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ABSTRACT

The rise of highly configurable complex software and its widespread
usage requires design of efficient testing methodology. t-wise cov-
erage is a leading metric to measure the quality of the testing suite
and the underlying test generation engine.While uniform sampling-
based test generation is widely believed to be the state of the art
approach to achieve t-wise coverage in presence of constraints
on the set of configurations, such a scheme often fails to achieve
high t-wise coverage in presence of complex constraints. In this
work, we propose a novel approach Baital, based on adaptive
weighted sampling using literal weighted functions, to generate
test sets with high t-wise coverage. We demonstrate that our ap-
proach reaches significantly higher t-wise coverage than uniform
sampling. The novel usage of literal weighted sampling leaves open
several interesting directions, empirical as well as theoretical, for
future research.
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• Software and its engineering → Feature interaction; Soft-
ware product lines; Software testing and debugging.

KEYWORDS

Configurable software, t-wise coverage, Weighted sampling
ACM Reference Format:

Eduard Baranov, Axel Legay, and Kuldeep S. Meel. 2020. Baital: An Adap-
tive Weighted Sampling Approach for Improved t-wise Coverage. In Pro-
ceedings of the 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20),
November 8–13, 2020, Virtual Event, USA.ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3368089.3409744

1 INTRODUCTION

The software has been one of the primary driving forces in the
transformation of humanity in the past half-century; in the mod-
ern world, software touches every aspect of modern lives ranging
from medical, legal, judicial to policy-making. The widespread and
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diverse usage has led to the design of highly configurable software
systems operating in diverse environments. Since software failures
can lead to catastrophic effects, adequate testing of configurable
systems is paramount. Testing of configurable systems adds com-
plexity on top of an already notoriously difficult problem of testing
standard software.

In the context of configurable systems, every configuration refers
to an assignment of values to different parameters. For the exposi-
tion, we will restrict our discussion to parameters that only take
binary values; the techniques proposed in this work are general
and applicable to parameters whose possible set of values form a
finite set, and the benchmarks employed in our empirical study
arise from such domains. The primary challenge in the testing of
configurable systems arising from the observation that bugs often
arise due to interactions induced by the combination of parameter
values. In the combinatorial testing literature, the term feature is
often used to indicate a given parameter value. One such example
is an extensive study by Abal, Brabranc, and Wasowski[1] that
identified 42 bugs caused by the feature combinations in the Linux
kernel. Furthermore, modeling of system and environment leads to
constraints over the possible set of configurations of interest.

Combinatorial testing, also known as combinatorial interaction
testing (CIT), has emerged as one of the dominant paradigms for
testing of configurable software wherein the focus is to employ tech-
niques from diverse areas to generate test suites to attain high cov-
erage. One of the widely used metrics is t-wise coverage, wherein
the focus is to achieve coverage of all combinations of features of
size t .

A fundamental problem in CIT is the generation of test-configura-
tion that seeks to maximise t-wise coverage, which is measured as
the fraction of feature combinations appearing in the test set out
of the possible valid feature combinations. The complexity of the
problem arises from the presence of constraints to capture the set
of invalid configurations. The holy grail of test generation in CIT
is the design of test generation methods that can handle complex
constraints, scale to systems involving thousands of features, and
achieve higher t-wise coverage. Since achieving high t-wise cover-
age can be infeasible for large values of t , the practitioners often
focus on small values of t ∈ {1, 2, 3}, wherein t = 1 corresponds to
achieving feature-wise coverage.

For long, uniform sampling has been viewed as a dominant
domain-agnostic paradigm to achieve higher t-wise coverage, as
demonstrated by theoretical and empirical analysis [41, 51]. As an
example, the accepted solution for SPLC 2019 challenge, Product
Sampling for Product Lines: The Scalability Challenge, was uniform
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sampler, Smarch, contributed by Oh, Gazzillo, and Batory [48]. Uni-
form sampling seeks to sample each valid configuration with equal
probability. Recent works [48, 53] present tools that are capable of
performing uniform sampling and of generating a partial covering
array for large feature models. Uniform sampling provides an excel-
lent heuristic to choose samples that would cover various feature
combinations; however, this approach has a limitation since feature
combinations are not distributed equally among the configurations:
some of them can appear in millions of configurations while others
only in tens. This fact prevents uniform sampling from achieving
high t-wise coverage. In [48] a feature model was shown to have
only about 48% pairwise coverage achievable with uniform sam-
pling for any reasonable number of samples, while 70% coverage
required more than 1010 samples. It is perhaps worth highlighting
strengths of the uniform sampling approach: (1) domain agnosti-
cism, and (2) principled use of the progress in SAT solving since
the problem of uniform sampling is well formulated and funda-
mental problem with close relationship to other problems in other
problems in complexity theory [4, 8, 23]. In this context, one won-
ders: whether there exists a domain-agnostic alternative to uniform
sampling which can benefit from advances in formal reasoning tools?

The key contribution of this work is an affirmative answer to the
above question: We present an adaptive literal-weighted sampling
approach, called Baital, that achieves significantly higher t-wise
coverage. Our formulation builds on the recent advances in formal
methods community in the development of distribution-aware sam-
pling for the distributions specified using literal weighted functions,
a rich class of distributions with a diverse set of applications. In con-
trast to prior sampling-based approaches that advocate sampling
from a fixed distribution, Baital adapts the distribution based on
the generated samples. Therefore, Baital follows a multi-round
architecture wherein the initial weight function is uniform, and
then the weight function is updated after each round. The update
of weight function typically requires the underlying sampling al-
gorithm to redo the entire work from scratch. To allow the reuse
of the computation, we adapt the recently introduced knowledge
compilation-based approach for weighted sampling [20].

We introduce several strategies for the modification of literal-
weight function. Through an extensive empirical evaluation on
large benchmarks, we demonstrate Baital achieves significantly
higher pairwise coverage than uniform sampling. As an example,
the accepted solution to the SPLC 2019 challenge could achieve less
than 50% 2-wise coverage while Baital can achieve over 90% cover-
age with just 1000 samples. Our extensive comparison among differ-
ent proposed strategies reveals surprising high coverage achieved
by strategies based on limited statistics from the generated sam-
ples. The comparison is focused on pairwise coverage due to the
complexity of coverage computation for higher values of t .

In summary, this work introduces a new paradigm based on
adaptive weighted sampling to achieve high t-wise coverage that
can benefit from advances in knowledge compilation. The high
coverage obtained by Baital leads to several exciting directions
of future work: First, we would like to develop a deeper under-
standing of the theoretical power of literal weight functions in the
context of t-wise coverage seems a promising research area. Sec-
ondly, our work highlights challenges of measuring t-wise coverage
for larger t , and the development of efficient algorithmic techniques

to estimate such coverage would be beneficial in evaluating dif-
ferent techniques and aid in the development of more strategies
for Baital. Our implementation of Baital is publicly available at
https://doi.org/10.5281/zenodo.4028454.

2 BACKGROUND

2.1 Boolean Formulas and Weight Function

A literal is a boolean variable or its negation. A clause is a disjunc-
tion of a set of literals. A propositional formula F in conjunctive
normal form (CNF ) is a conjunction of clauses. Let Vars(F ) be the
set of variables appearing in F . The set Vars(F ) is called support
of F . A satisfying assignment or witness of F , denoted by σ , is an
assignment of truth values to variables in its support such that F
evaluates to true. We denote the set of all witnesses of F as RF . Let
var (l) denote the variable of literal l , i.e., var (l) = var (¬l) and F |l
denotes the formula obtained when literal l is set to true in F .

Given a propositional formula F and a weight functionW (·)
that assigns a non-negative weight to every literal, the weight of
assignment σ denoted as W (σ ) is the product of weights of all
the literals appearing in σ , i.e.,W (σ ) =

∏
l ∈σ W (l). Without loss

of generality, we assume that the weight function is normalised,
i.e.,W (l) +W (¬l) = 1. The weight of a set of assignments U is
given byW (U) =

∑
σ ∈UW (σ ). Note that, we have overloaded the

definition of weight functionW (·) to support different arguments –
a literal, an assignment and a set of assignments.

2.2 t-wise Coverage

The formulation of combinatorial interaction testing (CIT) assigns
a variable corresponding to every feature. Let X be the set of all
the variables (corresponding to features). Furthermore, every con-
figuration σ ∈ 2X can be represented as conjunction of the set of
literals of size |X |, where | · | denotes size of a set. For example, let
X = {x1,x2,x3}, then σ = {x1,x3} can be equivalently represented
as {x1,¬x2,x3}

Given a configuration σ ∈ 2X represented as a set of literals, let
Comb(σ , t) represent the set of t-sized feature combinations due to
σ , which is essentially the set of all subsets of literals of the size t in
σ . For a setU ⊆ 2X , we can extend the notion of Comb and denote
Comb(U, t) = ∪σ ∈UComb(σ , t). Note that while for a given σ ,
|Comb(σ , t)| =

( |X |
t
)
but this does not imply |Comb(U, t)| = |U | ×( |X |

t
)
since |Comb(σ1, t) ∪ Comb(σ2, t)| is not necessarily equal to

|Comb(σ1, t)| + |Comb(σ2, t)|.
t-wise coverage of a set U is defined as a ratio between num-

ber of t-sized combinations due to U over the total number of
t-sized combinations. Feature models have constraints over a set of
variables defined with a formula F , therefore for t-wise coverage
only configurations that are witness of F are considered. Formally,
Cov(U, t) = |Comb(U, t)| / |Comb(RF , t)|.

Allowing only a fixed number of configurations, the coverage
optimisation problem searches for a fixed-sized set of configurations
that maximises the t-wise coverage. Given a formula F over X , size
of feature combination t and allowed number of samples s , the
problem of OptTCover(F , t , s) seeks forU such that:

U = argmax
U⊆RF , |U |=s

|Cov(U, t)|.

https://doi.org/10.5281/zenodo.4028454
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For a given F , t and s , an ideal test generator seeks to solve
OptTCover(F , t , s)

2.3 Knowledge Compilation

We focus on subsets of Negation Normal Form (NNF) where the
internal nodes are labeled with disjunction (∨) or conjunction (∧)
while the leaf nodes are labeled with ⊥ (f alse), ⊤ (true), or a literal.
For a node v , let ϑ (v) and Vars(v) denote the formula represented
by the DAG rooted atv , and the variables that label the descendants
of v , respectively.

We define the well-known decomposed conjunction [12] as fol-
lows:

Definition 2.1. A conjunction node v is called a decomposed con-
junction if its children (also known as conjuncts of v) do not share
variables. Formally, letw1, . . . ,wk be the children of ∧-nodev , then
Vars(wi ) ∩Vars(w j ) = ∅ for i , j.

If each conjunction node is decomposed, we say the formula is
in Decomposable NNF (DNNF).

Definition 2.2. A disjunction nodev is called deterministic if each
two disjuncts of v are logically contradictory. That is, ifw1, . . . ,wn
are the children of ∨-node v , then ϑ (wi ) ∧ ϑ (w j ) |= f alse for i , j .

If each disjunction node of a DNNF formula is deterministic, we
say the formula is in deterministic DNNF (d-DNNF), and we can
perform tractable model counting on it.

3 BAITAL: ACHIEVING HIGHER t-WISE

COVERAGE

In this section, we first discuss the relationship ofOptTCover(F , t , s)
with the classical problem of set cover. We then discuss the limita-
tions of lifting techniques in the context of set cover to configura-
tion testing due to presence of constraints. Inspired by the classical
greedy search in the context of set cover, we design Baital, a novel
framework that employs adaptive weighted sampling combined
with recently proposed knowledge compilation-based sampling
approach to achieve efficient sampling routines that achieves high
coverage. The development of Baital leads to the need for strate-
gies for update of weight functions; to this end, we present several
strategies that seek to use different statistics from the generated
sampling.

3.1 Relationship with Set Cover

As a starting point, we observe that the OptTCover(F , t , s) problem
can be reduced to that of the optimisation variant of the classical
problem of set cover [26]; the variant is also referred to as Maximum
Coverage. The reduction to set cover allows us to simply modify the
classical greedy search strategy to obtain aU such that Cov(U , t)
is at least (1−1/e) of the optimal solutionU∗ ofOptTCover(F , t , s).
We present the algorithm below for completeness and to discuss
its simplicity and yet its impracticality in practice.

The algorithm GreedyCovertion is presented in Algorithm 1.
GreedyCovertion assumes access to the subroutine MaxDistSolu−

tion that takes in input F and S, and returns σ ∗ such that:

Algorithm 1: GreedyCovertion(F , s)
1 S ← ∅

2 for i ← 0 to s do
3 σ ← MaxDistSolution(F ,S)

4 S ← S ∪ {σ }

5 return S

σ ∗ = argmin
σ ∈RF

|Comb(σ , t) ∩ Comb(S, t)| (1)

The following proposition follows from classical result [43].

Proposition 3.1. Cov(S, t) ≥ (1 − 1
e + o(1))OptTCover(F , t , s),

where (1 − 1
e + o(1)) ≈ 0.632.

While GreedyCovertion is a simple algorithm, the roadblock
lies in ensuring an efficient implementation of MaxDistSolution.
Recall that the set of |Comb(σ , t)| =

( |X |
t
)
∈ Ω((n/t)t ), therefore,

even obtaining a PNP subroutine for MaxDistSolution seems a
daunting challenge. We are not aware of any polynomial reduction
of MaxDistSolution to polynomially many MaxSAT queries. It is
worth emphasising the input size is |F | + |S|. We leave an efficient
implementation of GreedyCovertion as an open question.

3.2 Adaptive Weighted Sampling

It is worth recalling that MaxDistSolution seeks to find σ with the
smallest intersection of Comb(σ , t) and the existing Comb(S, t).
The lack of efficient implementation of MaxDistSolution makes us
wonder if one can employ a randomized sampling-based approaches
to find σ that seeks to achieve the goal ofMaxDistSolution.

The usage of sampling has long been explored in the context of
ideal test generation. In fact, random testing is the recommended
strategy [30]. The key idea is to sample solutions of F uniformly
at random. The past few years is witness to several efforts to un-
derstand the scalability of uniform samplers in the context of CIT.
Furthermore, in response to SPLC Challenge 2019 [50], the accepted
tool Smarch generated a set of uniformly distributed samples and
revealed that uniform sampling could reach only 48% pairwise cov-
erage with 1000 samples [47]. Moreover, the coverage growth with
the number of samples was prolonged, requiring a million samples
to reach 50% coverage. The weak performance of uniform sampling
can be attributed to an uneven distribution of feature combinations
among the configurations: having 1014 configurations one-third
of literals (and consequently all feature combinations involving
them) are part of less than 106 configurations. The probability of
covering these combinations with uniform sampling is minuscule.
In this regard, we seek to find different sampling strategies that can
achieve higher coverage.

The key contribution of our work is an adaptive weighted sam-
pling-based generation of tests Baital. The core architecture of
our framework is a multi-round process wherein each round seeks
to generate samples using a weighted sampler. In contrast, the
weight distribution is adjusted based on the samples generated so
far. To accomplish an efficient procedure, we need to tackle three
challenges:
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Figure 1: Feature model of graph library

Challenge 1: Representation of weights over assignment

space

To represent weights over assignment space, we turn to a
literal-weighted function that assigns a non-negative weight
to every literal such that the weight of an assignment is
the product of the weight of its literal. The choice of literal-
weighted function is primarily motivated due to the obser-
vation that a wide variety of distributions arising from di-
verse disciplines can be represented as literal-weight func-
tion [13, 20].

Challenge 2: Dynamic update of weight function

Since the choice of literal weight function allows us to con-
centrate on performing the update of only the literal weights,
our strategy would be to collect statistics corresponding to
every literal and then assign the weights accordingly.

Challenge 3: Efficient weighted sampling techniques that

can handle incremental queries

Prior techniques that seek to employ sampling techniques
either fall into uniform sampling methods that solely focus
on drawing uniform sampling and hope to achieve higher
coverage. On the other hand, techniques that seek to induce
bias in the distributions update the weights and require the
underlying sampling engine to perform computations from
scratch. In this work, our critical insight is to build on recent
advances in knowledge compilation, a field in Artificial In-
telligence that focuses on the representation of constraints
in a representation language into a target language where
different queries are often tractable. In particular, we seek to
represent the initial set of constraints of F into a representa-
tion language T such that we can perform an update of the
weights and subsequent sampling in time linear in the size
of T without needing to perform the compilation process
again. As is discussed in Section 2.3, the process of compila-
tion is often the most expensive, and therefore, our process
amortises the cost of compilation with the generation of
more samples.

We illustrate the approach and show the difference from uniform
sampling on an adapted version of a feature model appeared in
[60]. The model shown in Figure 1 describes a product line of graph
libraries. Each configuration shall always support edges that could
be either D directed orU undirected and could also provide someA

algorithms like P shortest path and C deletion of cycles. The latter
can only be applied on directed edges. This feature model has 6
configuration listed below, where we omit features GraphLibrary
and Edges since they must be selected in all configurations:

(1) D
(2) D A P
(3) D AC
(4) D A P C
(5) U
(6) U A P

These configurations have 34 pairs of literals, non-selection of a fea-
ture (negation of a variable) can also be part of a feature pair. In this
running example we consider that we can select 3 configurations
which is not enough to obtain full pair-wise coverage. Uniform
sampling selects configurations at random, all configurations have
equal chances to be chosen. In the running example we assume that
the first two selected configurations are (2) and (4) and we need to
choose the third one. At this step configuration (3) would add only
4 new pairs, configurations (1) and (6) would add 7 pairs, while
configuration (5) would add 10 pairs. At this step uniform sampling
can select any of the remaining configurations with a probability
0.25.

We now first present an overview of Baital and then discuss
each of the components in detail in the following sections.

In order to overcome the limitation of the uniform sampling,
configurations with rare feature combinations shall have a higher
probability of being chosen. Indeed, the precomputation of weights
for all configurations is infeasible. Therefore, we are proposing
to adjust the weights dynamically by examining already sampled
configurations. This way, we can force the sampler to prefer con-
figurations with uncovered feature combinations over the other
ones. The algorithm runs as follows: a first few samples are gener-
ated according to the uniform distribution of configurations. After
this step, the sampler pauses while the examination of the chosen
configurations is done. The algorithm detects which feature combi-
nations have been covered already and chooses the weights for the
next round of sample generation accordingly. The next samples are
chosen following the new weight distribution. The process repeats
until the desired number of samples is generated.

For the example from Figure 1, at the first round samples (2) and
(4) are generated similarly to uniform sampling. At this step the
algorithm discovers that combinations involving D, A, and P have
already be covered, therefore their weights shall be reduced, while
the weight ofU shall be raised. The modification of weights affects
probability distribution during the generation of the next sample.

The overall algorithm is shown in Algorithm 2. It has three input
parameters: the CNF formula F defining constraints on a feature
model, the number of rounds rounds , and the number of samples
generated at each round spr , i.e. the total number of samples to
be generated is rounds × spr . We first compile the formula F into
a d-DNNF T . At the start of each round (line 4) the algorithm
generates an assignment of weights to variables that depends on
the set of samples generated during the previous rounds. We discuss
generateWeights function in details in the next subsections. The
literal-weighted sampling algorithm is called to annotate T with
weights (line 6) and to find spr samples chosen according to the
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Algorithm 2: AdaptiveWeightedSampling(F , rounds , spr )

1 S ← ∅

2 vars ← Set of variables in F

3 T ← Compile(F )

4 for roundNb ← 0 to rounds do
5 weiдhts ← generateWeights(vars, S)

6 Annotate(T ,weiдhts)

7 newSamples ← Sample(T , spr )

8 S ← S ∪ newSamples

9 return S

distribution imposed by generated weights (line 7). For the first
round, the weights are always equal to 0.5, corresponding to the
uniform distribution. The new samples are added to the result
(line 8), and the procedure repeats rounds times.

3.3 Weighted Sampling via Compilation

In [53] it was observed that advances in knowledge compilation
can be used to design efficient uniform samplers and designed
an efficient uniform sampler KUS. In [20] KUS was extended to
design a weighted sampler WAPS. Given an input formula F and
the desired number of samples s ,WAPS uses a three staged process:
Compilation, Annotation, and Sampling.
Compilation Given a formula F , a state of the art compiler is

employed to obtain the equivalent d-DNNF T .
Annotation A bottom-up subroutine is called to annotate every

node v of T with its corresponding weight, i.e., the label
for the node v isW (ϑ (v)). It is worth highlighting that for
a formula in d-DNNF, the labeling of every node with its
weight can be accomplished in time linear in the size of T .

Sampling To perform sampling, a top-down subroutine is followed
wherein for every ∧ node, once the samples from all the
children are generated, we randomly shuffle each of the lists
and then conjoin the list of samples. In the case of ∨ node,
we first determine, via the Binomial coefficient, the number
of samples each of the nodes should generate, and then we
take the union of all the lists.

It is known that there exist polynomially sized formulas whose
d-DNNF representations are exponential [12]. Furthermore, the
compilation process may require a significantly larger time than
the size of resulting T . For example, for every formula F that is
valid, there exists a polynomially sized d-DNNF T , but the existence
of PTIME compilation process would imply P=Co-NP. Fortunately,
our adaptive sampling strategy only modifies the weight function
and does not alter F . We make the following key observation about
Annotation and Sampling in WAPS that strongly supports our
choice of knowledge compilation-based approach for Baital.

Proposition 3.2. Annotation and Sampling can be accom-
plished in time linear in the size of T

Proof. The proof follows trivially from the algorithmic descrip-
tion of Annotation and Sampling in [20, 53]. Essentially, the key
observation is that Annotation is performed in a bottom-up pro-
cess while visiting each node exactly once, while Sampling is

performed in a top-down manner while visiting each node exactly
once. □

3.4 Round Weights Generation

In literal-weighted sampling, configurations are chosen according
to the distribution imposed by a weight functionW . As shown in
Section 2,W is defined by assigning a (normalised) weight to each
literal.

For the first round the weight function is constant,W (l) = 0.5
for any literal l which corresponds to the uniform distribution. For
the following rounds the definition ofW is based on the knowledge
about constraints F , and on a set of already generated samples S.
Let д(l , t ,S) be a function that represents the knowledge about
the t-sized feature combinations involving a literal l in the set of
samples S. Let h(l , t , F ) be a function that represents the knowl-
edge about the t-sized feature combinations involving a literal l by
configurations in RF . We define the weight function as follows:

W (l , t ,S, F ) = f (д(l , t ,S),h(l , t , F ),д(¬l , t ,S),h(¬l , t , F )), (2)

where F is a propositional formula, l is a literal, t is a size of feature
combinations, S is a set of already generated samples, and f is a
function outputting a value in the interval [0, 1]. Since the weights
of a literal and its negation must be related, the weight function
is dependent on the feature combinations of the literal negation
as well. Each round of Baital starts with the computation ofW
(line 5 of Algorithm 2) which is further used for sample generation.

There exist multiple ways to define functions f , д, and h result-
ing in different weight functions and, consequently, in different
t-wise coverage. We have considered several options to define these
functions, which we call strategies. In the remaining, we assume
that F and t are fixed and omit them. Notice that h(l) depends only
on fixed F and t and, therefore, is not changing between the rounds
and can be computed only once. For illustration we use the running
example from Figure 1 where we have selected configurations (2)
and (4) and compute the weights for the next round.

Algorithm 3: generateWeights(vars , S) // Strategy 1

1 for l in literals do
2 д[l] ← number of distinct t-sized feature combinations

with l in S
3 h[l] ← number of distinct t-sized feature combinations

with l in RF
/* h is computed in the first round only */

4 for l in literals do
5 diff [l] ← д[l] /h[l] − д[¬l] /h[¬l]

6 weiдhts[l] ←max(0.01,
0.5 ∗ (1 − sign(diff ) ∗ sqrt(abs(diff ))))

7 returnweiдhts

Strategy 1. The first option is to define д and h as the number
of distinct feature combinations involving each literal in a set of
samples and in RF , respectively. For the computation of h it is not
necessary to enumerate all configurations in RF , it can be done by
checking, for each feature combination {l1, . . . , lt }, satisfiability of
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F ∧ l1 ∧ · · · ∧ lt . Indeed, since the SAT solver can provide an as-
signment in case the formula is satisfiable, during the computation
of h, the full covering array is implicitly built. However, for 1000
variables, such array would contain millions of samples, thus being
impractical.

The heuristic behind this strategy is the following: if most of
feature combinations involving a literal are already covered but it
is not the case for the negation of the literal (or vice versa), then
the sampler should prefer configurations involving a negation of
a literal in the next round. We use the difference between ratios
of covered feature combinations for literal and its negation as a
defining value for the weight. Therefore, function f is computing
this difference and transforms it into the interval [0, 1]. Algorithm 3
illustrates the weight generation for strategy 1 with a pseudo-code.
First, д and h are computed over lines 2 and 3. In the following
step, f is computed over lines 5 and 6. The choice of sqrt-based
transformation function line 6 is done after the empirical evaluation
of several options. We usemax ensures that the resulted weight is
not equal to 0.

Strategy 1 involves a lot of computations for functions д and
h. In particular, h checks satisfiability of 2t ∗

(Vars(F )
t

)
formulas.

Secondly, counting the number of distinct combinations in the set
of samples has a high time and memory costs for large real-world
models involving thousands of variables. Therefore, we considered
several modifications of the weight function that would require
fewer resources for computation and evaluated their effect on t-
wise coverage.

In the running example, we compute that in samples (2) and (4)D
has pairs withA, P ,C ,−C ,−U covering 5 combinations, i.e.д[D] = 5.
During precomputation we learn that D and U do not appear to-
gether in any configurations, therefore h[D] = 7. At the same time
−D has not been covered, so д[−D] = 0. Applying the Algorithm 3,
new weight of D is 0.08. Similar computations provide the fol-
lowing results for other features:weiдhts[A] = 0.1, weiдhts[P] =
0.08, weiдhts[C] = 0.37, weiдhts[U ] = 0.92. Note that due to nor-
malisation weights for negations of variables can be computed from
weiдhts[l] + weiдhts[¬l] = 1. Applying the extension of weight
function to configurations, we can compute the probabilities of
configurations to be selected. These weights correspond to 0.83
probability to choose configuration with the best additional cov-
erage (5) as the next sample in comparison to 0.25 probability at
uniform sampling. The worst next sample (3) can be chosen with
just 0.004 probability.

Algorithm 4: generateWeights(vars , S) // Strategy 2

1 for l in literals do
2 д[l] ← number of distinct t-sized feature combinations

with l in S
3 h[l] ← 2t−1 ∗

(Vars(F )−1
t−1

)
4 for l in literals do
5 diff [l] ← д[l] /h[l] − д[¬l] /h[¬l]

6 weiдhts[l] ←max(0.01,
0.5 ∗ (1 − sign(diff ) ∗ sqrt(abs(diff ))))

7 returnweiдhts

Strategy 2. In this strategy we attempt to reduce the compu-
tation cost by simplifying h. Without checking the existence of
configurations in RF involving each feature combination, h can be
overapproximated by the number of t-sized feature combinations
in 2Vars(F ) involving a literal. The generateWeights function for
the Strategy 2 is shown in Algorithm 4. The only difference from
Algorithm 3 is on line 3, since f and д are defined as in Strategy 1.

In the running example, we do not precompute that h[D] = 7
in this strategy, but we get the value 8 as overapproximation. This
changes the resulted weight distribution, the Algorithm 4 returns
the following weights: weiдhts[D] = weiдhts[A] = weiдhts[P] =
0.1, weiдhts[C] = 0.5, weiдhts[U ] = 0.9. These weights corre-
spond to 0.81 probability to choose the best next sample (5) (0.83
with Strategy 1) and 0.01 to choose the worst (0.004with Strategy
1).

Algorithm 5: generateWeights(vars , S) // Strategy 3

1 for l in literals do
2 д[l] ← |σ ∈ S | l ∈ σ |

3 h[l] ← |σ ∈ RF | l ∈ σ |

4 for l in literals do
5 diff [l] ← д[l]/(д[l] + д[¬l]) −

ln(h[l])/(ln(h[l]) + ln(h[¬l]))
6 weiдhts[l] ←max(0.01,

0.5 ∗ (1 − sign(diff ) ∗ sqrt(abs(diff ))))
7 returnweiдhts

Strategy 3. Both Strategies 1 and 2 are trying to optimise the
coverage for a particular size t of feature combinations. Indeed,
the computation of д and h depends on t , and for the same set
of samples, the weights generated for t = 2 and t = 3 would be
different. Nevertheless, one could expect that a set of samples with
high pairwise coverage would also have high 3-wise coverage. This
hypothesis allows us to gradually simplify the computation of д.

A very simple and easily computable measure of literal partic-
ipation in a set of samples is the number of samples the literal is
present. It allows finding the number of feature combinations the
literal is involved in, though not the number of distinct combina-
tions. Similarly, h in this strategy is defined as the total number of
configurations involving the literal. h can be computed by calling
#SAT Vars(F ) + 1 times (any configuration involves either a literal
or its negation but not both). Since the values of h and д can differ
by several orders of magnitude, we changed f : it is comparing the
ratio of samples involving the literal in the sample set and the ratio
of configurations involving a literal on a logarithmic scale. The
weight generation function is shown in Algorithm 5.

In the running example, we see that D appears in both sam-
ples (2) and (4). For the computation of h, we precompute that
D appears in 4 configurations and −D in the 2 remaining ones.
Applying the Algorithm 5, new weight of D is 0.22. Similar compu-
tations for other features yield: weiдhts[A] = 0.22, weiдhts[P] =
0.15, weiдhts[C] = 0.3, weiдhts[U ] = 0.79. These weights corre-
spond to 0.88 probability to choose configuration (5) as the next
sample and 0.008 to choose configuration (3).
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Algorithm 6: generateWeights(vars , S) // Strategy 4

1 for l in literals do
2 д[l] ← |σ ∈ S | l ∈ σ |

3 for l in literals do
4 weiдhts[l] ←max(0.01,

0.5 ∗ (1− (д[l] −д[¬l]) / (д[l]+д[¬l])))
5 returnweiдhts

Strategy 4. In this strategy we modify Strategy 3 by fixing h
constant. The hypothesis of this strategy considers that since values
of д and h differ by several orders of magnitude, their direct or
indirect comparison might not be useful. Therefore, in this strategy,
we simply compute д and compare the appearances of each literal
with its negation. The function is shown in Algorithm 6.

In the running example, we see thatD appears in both samples (2)
and (4). Applying the Algorithm 6, new weight of Directed is 0.01.
New weights for other features are: weiдhts[A] = weiдhts[P] =
0.01, weiдhts[C] = 0.5, weiдhts[U ] = 0.99. These weights corre-
spond to 0.9998 probability to choose configuration (5) as the next
sample and only 1.0× 10−6 probability to choose configuration (3).

4 EXPERIMENTS

To analyse the efficiency of our approach we have implemented a
prototype of Baital in Python1. The sampling process is done by
the literal-weighted samplerWAPS[20]. To evaluate our approach
we designed a set of experiments helping to answer the following
research questions.

Our main goal is to push forward the t-wise coverage of the
state-of-the-art approach for large SPLs, therefore the first two
questions naturally arise.

RQ1 Can Baital be used to generate partial covering arrays for
large SPLs?

RQ2 Can Baital achieve higher t-wise coverage than uniform
sampling?

In addition, we are also interested in the evaluation of effects of
parameters in our approach on the efficiency and performance.

RQ3 How often shall weight function be regenerated in order
to obtain best coverage/performance?

RQ4 What is the impact of different strategies on coverage and
performance?

4.1 Benchmarks

We took a large number of publicly available feature models from
real-world configurable systems that were used before in evalua-
tion of uniform sampling tools. In particular, we took the all non-
sythetic benchmarks appearing in [29, 34, 50, 51] with exception of
few largest feature models on which both uniform sampling and
our approach run out of time or memory. Also we excluded small
models that have less than 500 variables. The resulted benchmark
set consists of 124 feature models2. The size of feature models varies
between 565 and 11254 variables, between 1164 and 62183 clauses
and between 9.7 × 1013 and 7.7 × 10417.

1https://github.com/meelgroup/baital
2https://doi.org/10.5281/zenodo.4022395

For the last two research questions we performed a more detailed
exploration on 3 benchmarks from our set. These models are: "ecos-
icse11" with 1244 variables and 3146 clauses from [51], "embtoolkit"
with 2128 variables and 15483 clauses from [29] (transformed into
CNF formulas with FeatureIDE 3.6.03) and "FinancialServices01"
version "2018-05-09" ("financial" in the rest of the paper) with 771
variables and 7241 clauses from [50]. The latter one is particularly
interesting since uniform sampling cannot achieve high coverage
even with 107 samples (below 70% for 1-wise coverage and below
50% for 2-wise coverage) [48].

4.2 Experiments, Settings, and Competitors

We designed two experiments for the evaluation of Baital. The first
experiment is used to answerRQ1 andRQ2. In this experiment, we
generated 1000 samples with both uniform sampling and Baital
for each feature model from our benchmark set. In Baital the
number of rounds was set to 10, each round 100 samples have
been generated. We used Strategies 2 and 4 since they do not
require additional precomputations ofh on each benchmark. Indeed,
the computation of all feasible pairwise combinations for uClinux-
config feature model would require 250 millions of SAT solver calls.
For the same reason, we do not compare the t-wise coverage on
these benchmarks but the number of distinct feature combinations
in the sample sets, i.e. |Comb(S, t)|. In addition, we limited the
exploration to the pairwise coverage as the computation of Comb

for higher-wise coverage were exceeding available RAM on all but
smallest benchmarks.

In the preparation of experiment we tried different tools for uni-
form sampling, namely QuickSampler [16], Smarch [47], KUS[53]
and WAPS with weights corresponding to the uniform sampling.
Quicksampler despite being fast checks the validity of samples at
the very last step, therefore the number of valid samples is usually
lower than the requested one. In many cases it generated 1000 sam-
ples none of which were valid. Also it was shown in [51] that the
results of Quicksampler are often far from uniform. The remaining
3 tools were able to generate uniformly distributed sets of samples
and, unsurprisingly, the resulted t-wise coverage was almost iden-
tical. Comparing their execution time, KUS was the fastest, closely
followed byWAPS, while Smarch was considerably slower by three
orders of magnitude on some of the benchmarks. Considering a
minor difference between KUS and WAPS, we decided to use the
latter one since it would allow us to have better evaluation of the
additional complexity of our approach.

RQ3 andRQ4 are related to the evaluation of Baital parameters.
In the second experiment we used "ecos-icse11", "embtoolkit" and
"financial" benchmarks. Within this experiment we generated 3000
samples with each strategy from Section 3.4 and values for the
number of samples generated at each round spr were taken from the
set {25, 50, 100, 200, 300}. In this experiment we checked pairwise
coverage and execution time. The results of uniform sampling were
used as a baseline.

Due to the probabilistic nature of both uniform sampling and
Baital, all experiments have been run 5 times without fixed random
seeds and the reported results show the mean values among 5
runs. Nevertheless, for 108 out of 124 benchmarks, the difference

3https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.6.0
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Table 1: Number of feature combinations in 1000 samples

Benchmark NVars Uniform Strategy 2 Strategy 4

busybox_1_28_0 998 1936827 1952827 1955269
dreamcast 1252 2308471 2650081 2842723
ecos-icse11 1244 2299262 2674216 2842662

freebsd-icse11 1396 3564507 3712877 3720593
integrator_arm9 1267 2337336 2737317 2926949

mpc50 1213 2169357 2508473 2670210
ocelot 1266 2339932 2721531 2921261

pc_i82544 1259 2291769 2741419 2887288
refidt334 1263 2330423 2765357 2941096
XSEngine 1260 2342488 2718346 2901167

between the highest and the lowest values of Comb for the same
input parameters was below 1%; the maximum difference was 1.8%
on financial benchmark.

All experiments were conducted on a laptop with Intel(R) Core
i7-8650U CPU, RAM limited to 12GB, running Ubuntu 18.04.3 LTS.

4.3 Comparison with Uniform Sampling (RQ1,

RQ2)

The first experiment compared the number of feature combina-
tions in sets of samples generated by uniform sampling and by
Baital with Strategies 2 and 4. Table 1 presents the excerpt of
the results for 10 feature models showing the number of distinct
feature pairs in 1000 generated samples4. Among 124 benchmarks,
on 116 of them the Strategy 2 showed the increase between 14%
and 22% of the number of covered feature pairs in comparison with
uniform sampling and Strategy 4 showed increase between 21%
and 29%. One benchmark showed increase by 37% with Strategy 2

and 49% with Strategy 4. On 5 benchmarks smaller increase was
encountered and 2 remaining benchmarks returned identical re-
sults. Detailed exploration of the latter 7 benchmarks showed that
on 5 of them uniform sampling reached coverage of at least 93%
(for the remaining 2 we were not able to compute |Comb(RF , t)|)
that explains smaller improvement of Baital on these benchmarks.
For example, busybox_1_28_0 has 98.5% coverage with uniform
sampling, and Baital can still improve the result to 99.5%, though
the difference in the number of feature combinations is only 1%.

To evaluate the presence of statistical difference between uniform
sampling and Baital we used Mann-Whitney U-test with the H0 :
uniform sampling distribution and Baital sampling distribution
are equal. We have a sample size 5 for both approaches, α = 0.05.
The critical value to reject H0 is 2, i.e. the hypothesis cannot be
rejected if on 3 pairwise comparisons uniform sampling would
outperform Baital. On two benchmarks with identical results the
U-test confirmed the hypothesis, while on all other benchmarks
the H0 have been rejected withU = 0 and pvalue = 0.004.

The execution time of Baital depends on 3 major factors: sam-
pling time of each round, computation of weight function for the
following round and the number of rounds. The first factor is the

4Full version of Table 1 can be found at https://doi.org/10.5281/zenodo.4022395

Figure 2: Number of feature combinations for ecos-icse11

benchmark

execution time of WAPS. As explained in Section 3.3, WAPS exe-
cution consists of 3 steps: Compilation, Annotation, and Sampling.
Since the formula is not modified during the sampling process,
Compilation is done only in the first round. On the benchmarks
this step takes several seconds with a highest value of 26 seconds
and median 6.5 seconds.

The computation of the weight function for the next round de-
pends on the strategy and the number of variables in the formula.
For Strategies 3 and 4, as they just compute the number of appear-
ances of a literal in samples, it takes less than one second even on
the largest benchmark with 11254 variables. Strategies 1 and 2, on
the other hand, need to find distinct feature combinations and their
execution time also depends on the size of feature combinations. For
pairwise sampling, it takes 1 second for 771 variables, 16 seconds
for 1396 variables and up to 250 seconds for the largest benchmark
with 11254 variables. Note that the set of distinct feature combina-
tions do not need to be recomputed from scratch at each round, the
results of first rounds can be reused in the latter ones. Therefore,
the time does not increase with growth of the round number.

For the benchmarks, 102 have finished within 1 hour for both
strategies, another 16 finished within 2 hours. The remaining 5
benchmarkswith the longest Annotation process took several hours.
The difference between Strategy 2 and Strategy 4 was less than
15 minutes on 110 benchmarks and the maximum was 35 minutes
for the benchmark with 11254 variables.

As a result of this experiment we can conclude that Baital can
generate partial covering arrays at reasonable time for large feature
models. The resulted coverage of feature combinations is higher
than with uniform sampling on all but 2 benchmarks where equal
results were recorded.

4.4 Comparison of Weight Generation

Strategies (RQ3, RQ4)

Figures 2, 3, 4 show the coverage on three benchmarks achieved
with each strategy. The results of uniform sampling are shown for
comparison. For all strategies, theweight function has been changed
after every 100 samples and the coverage was computed after each
generated sample. The first 100 samples are generated uniformly
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Figure 3: Number of feature combinations for embtoolkit

benchmark

Figure 4: Number of feature combinations for financial

benchmark

in all strategies, resulting in almost identical coverage. Starting
from the second round, next sets of samples have been chosen with
respect to the new weights generated by Baital strategies. The
considerable boost over the uniform sampling can be noticed: new
weights are helping to choose samples with feature combinations
that didn’t appear in samples before. In all three benchmarks, 200
samples generated with Baital have better coverage than 3000
samples chosen uniformly.

The difference between strategies becomes noticeable after sec-
ond change of weights. In the first two benchmarks, the coverage
is quite high even for the uniform sampling and results of different
strategies are close. However, in the financial benchmark Strategy

1 clearly outperforms other strategies, while Strategy 2 showed
the worst result. In this benchmark almost 25% of feature combina-
tions are infeasible and their distribution among literals is far from
uniform. This results in bad approximation of function h(l , t) and,
consequently, low performance of Strategy 2. Strategies 3 and 4

showed very close results in all 3 benchmarks, therefore we can
conclude that extra precomputations in Strategy 3 do not improve
to the resulted coverage.

Figure 5: Number of feature combinations for financial

benchmark with Strategy 1

Figure 6: Number of feature combinations for financial

benchmark with strategy 2

Figure 7: Number of feature combinations for financial

benchmark with strategy 4

The evaluation of the effect of the weights update frequency is
shown in Figures 5, 6, 7. We used the financial benchmark and we
omit the plot for Strategy 3 since it is similar to Figure 7. These
plots show that higher frequencies allows to obtain high coverage
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Figure 8: Execution time for generation of 3000 samples

for ecos-icse11 benchmark. Uniform sampling took 107 sec-

onds.

Figure 9: Execution time for generation of 3000 samples for

embtoolkit benchmark. Uniform sampling took 61 seconds.

with fewer samples. However, by raising the number of generated
samples, lower frequencies of weight updates can reach the same
coverage or even slightly outperform it. This behaviour is a con-
sequence of our weight generation. The difference between the
weight functions of two consecutive rounds is small if during the
former round only few new feature combinations have been cov-
ered. Therefore, for the first several rounds, when a lot of new
feature combinations are found, high frequency of weight updates
is beneficial to reach uncovered areas faster, while for the latter
rounds, there would not be enough new combinations to noticeably
modify weights distribution.

The evaluation of execution time on the benchmarks is shown
on Figures 8, 9 and 10. The precomputations of function h are
not included in the total time. Strategies using the same function
д showed close results. On financial and embtoolkit benchmarks
Strategies 1 and 2 are considerably slower than the other ones and
the time difference depends on the number of variables. For ecos-
icse11 benchmark the annotation of d-DNNF took 95% of round
time and the different strategies to generate weights had almost no
effect on the total time. Regarding the frequency of weight function

Figure 10: Execution time for generation of 3000 samples for

financial benchmark. Uniform sampling took 4 seconds.

generation, clearly, extra d-DNNF dag reannotations has negative
impact on execution time. For feature models with relatively simple
d-DNNF dag, such as embtoolkit, there is no strong effect of this pa-
rameter while in ecos-icse11 with complex d-DNNF the dependency
of execution time on the number of rounds is close to linear.

As a result of this experiment, we can conclude that Strategy 1

can generate the best partial covering array while being the slowest
one. Strategy 4 is the fastest one and provide a good coverage
outperforming Strategies 2 and 3. For the frequency of weights
change, to generate a small number of samples with high coverage,
high frequency of weight function generation is preferable, however
for larger sample sets it might be better to reduce it, as similar
coverage could be obtained with shorter execution time.

4.5 Threats to Validity

Construct Validity.Many prior work use combinatorial interac-
tion testing for feature models and t-wise coverage as qualitative
metric for partial covering arrays for the cases where the model
is too large and complex to compute a full covering array. Our ap-
proach is following these works by building partial covering arrays
with better t-wise coverage.

Internal Validity. Due to the probabilistic nature of our ap-
proach, several runs may not yield identical results. Indeed, the
choice of samples during the first round affects the weights for the
following round. To mitigate the effect of this behaviour on the
experiment results, we run each benchmark multiple times and
report the mean value. In addition, we examined the result of dif-
ferent runs and noticed, that the difference between the best and
the worst result was below 1% for 108 out of 124 of benchmarks
and maximum value was 1.8%. We also noted that even the worst
result was always better than the uniform sampling except two
benchmarks where equality was obtained. For the baseline we used
uniform sampling which is a state-of-the-art approach and we have
tried several tools for uniform sampling that yield similar results.

External Validity.Tomitigate the threat of non-generalisability
of our study we have used a large number of feature models. These
models cover a wide range in the number of features and constraints.
These benchmarks were used before in several prior studies [29, 34,
48, 51].
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5 RELATEDWORK

Combinatorial interaction testing was initially proposed in 1980s
in [38, 58] and has since been extensively studied. Covering arrays
formally defined in [56] are matrices with rows representing sam-
ples and every possible t-sized combination of variables appears
at least in one column. Many works on the topic were surveyed in
[44] and a more recently in [59].

The goal in classical CIT sampling is to build a covering array
and minimise its size. Multiple approaches have been proposed
through years for building covering arrays. The greedy algorithm is
one of the most popular ideas starting from the empty set of samples
and adding new ones until the full coverage is achieved. There is a
number of tools available including [2, 11, 24, 39, 57, 62]. Another
type of greedy algorithm initially build a set of samples with full
coverage for the first n parameters and then add an extra parameter
at each interaction. IPO algorithm [33] with several extensions [31,
32] is following this idea as well other some works [9, 61]. Another
group of approaches, sometimes called heuristical, start from some
set of samples that do not provide full coverage and try to modify it
in order to obtain the full coverage. Examples of such algorithms are
[49], tabu search [19, 45] and genetic algorithm [40]. Lin et al. [35]
attempted to combine heuristic and greedy approaches switching
between them with a predefined probability, which allows a better
exploration of configuration space and potentially smaller test suite.
The requirement of explicit access to the entire set of configurations
severely limits the above set of works in their ability to handle a
large set of features.

Covering arrays may grow large for complex configurable sys-
tems and exceed the testing budget. An alternative to the classical
CIT is building a fixed-size set of configurations. Several metrics
have been proposed to measure combinatorial coverage of such
sets in the NIST report [30]. t-wise coverage has been defined in
the report as (total) variable-value configuration coverage. One of
the approaches to build a fixed-size test-set is based on selecting
solutions for a given set of constraints. Among constraint-based
approaches, one set of techniques often seek to generate a random
configuration and then check if the generated configuration satis-
fies the constraints [10, 15]. