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Abstract11

Given a Boolean formula ϕ over n variables, the problem of model counting is to compute12

the number of solutions of ϕ. Model counting is a fundamental problem in computer science with13

wide-ranging applications in domains such as quantified information leakage, probabilistic reasoning,14

network reliability, neural network verification, and more. Owing to the #P-hardness of the problems,15

Stockmeyer initiated the study of the complexity of approximate counting. Stockmeyer showed16

that log n calls to an NP oracle are necessary and sufficient to achieve (ε, δ) guarantees. The17

hashing-based framework proposed by Stockmeyer has been very influential in designing practical18

counters over the past decade, wherein the SAT solver substitutes the NP oracle calls in practice. It19

is well known that an NP oracle does not fully capture the behavior of SAT solvers, as SAT solvers20

are also designed to provide satisfying assignments when a formula is satisfiable, without additional21

overhead. Accordingly, the notion of SAT oracle has been proposed to capture the behavior of SAT22

solver wherein given a Boolean formula, an SAT oracle returns a satisfying assignment if the formula23

is satisfiable or returns unsatisfiable otherwise. Since the practical state-of-the-art approximate24

counting techniques use SAT solvers, a natural question is whether an SAT oracle is more powerful25

than an NP oracle in the context of approximate model counting.26

The primary contribution of this work is to study the relative power of the NP oracle and SAT27

oracle in the context of approximate model counting. The previous techniques proposed in the28

context of an NP oracle are weak to provide strong bounds in the context of SAT oracle since, in29

contrast to an NP oracle that provides only one bit of information, a SAT oracle can provide n bits30

of information. We therefore develop a new methodology to achieve the main result: a SAT oracle is31

no more powerful than an NP oracle in the context of approximate model counting.32

2012 ACM Subject Classification Theory of computation → Oracles and decision trees33

Keywords and phrases Model counting, Approximation, Satisfiability, NP oracle, SAT oracle34

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.12935

Funding Diptarka Chakraborty: Supported in part by an MoE AcRF Tier 2 grant (MOE-T2EP20221-36

0009) and Google South & South-East Asia Research Award.37

Gunjan Kumar : Supported in part by National Research Foundation Singapore under its NRF38

Fellowship Programme[NRF-NRFFAI1-2019-0004 ]39

Kuldeep S. Meel: Supported in part by National Research Foundation Singapore under its NRF Fellow-40

ship Programme[NRF-NRFFAI1-2019-0004 ] and Campus for Research Excellence and Technological41

Enterprise (CREATE) programme, Ministry of Education Singapore Tier 2 grant MOE-T2EP20121-42

0011, and Ministry of Education Singapore Tier 1 Grant [R-252-000-B59-114 ]43

© Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, and Kuldeep S. Meel;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 129; pp. 129:1–129:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@comp.nus.edu.sg
mailto:sourav@isical.ac.in 
mailto:dcsgunj@nus.edu.sg
mailto: meel@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.ICALP.2023.129
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


129:2 Approximate Model Counting: Is SAT Oracle More Powerful than NP Oracle?

1 Introduction44

Let ϕ be a Boolean formula over n propositional variables. An assignment s ∈ {T, F}n is45

called a satisfying assignment if it makes ϕ evaluate to true. Let sol(ϕ) denote the set of all46

satisfying assignments. The model counting problem is to compute |sol(ϕ)| for a given ϕ. It47

is a fundamental problem in computer science and has numerous applications across different48

fields such as quantified information leakage, probabilistic reasoning, network reliability,49

neural network verification, and the like [12, 13, 17, 9, 8, 1]. The seminal work of Valiant [17]50

showed that the problem of model counting is #P-complete, and consequently, one is often51

interested in approximate variants of the problem. In this paper, we consider the following52

problem:53

54

Approximate Model Counting55

Input A formula ϕ, tolerance parameter ε > 0, and confidence parameter δ ∈ (0, 1).56

Output Compute an estimate Est such that57

Pr
[
|sol(ϕ)|
1 + ϵ

≤ Est ≤ (1 + ϵ)|sol(ϕ)|
]
≥ 1− δ.58

59

Stockmeyer [16] initiated the study of the complexity of approximate model counting.60

Stockmeyer’s seminal paper made two foundational contributions: the first contribution was61

to define the query model that could capture possible natural algorithms yet amenable enough62

to theoretical tools to allow non-trivial insight. To this end, Stockmeyer proposed the query63

model wherein one can construct an arbitrary set S and query an NP oracle to determine if64

|sol(ϕ)∩S| ≥ 1. Stockmeyer showed that under the above-mentioned query model, logn calls65

to an NP oracle are necessary and sufficient (for a fixed ε and δ). Furthermore, Stockmeyer66

introduced a hashing-based algorithmic procedure to achieve the desired upper bound that67

makes O(logn) calls to NP-oracle. The lack of availability of powerful reasoning systems for68

problems in NP dissuaded the development of algorithmic frameworks based on Stockmeyer’s69

hashing-based framework until the early 2000s [10].70

Motivated by the availability of powerful SAT solvers, there has been a renaissance in71

the development of hashing-based algorithmic frameworks for model counting, wherein a72

call to an NP oracle is handled by an SAT solver in practice. The current state-of-the-art73

approximate model counter, ApproxMC [4], relies on the hashing-based framework and is able74

to routinely handle problems involving hundreds of thousands of variables. The past decade75

has witnessed a sustained interest in further enhancing the scalability of these approximate76

model counters. It is perhaps worth highlighting that Stockmeyer’s query model captures77

queries by ApproxMC.78

While the current state-of-the-art approximate model counters rely on the hashing-based79

framework, they differ significantly from Stockmeyer’s algorithm for approximate model80

counting. The departures from Stockmeyer’s algorithm have been deliberate and have81

often been crucial to attaining scalability. In particular, ApproxMC crucially exploits the82

underlying SAT solver’s ability to return a satisfying assignment to attain scalability. In this83

context, it is worth highlighting that, unlike an NP oracle that only returns the answer Yes84

or No for a given Boolean formula, all the known SAT solvers are capable of returning a85

satisfying assignment if the formula is satisfiable without incurring any additional overhead.86

Observe that one would need n calls to an NP oracle to determine a satisfying assignment.87

