the node l has
value 1 at the ith index.

CandidateSkF starts off by initializing the set featset of features
with the set X of input variables. It then attempts to find a list D
of variables yj such that yj ≺d yi where yi belongs to chunk. Next,
CandidateSkF adds Y \D to featset, and creates a decision tree dt
using samples from Σ over featset to learn the chunk variables. For

a leaf node l of dt, if Label(yi, l) returns 1, then ψi is updated with
the disjunction of the formula returned by subroutine Path. Finally,
CandidateSkF iterates over all yj occurring in ψi to add them to the
list dependson[yi].

4) FindRepairCandidates: Pseudocode for this routine is deferred
to the technical report [22]. FindRepairCandidates starts with a
LexMaxSAT call using hard constraints F (X,Y )∧(X ↔ σ[X]), soft
constraints (yi ↔ σ[y′i]) for each yi of Y . The preference order on
soft constraints is given by TotalOrder. FindRepairCandidates calls
the MaxSATList subroutine, which returns a list of Y variables ind
such that the soft constraints corresponding to variables in ind were
not satisfied by the optimal solution returned by the LexMaxSAT
solver.

A. Example

We now illustrate our algorithm through an example.
Example 1: Let X = {x1, x2}, Y = {y1, y2, y3, y4} in
∃Y F (X,Y ) where F (X,Y ) is (x1 ∨ x2 ∨ y1)∧ (x2 ∨¬y1 ∨ y2)∧
(y3 ∨ y4) ∧ (¬y3 ∨ ¬y4).

1) FindUniqueDef finds that y4 is defined by {x1, x2, y1, y2, y3}
and returns the Skolem function ψ4 = ¬y3. We get Z = {y4}
as a determined set.

2) Next, Manthan2 generates training data through sampling (Fig-
ure 2). Manthan2 attempts to cluster Y \Z = {y1, y2, y3} into
different chunks of variables to learn together. As y1 and y2
share a clause, ClusterY returns the clusters {{y1, y2}, {y3}}.
Manthan2 now attempts to learn candidate Skolem functions
ψ1, ψ2 together by creating a decision tree (Figure 3). The
decision tree construction uses the samples of {x1, x2, y3}
as features and samples of {y1, y2} as labels. The candidate
function ψ1 is constructed by taking a disjunction over all
paths that end in leaf nodes with label 1 at index 1 in the
learned decision tree: as shown in Figure 3, ψ1 is synthesised as
(x1 ∨ (¬x1 ∧ ¬x2)). Similarly, considering paths to leaf nodes
with label 1 at index 2, we get ψ2 = (¬x1∧¬x2)∨(¬x1∧x2),
which simplifies to ¬x1. Now, samples of {x1, x2, y1, y2} are
used to predict y3. Considering the path to the leaf node of the
learned decision tree with label 1, we get ψ3 = x2.
At the end of CandidateSkF, we have ψ1 := (x1 ∨ (¬x1 ∧
¬x2)), ψ2 := ¬x1, ψ3 := x2 , and ψ4 := ¬y3. Let us
assume the total order returned by FindOrder is TotalOrder =
{y4, y3, y2, y1}.

3) We construct the error formula, E(X,Y, Y ′) = F (X,Y ) ∧
¬F (X,Y ′) ∧ (Y ′ ↔ Ψ), which turns out to be SAT with
counterexample σ = 〈x1 ↔ 1, x2 ↔ 0, y1 ↔ 0, y2 ↔ 1,
y3 ↔ 0, y4 ↔ 1, y′1 ↔ 1, y′2 ↔ 0, y′3 ↔ 0, y′4 ↔ 1〉.
FindRepairCandidates calls LexMaxSAT with F (X,Y ) ∧
(x1 ↔ σ[x1]) ∧ (x2 ↔ σ[x2]) as hard constraints and ((y1 ↔
σ[y′1]), 4) ∧ ((y2 ↔ σ[y′2]), 3) ∧ ((y3 ↔ σ[y′3]), 2) ∧ ((y4 ↔
σ[y′4]), 1) as soft constraints, with the preference order of soft
constraints indicated by their weights. FindRepairCandidates
returns ind = {y2}. Repair synthesis commences for ψ2 with a
satisfiability check of G2 = F (X,Y )∧ (x1 ↔ σ[x1])∧ (x2 ↔
σ[x2])∧(y1 ↔ σ[y′1])∧(y2 ↔ σ[y′2]). The formula is unsatisfi-
able, and Manthan2 calls FindCore, which returns variable y1,
since the constraints (y1 ↔ σ[y′1]) and (y2 ↔ σ[y′2]) are not
jointly satisfiable in G2. As the output ψ2 for the assignment
σ must change from 0 to 1, ψ2 is repaired by disjoining with
y1, and we get ψ2 := ¬x1 ∨ y1 as the new candidate. For the
updated candidate vector Ψ the error formula is UNSAT, and
thus Ψ is returned as a Skolem function vector.
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V. EXPERIMENTAL EVALUATION

We conducted an extensive study on 609 benchmarks that have
been previously employed in studies [4], [5], [21]; in particular, we
use instances from the 2QBF tracks of QBFEval’17 [1] and QBFE-
val’18 [2], and benchmarks related to arithmetic [53], disjunctive
decomposition [6], and factorization [6]. We used Open-WBO [39]
for unweighted MaxSAT queries, RC2 [27] for LexMaxSAT queries,
and PicoSAT [10] to compute UnsatCore. Further, we used Crypto-
MiniSat [50] to find unates and a library based on UNIQUE [49] to
extract unique Skolem functions. We used CMSGen [23] to sample
the satisfying assignments of the specification. Finally, we used
Scikit-Learn [3] to learn decision trees and ABC [36] to manipulate
Boolean functions. All our experiments were conducted on a high-
performance computer cluster with each node consisting of a E5-2690
v3 CPU with 24 cores and 96GB of RAM, with a memory limit set
to 4GB per core. All tools were run in single-threaded mode on
a single core with a timeout of 7200 seconds. We used the PAR-
2 score to compare different techniques, which corresponds to the
Penalized Average Runtime, where for every unsolved instance there
is a penalty of 2× timeout.

The objective of our experimental evaluation was to compare the
performance of Manthan2 with the state-of-the-art tools C2Syn [4],
BFSS [5], CADET [42], and Manthan [21], and to analysis the
impact of each of the algorithmic modifications implemented in
Manthan2. In particular, our empirical evaluation sought answers
to the following questions:

1) How does the performance of Manthan2 compare with state-
of-the-art Skolem functional synthesis tools?

2) What is the impact on the performance of Manthan2 of each
of the proposed modifications?

a) Summary of Results: Manthan2 outperforms all the state-
of-the-art tools by solving 509 benchmarks, while the closest con-
tender, Manthan [21] solves 356 benchmarks—an increase of 153
benchmarks over the state-of-the-art. It is worth emphasizing that
the increment of 153 is more than twice the improvement shown by
Manthan over CADET [42], which could solve 280 benchmarks.

Moreover, we found that extracting unique functions is useful.
There are 246 benchmarks out of 609 for which the ratio of Y
variables being uniquely defined to the total number of Y is greater
than 95%, that is, Manthan2 could extract Skolem functions for that
many variables via unique function extraction. There is an increase
of 25 benchmarks in the number of solved instances by retaining
variables in the determined set to learn and repair candidates. Further,
learning candidate functions for a subset of variables together with
the help of multi-classification reduces the PAR-2 score from 3227.11
to 2974.91. Finally, we see a reduction of 100 seconds in the PAR-2
score by LexMaxSAT.

TABLE I: Performance Summary over 609 benchmarks

C2Syn BFSS CADET Manthan Manthan2

Solved 206 247 280 356 509
PAR-2 9594.83 8566.87 7817.58 6374.39 2858.61
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Fig. 4: Cactus plot: Manthan2 vis-a-vis state-of-the-art synthesis tools.
Timeout 7200s. Total benchmarks: 609.

A. Manthan2 vis-a-vis State-of-the-Art Synthesis Tools

We compared Manthan2 with state-of-the-art tools: C2Syn [4],
BFSS [5], CADET [42] and Manthan [21]. Figure 4 shows a cactus
plot to compare the run-time performance of different synthesis
tools. The x-axis represents the number of benchmarks and y-axis
represents the time taken, a point 〈x, y〉 implies that a tool took less
than or equal to y seconds to find a Skolem function vector for x
many benchmarks out of total 609 benchmarks.

As shown in Figure 4, Manthan2 significantly improves on the
state of the art techniques, both in terms of the number of instances
solved and runtime performance. In particular, Manthan2 is able to
solve 509 instances while Manthan can solve only 356 instances,
thereby achieving an improvement of 153 instances in the number of
instances solved. To measure the runtime performance in more detail,
we computed PAR-2 scores for all the techniques. The PAR-2 scores
for Manthan2 and Manthan are 2858.61 and 6374.39, which is an
improvement of 3521.78 seconds. Finally, we sought to understand
if Manthan2 performs better than the union of all the other tools.
Here, we observe that Manthan2 solves 71 instances that the other
tools could not solve, whereas there are only 40 instances not solved
by Manthan2 that were solved by one of the other tools.

Manthan2 vis-a-vis Manthan: Table III presents a pairwise com-
parison of Manthan2 with Manthan. The first column (PreRepair)
presents the number of benchmarks that needed no repair iteration
to synthesise a Skolem function vector. The second column (Repair)
represents the number of benchmarks that underwent repair iterations.
The third column (Self-Sub) presents the number of benchmarks for
which at least one variable underwent self-substitution.

TABLE II: Manthan2 vs. other state-of-the-art tools. All tools
represents the union of all state-of-the-art tools.

C2Syn BFSS CADET Manthan All

Manthan2
Less 17 18 21 24 40
More 320 280 250 177 71



TABLE III: Pairwise comparison of Manthan2 with Manthan. The table
represents the number of benchmarks solved with PreRepair, Repair, and Self-
Substitution for Manthan and Manthan2.

PreRepair Repair Self-Sub

Manthan 132 224 75
Manthan2 385 124 33

TABLE IV: Number of benchmarks with different maximum function size
for uniquely defined variables. Function size is measured in terms of number
of clauses.

[1-10] (10-100] (100-1000] (> 1000)

#-benchmarks 209 203 61 136

We investigate the reason for the increase in the number of
benchmarks solved in PreRepair, and observed that Manthan2 could
extract Skolem functions via unique function extraction for 90% of
the variables for 274 out of these 385 benchmarks.

We also observed a significant decrease in the number of bench-
marks that needed repair iterations. Out of 124 benchmarks that
underwent repair to synthesise a Skolem function vector, only 33
benchmarks needed self-substitution with Manthan2, whereas there
are 75 out of 224 benchmarks that needed self-substitution with
Manthan. The fact that fewer benchmarks required self-substitution
to synthesise a Skolem function vector shows that Manthan2 could
find some hard-to-learn Skolem functions.

B. Performance Gain with Each Technical Contribution

1) Impact of Unique Function Extraction: We now present the
impact of extracting Skolem function for uniquely defined variables.
Figure 5 shows the percentage of uniquely determined functions on
the x-axis, and number of benchmarks on y-axis. A bar at x shows
that y many benchmarks had x% of Y variables that are uniquely
defined. As shown in Figure 5, there are 246 benchmarks out of 609
with more than 95% uniquely defined variables; therefore, Manthan2
could extract Skolem functions corresponding to these variables via
unique function extraction. There are only 5 benchmarks where all
the Y variables are defined. Our analysis shows that extracting unique
functions significantly reduces the number of Y variables that needed
to be learned and repaired in the subsequent phases of Manthan2.

We also analyzed the performance of Manthan2 with respect to
unique function size. Note that we measure size in terms of number
of clauses, as the extracted functions are in CNF. A benchmark is
considered to have size S if the maximum size among all its unique
functions is S.

Table IV shows the number of benchmarks with different maximum
unique function sizes. There are 136 benchmarks for which at least
one uniquely defined variable has function size greater than 1000
clauses. In general, larger size functions require more data to learn.
Table IV shows that Manthan2 was able to extract some hard-to-learn
Skolem functions.

An interesting observation is that there were 54 benchmarks
that required self-substitution for just one variable with Manthan.
However, Manthan2 was able to identify that particular variable
as uniquely defined and the corresponding function size was more
than 3000 clauses. This observation emphasizes that it is important
to extract the functions for uniquely defined variables with large
function size in order to efficiently synthesise a Skolem function
vector. Therefore, even if there is only one variable with large

function size, it is important to extract the corresponding function—
the reason for considering maximum size instead of mean or median
size in Table IV.

2) Impact of Learning and Repairing over Determined Features:
We now present the impact of variable retention. Manthan2 could
solved 502 instances with a PAR-2 score of 3227.11 by retaining
variables in the determined set to use them further as features in
learning and repairing the other candidates, whereas, if we eliminate
them, it could solve only 477 instances with a PAR-2 score of
3523.28—a difference of 25 benchmarks.

It is worth mentioning that there are 370 instances that needed
no repair iterations (solved in PreRepair) to synthesise a Skolem
function vector when learned with determined features, whereas, if
Manthan2 does not consider determined features, we see a reduction
of 6 benchmark in the number of instances solved in PreRepair.

Interestingly, even if we have fewer such determined features, it is
essential to use them to learn and repair the candidates. For example,
considering the benchmark query64 01, there are only five variables
out of 597 total Y variables that could be identified as determined
features. If we eliminate those five variables, Manthan2 could not
synthesise a Skolem function vector even with more than 150 repair
iterations within a timeout of 7200s. However, if we retain them as
determined features, Manthan2 could synthesise a Skolem function
vector within 9 repair iterations in less than 400s.

3) Efficacy of Multi-Classification and Impact of LexMaxSAT: As
discussed in Section III, two essential questions arise when using
multi-classification to learn candidates for a subset of Y together:
1) how to divide the Y variables into different subsets, and 2) how
many variables should be learned together?

We experimented with following techniques to divide Y variables
into subsets of sizes 5 and 8, i.e, s = 5 or 8:

1) Randomly dividing Y variables into different disjoint subsets.
2) Clustering Y variables in accordance to the edge distance

(parameter k) in the primal graph: (i) using k = 2 (ii) using
k = 3

Figure 6 shows a heatmap of PAR-2 scores for different configura-
tions of Manthan2. A lower PAR-2 score, i.e., a tilt towards the red
end of the spectrum in Figure 6, indicates a favorable configuration.
The columns of Figure 6 correspond to different ways of dividing
Y variables into different subsets: (i) Random, (ii) k = 2, and (iii)
k = 3. The rows of Figure 6 show results for different maximum
sizes of such subsets, i.e., s = 5, 8. The number of instances solved
in each configuration is also shown in brackets. For comparison, the
PAR-2 score of Manthan2 with binary classification is 3227.11s and
it solved 502 benchmarks.

Let us first discuss Figure 6a, i.e, the results without LexMaxSAT.
Manthan2 shows a performance improvement with the proposed
clustering-based approach in comparison to randomly dividing Y
variables into subsets. As shown in Figure 6a, we observed a drop in
PAR-2 score when moving from random to cluster-based partitioning
of Y variables.

We see a better PAR-2 score with graph-based multi-classification
compared to binary classification, though the number of instances
solved (except with k=3, s=5) is lower than the number of instances
solved with binary classification. This shows that dividing Y variables
using a cluster-based approach is effective in reducing the candidate
learning time. Manthan2 performs best with k = 3 and s = 5,
where it could solve 503 benchmarks (1 more instance than with
binary classification) with a PAR-2 score of 2974.9s, which amounts
to a reduction of 252 seconds over the PAR-2 score with binary
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Fig. 6: Heatmap of PAR-2 scores achieved by different configuration of Manthan2 (darker is better).
Here, s represents the size of sets of variables that were learned together, and k = 2, k = 3 represents
the edge distance in the primal graph used to cluster output variables. The number of instances solved
by each configuration is shown in brackets. [Best viewed in color].

classification. We observe a similar trend with LexMaxSAT turned
on (as shown in Figure 6b).

Finally, let us move our attention towards the impact of Lex-
MaxSAT, shown in Figure 6b. Manthan2 uses LexMaxSAT only
if the number of candidates to repair exceeds 50 times the number
of candidates chosen by MaxSAT. A comparison of Figure 6a and
Figure 6b shows that with LexMaxSAT, Manthan2 solves at least 3
more benchmarks for all the configurations.
Manthan2 performs best when we turn on LexMaxSAT and set

k = 3 as well as s = 5. The results discussed in Section V-A were
achieved with this configuration.

VI. RELATED WORK

Boolean functional synthesis is a classical problem. Its origin traces
back to Boole’s seminal work [12], which was subsequently pursued
with a focus on decidability—by Löwenheim and Skolem [37].

The past decade has seen significant progress in the development
of efficient tools for Boolean functional synthesis, driven by a diverse
set of techniques. Quantifier elimination by functional composition
can be an efficient approach when paired with Craig interpolation
to reduce the size of composite functions [29], [30]. However,
interpolation does not reliably find succinct composite functions, thus
limiting scalability of this method. More recently, it was shown that
ROBDDs lend themselves well to functional composition [17] (even
without interpolation) and furthermore, they can take advantage of
factored specifications [53].

Instead of directly deducing Skolem functions from a specification,
a series of CEGAR-based synthesis algorithms start from an initial
set of approximate functions that are rectified in a subsequent phase
of counterexample guided refinement [5], [6], [32]. It was observed
that the initial functions are often valid Skolem functions [5]. This
naturally leads to the question as to which classes of specifications
admit efficient Boolean functional synthesis, which has recently been
studied from the area of knowledge compilation [4], [5].

So-called incremental determinization can be seen as lifting
Conflict-Driven Clause Learning (CDCL) to the level of Boolean
functions [42], [43], [45]: variables with unique Skolem functions
are successively identified, in analogy with unit propagation, and
whenever this process comes to a halt, a Skolem function for one of
the remaining variables is fixed by adding auxiliary clauses. While
originally developed as a decision procedure for 2QBF, the algorithm

was later successfully adapted to perform functional synthesis for
non-valid specifications [42].

Skolem functions can also be efficiently extracted from proofs
generated by QBF solvers [8], [9], [26], [41], [44], [48], but this
requires both a valid input specification and a proof of validity (which
itself is typically hard to compute).

Recently, a data-driven approach to Boolean functional synthesis
was proposed [21]. Data-driven approaches have proven to be effi-
cient for the other forms of synthesis, like invariant synthesis [15],
[19], [25], or synthesis by example [16].

Our data-driven approach benefits from identifying variables that
are defined by a subset of input variables, since the corresponding
definitions represent Skolem functions that do not have to be learned.
Such definitions are often introduced as an artifact of converting
circuits into CNF formulas, where gates are encoded by auxiliary
variables that are defined in term of their inputs. Standard techniques
for recovering gate definitions from CNF formulas (these are also
used in Boolean synthesis tools [4], [5]) rely on pattern matching of
clauses and variables induced by specific gate types [18], [24], [46].
These methods are fast but can only detect definitions from a pre-
defined library of gates. By contrast, Manthan2 extracts the functions
for uniquely defined variables using semantic gate extraction based
on propositional interpolation [49]. This approach is computationally
more expensive (each definability check requires a SAT call), but it
is complete: whenever a variable y is defined in terms of a given set
X of variables, the corresponding definition will be returned.

VII. CONCLUSION

In this paper, we showed how to improve the state-of-the-art
data-driven Skolem function synthesiser Manthan to achieve better
scalability. We proposed crucial algorithm innovation, and used them
in a new framework, called Manthan2. Manthan2 could synthesise a
Skolem function vector for 509 instances out a total of 609, compared
to 356 instances solved by Manthan.
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