From this viewpoint, an NP oracle does not fully capture the behavior of an SAT solver, and88

one needs a different notion to model the behavior of SAT solver.89
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Delannoy and Meel [7] sought to bridge the gap between theory and practice by proposing90

the notion of a SAT oracle. Formally, a SAT oracle takes in a Boolean formula ϕ as input91

and returns a satisfying assignment s ∈ sol(ϕ) if ϕ is satisfiable and ⊥, otherwise. It is worth92

highlighting that we may need n calls to an NP oracle to simulate a query to a SAT oracle,93

and therefore, it is conceivable for an algorithm to make O(logn) calls to a SAT oracle but94

O(n logn) calls to an NP oracle. Delannoy and Meel showcased precisely such behavior95

in the context of almost-uniform generation. Their proposed algorithm, UniSamp makes96

O(logn) calls to a SAT oracle and would require O(n logn) calls to an NP oracle if one were97

to replace a SAT oracle with an NP oracle. At the same time, it is not necessary that there98

would be a gap of n calls for every algorithm: simply consider the problem of determining99

whether a formula is satisfiable or not. Only one call to an NP oracle (and similarly to a100

SAT oracle) suffices.101

Furthermore, the notion of the SAT oracle has the potential to be a powerful tool to102

explain the behavior of algorithms, as highlighted by Delannoy and Meel. Given access to an103

NP oracle, the sampling algorithm due to Jerrum, Valiant, and Vazirani [11] (referred to as104

JVV algorithm) makes O(n2 logn) calls to an NP oracle as well as a SAT oracle, i.e., there are105

no savings from the availability of a SAT oracle. On the other hand, the algorithm, UniSamp106

makes O(logn) and O(n logn) calls to SAT and an NP oracle respectively. Therefore, the107

NP oracle model would indicate that one should expect the performance gap between JVV108

and UniSamp to be linear, while the SAT oracle model indicates an exponential gap. The109

practical implementations of JVV and UniSamp indeed indicate the performance gap between110

them to be exponential rather than linear. Therefore, analyzing problems under the SAT111

oracle model has the promise to have wide-ranging consequences.112

In this paper, we analyze the complexity of the problem of approximate model counting113

given access to a SAT oracle. Our study is motivated by two observations:114

O1 The modern state-of-the-art hashing-based techniques differ significantly from Stock-115

meyer’s algorithmic procedure and, in particular, exploit the availability of SAT solvers.116

Yet, they make O(logn) calls to a SAT oracle, which coincides with the number of NP117

oracle calls in Stockmeyer’s algorithmic procedure.118

O2 Stockmeyer provided a matching lower bound of Ω(logn) on the number of NP calls,119

which follows from the simple observation that for a fixed ε, there are Θ(n) possible120

outputs that an algorithm can return. Since every NP call returns an answer, Yes or No,121

the trace of an algorithm can be viewed as a binary tree such that every leaf represents122

a possible output value. Therefore, the height of the tree (i.e., the number of NP calls)123

must be Ω(logn). Since a SAT oracle returns a satisfying assignment (i.e., provides n124

bits of information), the trace of the algorithm is no longer a binary tree, and therefore,125

Stockmeyer’s analysis does not extend to the case of SAT oracles for approximate model126

counting.127

To summarize, the best-known upper bound for SAT oracle calls for approximate model128

counting is O(logn), which matches the upper bound for NP oracle calls. However, the129

technique developed in the context of achieving a lower bound for NP oracle calls does not130

apply to the case of SAT oracle. Therefore, one wonders whether there exist algorithms with131

a lower number of SAT oracle calls. In other words, are SAT oracles more powerful than NP132

oracles for the problem of approximate model counting?133

The primary contribution of this work is to resolve the above challenge. In contrast to134

the problem of uniform sampling, we reach a starkly different conclusion: SAT oracles are no135

more powerful than NP oracles in the context of approximate model counting. Formally, we136

prove the following theorem:137

ICALP 2023
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▶ Theorem 1.1. For any ϵ, δ ∈ (0, 1), given a formula ϕ, computation of (ε, δ)-approximation138

of |sol(ϕ)| requires Ω̃(logn)1 queries to a SAT oracle.139

The establishment of the above theorem turned out to be highly challenging as the140

existing approaches in the context of NP oracles are not applicable to the SAT oracles. We141

provide an overview of our approach below.142

1.1 Technical Overview143

In order to provide the lower bound on the number of queries required by the SAT oracle,144

we work with a stronger SAT oracle model. In particular, an answer from a (standard)145

SAT oracle does not provide any extra guarantee/information other than that the returned146

assignment is a satisfying assignment of the queried formula. Our lower bound works even147

if we consider that the returned satisfying assignment is chosen randomly from the set of148

satisfying assignments. More specifically, we consider a stronger model, namely SAT-Sample149

oracle, which returns a uniformly chosen solution of a queried formula ϕ whenever the formula150

is satisfiable. It is worth remarking that while a SAT oracle can be simulated by only n151

queries to an NP oracle, the best-known technique to simulate SAT-Sample makes O(n2 logn)152

queries to an NP oracle [2, 7]. We prove the following theorem which implies Theorem 1.1.153

▶ Theorem 1.2. For any ϵ < 1/2 and any δ ≤ 1/6, given a formula ϕ, computation of154

(ε, δ)-approximation of |sol(ϕ)| requires Ω̃(logn) queries to a SAT-Sample oracle.155

Although we consider ϵ < 1/2 and δ ≤ 1/6 in the above theorem and provide the proof156

accordingly, our proof works even for any constant ϵ, δ ∈ (0, 1). Another thing to remark is157

that in our proof, we allow even exponential (in the size of the original formula) size formula158

to be queried in the SAT-Sample oracle, making our result stronger than what is claimed in159

the above theorem.160

Let us assume that Alg is an algorithm that (ϵ, δ)-approximates |sol(ϕ)| for any given161

input ϕ (on n variables) by making q queries to a SAT-Sample oracle. We will refer to such162

an algorithm as a SAT-Sample counter. We would like to prove a lower bound on q.163

The main technical difficulty in proving our lower bound results comes from the enormous164

power of a SAT-Sample oracle compared to an NP oracle. An NP oracle can only provide a165

YES or NO answer, restricting the number of possible answers (from the NP oracle) to 2q for166

a q-query counter with an NP oracle. On the other hand, since a SAT-Sample oracle returns167

a (random) satisfying assignment (if a satisfying assignment exists), the number of possible168

answers can be 2nq. Further, any counter can be adaptive – it can choose the next query169

adaptively based on the previous queries made and their corresponding answers. In general,170

proving a non-trivial (tight) lower bound for any adaptive algorithm turns out to be one171

of the notorious challenges, and the difficulty in proving such a lower bound arises in other172

domains like data structure lower bound, property testing, etc. One of the natural ways to173

prove any lower bound is to use the information-theoretic technique. However, one of the174

main challenges in applying such techniques in the adaptive setting is that conditional mutual175

information terms often involve complicated conditional distributions that are difficult to176

analyze.177

To start with, we argue that we can assume that the SAT-Sample counter is "semi-178

oblivious" in nature. The number of satisfying assignments of a formula does not change179

1 The tilde hides a factor of log log n



D. Chakraborty, S. Chakraborty, G. Kumar, and K.S. Meel 129:5

by any permutation of the elements in {T, F}n, and the SAT-Sample counter can only get180

elements of sol(ϕ) by querying the SAT-Sample oracle. So we argue that the only useful181

information of the ith query set (that is, the set of satisfying assignments of the formula182

that is given to the SAT-Sample oracle) is the size of its intersection with the previous (i− 1)183

query sets and their corresponding answers. We formalize it in Section 3.1.184

We next use Yao’s minimax principle to prove a lower bound on the number of queries185

to a SAT-Sample oracle made by a deterministic "Semi-oblivious counter" when the input186

formula ϕ is drawn from a "hard" distribution.187

For the hard distribution, we construct O(n3/4) formulas ϕℓ for each value of ℓ in188

the set {⌊n1/4⌋, ⌊n1/4⌋ + 1, . . . , ⌈n3/4⌉}. The formulas ϕℓ are chosen in such a way that189

|sol(ϕℓ)| ≈ 2|sol(ϕℓ+1)| thereby approximately counting the number of satisfying assignments190

(upto a multiplicative (1+ϵ)-factor for small constant ϵ) reduces to the problem of determining191

the value of ℓ. The hard distribution is obtained by picking an ℓ uniformly at random from192

the set {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} and using the corresponding formula ϕℓ.193

Finally, we show the lower bound using information theory. At a high level, we show194

that the information gained about ℓ by the knowledge of obtained samples is small unless195

we make Ω̃(logn) oracle calls (Lemma 9). Then we turn to Fano’s Inequality (Theorem 3)196

which links the error probability of a counter to the total information gain. Showing that the197

information gained by samples is small boils down to showing that the KL-divergence of the198

conditional distribution over the samples is small for all formulas ϕℓ (shown in the proof of199

the third part of Lemma 9). The difficulty in showing the above bound comes from the fact200

that the samples are adaptive and may not always be concentrated around the expectation.201

To overcome the above challenge, we first define an indicator random variable Yi to denote202

whether, at the ith query, the concentration holds (see the definition in Equation 10). Then203

we split it into cases: In the first case, we argue for the situation when concentration may204

not hold at some step of the algorithm (if Yi = 1 for some i ∈ [q]). The second case is when205

concentration holds (if Yi = 0 for all i ∈ [q]). We believe that the technique developed in this206

paper can be a general tool to show sampling lower bounds in a number of other settings.207

2 Notations and Preliminaries208

For any integer m, let [m] denote the set of integers {1, 2, . . . ,m}. For a formula ϕ over209

variable set vars(ϕ) = {v1, . . . , vn}, we denote by sol(ϕ) the set of satisfying assignments of ϕ.210

If ϕ is not satisfiable then sol(ϕ) = ∅. We can interpret sol(ϕ) as a subset of {T, F}n. On the211

other hand, for any subset A ⊂ {T, F}n we denote by ψA the formula whose set of satisfying212

assignments is exactly A; that is, sol(ψA) = A.213

Oracles and query model214

In our context of Boolean formulas, an NP oracle takes in a Boolean formula ϕ as input215

and returns Yes if ϕ is satisfiable (i.e., sol(ϕ) ̸= ∅), and No, otherwise. Modern SAT solvers,216

besides determining whether a given formula is satisfiable or not, also return a satisfying217

assignment (arbitrarily) if the formula is satisfiable. This naturally motivates us to consider218

an oracle, namely SAT-Sample oracle, that takes in a Boolean formula ϕ as input and, if ϕ is219

satisfiable, returns a satisfying assignment uniformly at random from the set sol(ϕ), and ⊥,220

otherwise.221

We rely on the query model introduced by Stockmeyer [16]: For a given ϕ whose model222

count we are interested in estimating, one can query the corresponding (NP/SAT) oracle223

with formulas of the form ϕ ∧ ψA, where, as stated earlier, ψA is an (arbitrary) formula224

ICALP 2023
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whose set of solutions is A. We will use ϕA as a shorthand to represent ϕ ∧ ψA. Throughout225

this paper, we consider the above query model with query access to the SAT-Sample oracle.226

One call to the SAT-Sample oracle will be called a SAT-Sample query. By abuse of notation,227

we sometimes say “A is queried" to refer to the formula ϕA.228

k-wise independent hash functions229

Let n,m, k be positive integers and let H(n,m, k) denote the family of k-wise independent230

hash functions from {T, F}n to {T, F}m. For any α ∈ {T, F}m, and h ∈ H(n,m, k), let231

h−1(α) denote the set {s ∈ {T, F}n | h(s) = α}.232

It is well-known (e.g., see [5]) that for any integer n,m, k, one can generate an explicit233

family of k-wise independent hash functions in time and space poly(n,m, k). Moreover, for234

any α ∈ {T, F}m, h−1(α) (where h ∈ H(n,m, k)) can be specified by a Boolean formula of235

size poly(n,m, k).236

Concentration inequalities for limited independence237

▶ Lemma 1. [15] If X is a sum of k-wise independent random variables, each of which is238

confined to [0, 1] with µ = E[X] then239

1. For any γ ≤ 1 and k ≥ γ2µ, Pr[|X − µ| ≥ γµ] ≤ exp(−γ2µ/3).240

2. For any γ ≥ 1 and k ≥ γµ, Pr[|X − µ| ≥ γµ] ≤ exp(−γµ/3).241

Basics of information theory242

Let X and Y be two random variables over the space X ×Y . The mutual information I(X;Y )243

between random variables X and Y is the reduction in the entropy of X given Y and hence244

I(X;Y ) = H(X)−H(X|Y ) ≤ H(X) (1)245

where H(X) = −
∑

x∈X Pr[X = x] log Pr[X = x] is the Shannon entropy of X and H(X|Y )246

is the conditional entropy of X given Y .247

The Kullback–Leibler divergence or simply KL divergence (also called relative entropy)248

between two discrete probability distributions P and Q defined on same probability space X249

is given by :250

KL(P ||Q) :=
∑
x∈X

p(x) log p(x)
q(x)251

where p and q are probability mass functions of P and Q respectively.252

If the joint distribution of X and Y is QX,Y and marginal distributions QX and QY253

respectively, then the mutual information I(X;Y ) can also be equivalently defined as:254

I(X;Y ) := KL(QX,Y ||QX ×QY ).255

For three random variables X,Y, Z, the conditional mutual information I(X;Y |Z) is256

defined as257

I(X;Y |Z) := EZ [KL(Q(X,Y )|Z ||QX|Z ×QY |Z)].258
259

For any three random variables X,Y, Z, the chain rule for mutual information says that260

I(X; (Y,Z)) = I(X;Y ) + I(X;Z|Y ).261
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If Z is a discrete random variable taking values in Z then we have262

EZ [KL(Q(X,Y )|Z ||QX|Z ×QY |Z)] =
∑
z∈Z

QZ(z) ·KL(Q(X,Y )|Z=z||QX|Z=z ×QY |Z=z)263

=
∑
z∈Z

QZ(z) · I(X;Y |Z = z).264

265

▶ Lemma 2 ([14]). Let PX , PZ , PZ|X be the marginal distributions corresponding to a pair266

(X,Z), where X is discrete. For any auxiliary distribution QZ , we have267

I(X,Z) =
∑

x

PX(x)KL(PZ|X(·|x)||PZ) ≤ max
x

KL(PZ|X(·|x)||QZ).268

▶ Theorem 3 (Fano’s inequality). Consider discrete random variables X and X̂, both taking269

values in V. Then270

Pr[X̂ ̸= X] ≥ 1− I(X; X̂) + log 2
log |V| .271

Consider the random variables X,Z, X̂. If the random variable X̂ depends only on Z272

and is conditionally independent on X, then we have273

I(X; X̂) ≤ I(X;Z). (2)274

This inequality is known as the data processing inequality. For further exposition, readers275

may refer to any standard textbook on information theory (e.g., [6]).276

Minimax theorem277

Yao’s minimax principle [18] is a standard tool to show lower bounds on the worst-case278

performance of randomized algorithms. Roughly speaking, it says that to show a lower bound279

on the performance of a randomized algorithm R, it is sufficient to show a lower bound on280

any deterministic algorithm when the instance is randomly drawn from some distribution.281

Consider a problem over a set of inputs X . Let Γ be some probability distribution over282

X and let X ∈ X be an input chosen as per Γ. Any randomized algorithm R is essentially a283

probability distribution over the set of deterministic algorithms, say T . By Yao’s minimax284

principle,285

max
X∈X

Pr[R gives wrong answer onX] ≥ min
T ∈T

Pr
X∼Γ

[T gives wrong answer onX].286

3 Lower Bound on the number of queries to SAT-Sample oracle287

In this section, we will prove Theorem 1.2, which implies Theorem 1.1. Let Alg be an adaptive288

randomized algorithm that given as input ϕ over n variables vars = {v1, . . . , vn} and output289

Est that is an (ϵ, δ)-approximation of sol(ϕ). The only way Alg accesses the input ϕ is by290

making queries to the SAT-Sample oracle, that is, obtaining random satisfying assignments291

from sol(ϕA), where ϕA = ϕ∧ ψA. We will prove that Alg has to make at least Ω̃(logn) such292

queries to the SAT-Sample oracle.293

We will start by arguing that we can assume that the adaptive algorithm Alg has some294

more structure. In particular, in Section 3.1, we will argue (in the same lines as in [3]) that295

we can assume Alg is a semi-oblivious counter (Definition 4).296

ICALP 2023
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We use Yao’s Min-max technique to argue that obtaining a lower bound on a (randomized)297

semi-oblivious counter is the same as obtaining a lower bound on a (deterministic) semi-298

oblivious counter when the input is drawn from the worst possible distribution over the set299

of formulas on n variables. In Section 3.2, we present the “hard" distribution that would help300

us prove the lower bound against any deterministic semi-oblivious counter. In Section 3.2.1,301

we present some properties of the hard instance that would be used for the final lower-bound302

proof.303

Finally, in Section 3.3, we will use an information-theoretic argument to give a lower304

bound on the query complexity of any deterministic semi-oblivious counter and hence prove305

Theorem 1.2.306

A note on the use of auxiliary variables in the queries to the SAT-Sample oracle307

One thing we observe is that our lower bound proof does not assume that in the input308

formula ϕ, all the variables are influential. In other words, we can assume that ϕ is on n309

variables; the actual number of variables in ϕ may be significantly less. All we need for our310

lower bound proofs to go through is that the queries to the SAT-Sample oracle made by the311

algorithm are to ϕ ∧ ψA where the ψ is a formula over n variables. And the lower bound on312

the query complexity that we prove (Theorem 1.2) is Õ(logn). Hence, as long as the number313

of variables used in the queries to the SAT-Sample oracle is at most polynomial in the actual314

number of variables in the input formula ϕ, our lower bound holds.315

3.1 Semi-oblivious counter316

Suppose given a formula ϕ over n variables, a counter Alg makes q calls to the SAT-Sample317

oracle with queried formulas ϕA1 , · · · , ϕAq
respectively, where each Ai ⊆ {T, F}n. (Recall,318

ϕAi = ϕ ∧ ψAi , where ψAi denote the formula having sol(ψAi) = Ai.) Note, the i-th319

SAT-Sample oracle call by the counter Alg is specified by the set Ai. During the i-th call (for320

1 ≤ i ≤ q), suppose the counter Alg receives a sample si ∈ Ai ∪ {⊥}. Note that the oracle321

calls made by Alg can be adaptive, i.e., the sets A1, · · · , Aq are not fixed in advance – the322

counter Alg fixes Ai only after seeing the samples s1, · · · , si−1 (outcomes of all the previous323

oracle calls).324

We now define a special type of randomized SAT-Sample counter, referred to as semi-325

oblivious counter, which at any point of time queries the SAT-Sample oracle only by looking326

into the configuration of the previous step. We will later argue that to prove a query lower327

bound for general SAT-Sample counters, it suffices to consider semi-oblivious counters. In328

other words, semi-oblivious counters are as "powerful" as general SAT-Sample counters.329

We first provide intuition for semi-oblivious counter. Note that permuting the variables330

of any formula ϕ permutes the set of satisfying assignments sol(ϕ) but |sol(ϕ)| is unchanged.331

Since a SAT-Sample counter needs to determine |sol(ϕ)| only (not sol(ϕ)), the final output by332

the SAT-Sample counter, in some sense, should be based only on the relations between the333

samples and the query sets (not on their actual values). Before providing a formal definition,334

let us first introduce some terminology.335

Given a family of setsA = {A1, · · · , Ai}, (where Ai ⊆ {T, F}n), the atoms generated byA,336

denoted by At(A), are (at most) 2i distinct sets of the form ∩i
j=1Cj where Cj ∈ {Aj , {T, F}n\337

Aj}. For example, if i = 2, then At(A1, A2) = {A1 ∩A2, A1 \A2, A2 \A1, (A1 ∪A2)c}.338

▶ Definition 4. (Semi-oblivious counter): A semi-oblivious counter is a randomized algorithm339

T that, given any formula ϕ, at any step i, works in the following three phases:340
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Semi-oblivious choice: Let Ai−1 = {A1, · · · , Ai−1}, Si−1 = {s1, · · · , si−1}, Ci−1 =341

{c1, · · · , ci−1} be the set of first i− 1 query sets, the set of first i− 1 samples obtained,342

the set of first i− 1 configurations, respectively. Only based on Ci−1 (without knowing the343

set Si−1), T does the following:344

For each A ∈ At(Ai−1), it generates an integer kA
i between 0 and |A \ Si−1|. (kA

i345

indicates how many unseen elements from the atom A of the previous query sets are to346

be included in the next query set.)347

It chooses a set of indices Ki ⊆ {1, · · · , i− 1}. (Ki specifies the index set of previous348

samples that are to be included in the next query set.)349

Query set generation: In this phase, it decides the query set Ai as follows:350

Let us define the candidate unseen set family as351

Ui := {U ⊆ {T, F}n \ Si−1 | ∀A ∈ At(Ai−1), |Ui ∩A| = kA
i }.352

The algorithm T chooses a set Ui uniformly at random from the candidate unseen set353

family Ui−1.354

Let us denote Oi := {sj | j ∈ Ki}. The algorithm T decides the query set to be355

Ai = Ui ∪Oi.356

Oracle call: It places a query to the SAT-Sample oracle with the formula ϕAi
. Let the357

i-th configuration ci specify whether si = ⊥, or for which j ∈ Ki, si = sj, or for which358

A ∈ At(Ai−1), si ∈ A ∩ Ui.359

In the end (after placing q = q(n) SAT-Sample oracle calls), depending on the set of all the360

configurations Cq, T outputs an estimate on the |sol(ϕ)|.361

From now on, for brevity, we use At(Ui) to denote the set {Ui ∩ A | A ∈ At(Ai−1)}.362

Next, we show that if there exists a general SAT-Sample counter, then there also exists a363

semi-oblivious counter. The proof is inspired by the argument used in [3] and is given in364

Appendix A.365

▶ Lemma 5. If there is an algorithm that, given any input ϕ on n variables, outputs an366

(ϵ, δ)-approximation of |sol(ϕ)| while placing at most q = q(n) SAT-Sample oracle calls,367

then there also exists a (randomized) semi-oblivious counter that, given input ϕ, outputs an368

(ϵ, δ)-approximation of |sol(ϕ)| while also placing at most q SAT-Sample oracle calls.369

Suppose all the internal randomness of a semi-oblivious counter is fixed. (Since in the370

proof of Theorem 1.1, we will first apply Yao’s minimax principle, it suffices to only consider371

deterministic decision trees.) Then, a semi-oblivious counter T can be fully described by a372

decision tree R where the path from the root to any node v at depth i (more precisely, the373

edges of this path) corresponds to the configuration of the first i − 1 samples. Note that374

fixing the configurations of the samples till i− 1 queries (and the internal randomness) fixes375

the size of an atom A ∈ At(A1, · · · , Ai) (and hence of each Aj for j ≤ i). Formally,376

(i) A path (from root) to any node v at depth i is associated with a sequence of query sets377

Ai−1 = (A1, · · · , Ai−1) such that the sizes of all atoms A ∈ At(Ai−1) are fixed.378

(ii) The node v is labeled by a vector kv = (kA
i )A∈At(Ai−1) and a set Kv ⊆ [i− 1] which are379

used to determine the next query set Ai = Oi ∪ Ui. (Again, |Ui| =
∑

A∈At(Ai−1) k
A
i and380

the set Ui is fixed.) Ai is used to place the next SAT-Sample oracle call.381

(iii) For every possible value of the configuration at step i, there is a corresponding child of382

the node v, with the corresponding edge labeled by the value of the configuration.383
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For any node v, we use Av = Ov ∪ Uv to denote the (random) query set (corresponding384

to the node v) determined by the kv and Kv. Note that |Uv| =
∑

A∈At(Ai−1) k
A
i . Further,385

we use Av := (A1, · · · , Av) for the sequence of query sets corresponding to a path to v386

and node v. Observe the number of possible outcomes of the counter T at any step i is387

at most i+ 2i + 1 ≤ 2q+1 (since i ≤ q). So the total number of nodes in the decision tree388

corresponding to the semi-oblivious counter T is at most 2O(q2).389

3.2 Hard instance390

We will provide a set of inputs X (which, in our case, will be a set of formulas) and a391

distribution Γ over X . Then we will show that any deterministic semi-oblivious counter D392

(note that D knows X and Γ) which receives as input a formula ϕ ∈ X randomly drawn as393

per distribution Γ and returns an (ϵ, δ)-approximation of sol(ϕ), must make Ω̃(logn) queries394

to the SAT -oracle.395

Let k = (logn)9. Let X be the set of all formulas (with n variables). We now define the396

hard distribution Γ over X as follows by describing the procedure of picking a formula in X397

according to Γ.398

1. Pick ℓ ∈ {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} uniformly at random.399

2. Draw a hash function hℓ ← H(n, ℓ, k) uniformly at random.400

3. Let ϕℓ be the formula whose set of satisfying assignments is h−1
ℓ (F ℓ). (Recall, hℓ :401

{T, F}n → {T, F}ℓ.)402

4. The formula ϕℓ is the picked formula.403

3.2.1 Properties of the hard instance404

Let fℓ := E[|sol(ϕℓ)|] = E[|h−1
ℓ (F ℓ)|] for ℓ ∈ {⌊n1/4⌋, ⌊n1/4⌋ + 1, . . . , ⌈n3/4⌉}. Observe, it405

follows from the construction of ϕℓ and the properties of hash functions that fℓ = 2n

2ℓ .406

▶ Lemma 6. With probability at least 1− n2−n/20, we have407

for all ℓ, ||sol(ϕℓ])| − fℓ| ≤ 2−n/10fℓ. (3)408

Proof. It is straightforward to see that the variance of |sol(ϕℓ)| is V ar[|sol(ϕℓ)|] ≤ fℓ. So by409

Chebyshev’s inequality,410

Pr
[
||sol(ϕℓ)| − fℓ| ≥ 2−n/5fℓ

]
≤ 2n/5

fℓ
≤ 2n/5 · 2ℓ

2n
≤ 2−n/20.411

The lemma now follows from a union bound over all ℓ. ◀412

▶ Definition 7. Once ℓ ∈ {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} has been picked in Step 1 of the
construction of the hard instance (Section 3.2), let for any S ⊆ {T, F}n

Nℓ(S) = E [|sol(ϕℓ) ∩ S|] ,

where the expectation is over the choice of the hash function is Step 2 of the construction of413

the hard instance.414

Note that for any S ⊆ {T, F}n the value of Nℓ(S) is |S|/2ℓ.415

▶ Lemma 8. With probability at least 1− 2O(q2)

n(log n)4 , the following holds:416

For any node v in the decision tree R and any atom A ∈ At(Uv),417
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1. If Nℓ(Uv) < 1
n(log n)4 then |Uv ∩ sol(ϕℓ)| = 0. Similarly, if Nℓ(A) < 1

n(log n)4 for any atom418

A ∈ At(Uv) then |A ∩ sol(ϕℓ)| = 0419

2. If Nℓ(Uv) ≥ (logn)5 then 1
2Nℓ(Uv) ≤ |Uv ∩ sol(ϕℓ)| ≤ 3

2Nℓ(Uv). Similarly, if Nℓ(A) ≥420

(logn)5 then 1
2 Nℓ(A) ≤ |A ∩ sol(ϕℓ)| ≤ 3

2 Nℓ(A)421

3. If Nℓ(Uv) ≤ (logn)5 then |Uv ∩ sol(ϕℓ)| ≤ 2(logn)5. Similarly, if Nℓ(A) ≤ (logn)5 then422

|A ∩ sol(ϕℓ)| ≤ 2(logn)5.423

Proof. From Markov’s inequality, we have424

Pr[|Uv ∩ sol(ϕℓ)| ≥ 1] ≤ Pr
[
|Uv ∩ sol(ϕℓ)| ≥

(
1

Nℓ(Uv) − 1
)

Nℓ(Uv)
]
≤ 2Nℓ(Uv)425

426

Taking a union bound over all nodes v with Nℓ(Uv) < 1
n(log n)4 and all possible values of ℓ427

(which can take O(n3/4) values), we get the first part.428

From the first part of the Lemma 1, by setting γ = 1/2, we have429

Pr[|Uv ∩ sol(ϕℓ)| ≥ Nℓ(Uv)] ≤ exp
(
−Nℓ(Uv)

12

)
430

431

for all nodes v in R such that Nℓ(Uv) ≥ (logn)5 (note that we have k = (logn)9 > γ2Nℓ(Uv)).432

Taking a union bound over all such nodes v and all possible values of ℓ, we get the second433

bound.434

Let γv = (log n)5

Nℓ(Uv) . Since k = (logn)9 > γvNℓ(Uv), from the second part of Lemma 1, we435

have436

Pr[|Uv ∩ sol(ϕℓ)| ≥ γvNℓ(Uv)] ≤ exp
(
−γv

Nℓ(Uv)
3

)
≤ O

(
1

n(log n)4

)
.437

438

for all nodes v such that Nℓ(Uv) ≤ (logn)5. Taking a union bound over all such nodes v and439

all possible values of ℓ, we get the third part. ◀440

3.3 Proof of Theorem 1.2441

Proof of Theorem 1.2. By Lemma 5 and Yao’s minimax theorem, we can assume that442

our SAT-Sample counter Alg is a (deterministic) semi-oblivious counter whose input is a443

randomly chosen formula ϕ ∈ ϕn, as per distribution Γ and Alg returns Est which is an444

(ϵ, 2/3)-approximation of |sol(ϕ)|. We will prove that Alg must make q = Ω̃(logn) many445

SAT -oracle calls.446

Recall the distribution Γ (Section 3.2) over the set of all formulas. We can assume that the447

input to Alg is ϕℓ, where ℓ is uniformly drawn from the set {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉}.448

Consider the path taken by the semi-oblivious counter Alg in the decision tree. Let the449

ith query made by Alg (that is at vertex vi) be Ai = Ui ∪ Oi (as in Definition 4). Let Zi450

be the configuration (denoted as ci in Definition 4) of the sample from Ai. Note that the451

domain of Zi is Ωi := Oi ∪ At(Ui) ∪ ⊥.452

Let Good be the event that the condition in Equation 3 (in Lemma 6) and the condition453

in Lemma 8 holds. Note that by Lemma 6 and Lemma 8 if q ≤ logn then454

Pr[Good] = 1− o(1). (4)455

Let X be the random variable that takes values in {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} uni-456

formly at random (in Step 1 of the construction of hard instance). Note that by the triangle457

inequality458

|Est− |sol(ϕℓ)|| ≥
∣∣∣∣Est− 2n

2ℓ

∣∣∣∣− ∣∣∣∣2n

2ℓ
− |sol(ϕℓ)|

∣∣∣∣ . (5)459
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By Lemma 6 we know that with probability at least (1 − 1/6), we have | 2
n

2ℓ − |sol(ϕℓ)|| ≤460

1
2n/10 · 2n

2ℓ . On the other hand, since Alg outputs an (ϵ, δ)-approximation of |sol(ϕ)| (with461

ϵ < 1/2 and δ < 1/6), Equation 5 implies that with probability at least (1− 1
6 − δ) ≥

2
3 we462

have463 ∣∣∣∣Est− 2n

2ℓ

∣∣∣∣ ≤ (
ϵ+ 1

2n/10

)
2n

2ℓ
≤ 1

2 ·
2n

2ℓ
, (6)464

where the last inequality follows from the fact that ϵ ≤ 1/3. Since | 2
n

2ℓ − 2n

2ℓ′ | > 1
2 ·

2n

2ℓ for
any integer ℓ′ ̸= ℓ, so Equation 6 is satisfied only when X̂ is same as the picked ℓ (that is
X̂ = X) where,

X̂ = arg min
ℓ∈{⌊n1/4⌋,⌊n1/4⌋+1,...,⌈n3/4⌉}

∣∣∣∣2n

2ℓ
− Est

∣∣∣∣ .
Hence, assuming Good465

1
3 ≥ Pr[X̂ ̸= X]. (7)466

By Fano’s Inequality (Theorem 3)467

Pr[X̂ ̸= X] ≥ 1− I(X; X̂)
O(logn) (8)468

Since the final outcome of the algorithm is determined by the outcome at each step, i.e.,469

Z = (Z1, . . . , Zq), so by the data processing inequality (Equation 2), we have470

I(X; X̂) ≤ I(X;Z1, . . . , zq). (9)471

Let Yi be the random variable that defined as472

Yi =
{

1 if 1
n(log n)4 ≤ Nℓ(Ui) ≤ n(log n)4

0 otherwise
(10)473

Again by the data-processing inequality (Equation 2), we have474

I(X;Z1, . . . , Zq) ≤ I(X;Y1, Z1, . . . , Yq, Zq). (11)475

By the chain rule of mutual information, we have476

I(X;Y1, Z1, . . . , Yq, Zq) =
∑
i∈[q]

I(X;Yi, Zi|Y1, Z1, . . . , Yi−1, Zi−1) (12)477

Finally, we will show, in the following lemma, that conditioned on the fact Good happens,478

we can upper bound I(X;Y1, Z1, . . . , Yq, Zq) by O(log logn).479

▶ Lemma 9. I(X; (Y1, Z1, . . . , Yq, Zq)) ≤ q(O(log logn) +O(log q) + 22qpoly(log n)
n(log n)3 ).480

We defer the proof of Lemma 9 and complete the proof of Theorem 1.2 assuming Lemma 9.481



D. Chakraborty, S. Chakraborty, G. Kumar, and K.S. Meel 129:13

From the Equations 7, 8, 9, 11 and Lemma 9, we have that assuming Good happens482

1
3 ≥Pr[X̂ ̸= X] [From Equation 7]483

≥1− I(X; X̂)
O(logn) [From Equation 8]484

≥1− I(X;Z1, . . . , zq)
O(logn) [From Equation 9]485

≥1− I(X;Y1, Z1, . . . , Yq, Zq)
O(logn) [From Equation 11]486

≥1− I(X;Y1, Z1, . . . , Yq, Zq)
O(logn) [From Equation 12]487

≥1− q log logn
logn [From Lemma 9]488

489

Thus, from Equation 4, if q ≤ logn

1− q log logn
logn ≤ 1

3 + Pr[Good] ≤ 1
3 +O(1)

which implies

q = Ω
(

logn
log logn

)
.

◀490

3.3.1 Proof of Lemma 9491

▶ Lemma 10. The following holds:492

1. Conditioned on event that Yj = 1 for some j ≤ i,

I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ O(log logn),

2. I(X,Yi|Y1, Z1, . . . , Yi−1, Zi−1) ≤ 1,493

3. Conditioned on the event that Y1 = 0, . . . , Yi−1 = 0,

I(X,Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ O(log q) + 22qpoly(logn)
n(log n)3 .

Proof. We will prove Part 1, 2, and 3 one by one.494

495

Proof of Part 1: We will prove that conditioned on event that Yj = 1 for some j ≤ i,

I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ O(log logn).

From (1), we have

I(X,Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ H(X|Y1, Z1, . . . , Yi−1, Zi−1, Yi).

Note that if Yj = 1 then by definition of Yj we have 1
n(log n)4 ≤ |Uj |

2ℓ ≤ n(log n)4 , that is,

|Uj |
n(log n)4 ≤ 2ℓ ≤ |Uj |n(log n)4

.
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Note that by definition of the semi-oblivious counter the sets |U1|, . . . , |Ui| are deterministically
determined by Z1, . . . , Zi . Thus, there are O(log(n(log n)4)) = O((logn)5) possible values of
ℓ and hence

H(X|Y1, Z1, . . . , Yi−1, Zi−1) ≤ O(log logn).

This proves the first part.496

497

Proof of Part 2: Since Yi can take only binary values, we have

I(X,Yi|Y1, Z1, . . . , Yi−1, Zi−1) ≤ 1.

This proves Part 2.498

499

Proof of Part 3: We will now prove the upper bound on I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1)500

for each i ∈ [q], conditioned on Yj = 0 for all j ∈ [i].501

Note that Z1, . . . , Zi−1 fixes the size of Oi and each atoms in At(Ui). Note that the502

domain of Zi, i.e., Ωi is ⊥ ∪Oi ∪ At(Ui). Let r = |Oi|+ 2 ≤ q + 2.503

We define an auxiliary distribution Q(Yi,Zi) as follows:

Q(Yi,Zi)(yi, zi) := QYi
(yi)QZi|Yi

(zi|yi)

where, QYi(0) = QYi(1) = 1/2 and504

QZi|Yi
(zi|yi) =

{
1
r , zi ∈ Oi ∪ ⊥
1
r ·

|zi|
|Ui| , zi ∈ At(Ui)

505

Let PX , PZ , PZ|X be the marginal distributions corresponding to a pair (X,Z). Con-506

ditioned on Yj = 0 for all j ∈ [i] and Zj = zj for all j ∈ [i − 1] for any (z1, . . . , zi−1) ∈507

Ω1×· · ·×Ωi−1, we have for any ℓ ∈ X (note that, for brevity, we have ignored the conditioning508

on Y1, Z1, . . . , Yi−1, Zi−1, in the expression below)509

KL(PZi|X(·|X = ℓ)||QZi
) =

∑
zi∈Ωi

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi(zi)
(13)510

511

Note that if zi ∈ ⊥ ∪Oi then QZi(zi) = 1
r ≥

1
q+2 . Hence,

PZi|X(zi|X = ℓ)
QZi

(zi)
≤ q + 2 ≤ 2q.

Now we consider the case when zi ∈ At(Ui).512

If Nℓ(zi) ≥ (logn)5 then from Lemma 8 we have

PZi|X(zi|X = ℓ) = |zi ∩ sol(ϕℓ)|
|Ui ∩ sol(ϕℓ)|

≤ 3Nℓ(zi)/Nℓ(Ui).

Note that
QZi

(zi) = 1
r
· |zi|
|Ui|
≥ 2qNℓ(zi)/Nℓ(Ui).

Therefore, we have
PZi|X(zi|X = ℓ)

QZi(zi)
≤ O(q).
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For the case when Nℓ(zi) < 1
n(log n)4 , we have |zi ∩ sol(ϕℓ)| = 0. Hence the sum

∑
zi

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi(zi)

when, zi ∈ ⊥ ∪Oi or zi ∈ At(Ui) such that Nℓ(zi) ≥ (logn)5 or Nℓ(zi) < 1
n(log n)4 , is at most513

O(log q).514

Now we bound the sum∑
zi

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi
(zi)

when zi ∈ At(Ui) such that

1
n(log n)4 < Nℓ(zi) < (logn)5.

If Nℓ(zi) ≤ (logn)5 then we have

|zi ∩ sol(ϕℓ)| ≤ 2(logn)5

and thus

PZi|X(zi|X = ℓ) ≤ 4(logn)5

Nℓ(Ui)
.

Note that
QZi

(zi) = 1
r
· |zi|
|Ui|
≥ 1

2qNℓ(zi)/Nℓ(Ui).

Hence,
PZ|X(zi|X = ℓ)

QZi
(zi)

≤ O(q(logn)5/Nℓ(zi)).

Therefore, we have515

∑
zi: 1

n(log n)4 <Nℓ(zi)≤(log n)5

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi
(zi)

516

<
∑

zi: 1
n(log n)4 <Nℓ(zi)≤(log n)5

4(logn)5

Nℓ(Ui)
log(2q(logn)5/Nℓ(zi))517

≤ 2q 8(logn)5

n(log n)4 log(2q(logn)5n(log n)4
)518

≤ 22qpoly(logn)
n(log n)4 .519

520

The second last inequality follows because there are at most 2q possible values of such zi,521

Nℓ(Ui) ≥ n(log n)3
/2 and Nℓ(zi) ≥ 1

n(log n)3 .522

Now by Lemma 2 conditioned on the event that Yj = 0 for all j ≤ i we have

I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ KL(PZi|X(·|X = ℓ)||QZi) ≤ O(log q) + 22qpoly(logn)
n(log n)3 .

◀523
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Proof of Lemma 9. We will first prove that for any i

I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1) ≤ O(log logn) +O(log q) + 22qpoly(logn)
n(log n)3 .

By the chain rule of mutual information,524

I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1)525

=I(X;Yi|Y1, Z1, . . . , Yi−1, Zi−1) + I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi)526

≤O(log logn) +O(log q) + 22qpoly(logn)
n(log n)3 ,527

528

where the last inequality follows from Lemma 10.529

Again by the chain rule of mutual information, we have530

I(X; (Y1, Z1, . . . , Yq, Zq))531

=
q∑

i=1
I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1) ≤ q(O(log logn) +O(log q) + 22qpoly(logn)

n(log n)3 ).532

533

◀534

4 Conclusion535

In this paper, we study the power of SAT oracles in the context of approximate model536

counting and show a lower bound of Ω̃(logn) on the number of oracle calls. This is in537

contrast to other settings where a SAT oracle is provably more powerful than an NP oracle.538

In fact, we prove that even with a much more powerful oracle (namely SAT-Sample oracle),539

the number of queries needed to approximately count the number of satisfying assignments540

of a Boolean formula is Ω̃(logn).541
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A Proof of Lemma 5587

Consider any general SAT-Sample counter, T . We will show that there exists a semi-oblivious588

counter that performs similarly. Given a sequence of query-sample pairs {(A1, s1), . . . , (Ai−1, si−1)},589

we say the query Ai is a good strategy by T (given {(A1, s1), . . . , (Ai−1, si−1)}) if the counter590

T can return the correct output by fixing the next query to Ai. It suffices to show that, given591

a sequence of query-sample pairs {(A1, s1), . . . , (Ai−1, si−1)}, if Ai is a good strategy then any592

A′
i is also a good strategy if A′

i ∩{s1, . . . , si−1} = Ai ∩{s1, . . . , si−1} and |A′
i ∩A| = |Ai ∩A|593

for atoms A ∈ At(A1, . . . , Ai−1). This means that to fix the next query, all it requires to fix594

the intersection size with each atom A ∈ At(A1, . . . , Ai) and a subset of {s1, . . . , si−1} (to595

be included in next query). We prove it in the following claim.596

▷ Claim 11. Suppose Ai is a good strategy for {(A1, s1), . . . , (Ai−1, si−1)}. Consider597

A′
i such that A′

i ∩ {s1, . . . , si−1} = Ai ∩ {s1, . . . , si−1} and |A′
i ∩ A| = |Ai ∩ A| for atoms598

A ∈ At(A1, . . . , Ai−1). Then A′
i is also a good strategy for {(A1, s1), . . . , (Ai−1, si−1)}.599

Proof. We denote by SN the symmetric group acting on a set of size N . Any σ ∈ SN can600

be thought of acting on any set of size N (by thinking the elements of the set as numbered601

1, . . . , N and σ acting on the set [N ]). For any element x in the set, we will denote by σ(x)602

the element after the action of σ. For any σ ∈ SN and set A (with |A| = N) we denote by603

σ(A) the following set σ(A) := {σ(x) | x ∈ A}.604

Let σ ∈ S2n be a permutation acting on the set {T, F}n. For any ϕ observe that605

|sol(ϕ)| = |σ(sol(ϕ))|. Since any counter estimates |sol(ϕ)| only, we observe that if Ai606

is a good strategy for {(A1, s1), . . . , (Ai−1, si−1)} then σ(Ai) is also a good strategy for607

{(σ(A1), σ(s1)), . . . , (σ(Ai−1), σ(si−1)} for any σ : {T, F}n → {T, F}n that preserves the608

atoms At(A1, . . . , Ai−1) and the elements {s1, . . . , si−1}.609
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Since |A′
i ∩ A| = |Ai ∩ A| for atoms A ∈ At(A1, . . . , Ai−1) and A′

i ∩ {s1, . . . , si−1} =610

Ai ∩ {s1, . . . , si−1}, there exists a σ such that σ(Aj) = Aj , σ(sj) = sj for all j ≤611

i − 1 and also σ(Ai) = A′
i. By our earlier observation, A′

i is also a good strategy for612

{(A1, s1), . . . , (Ai−1, si−1)}. ◀613
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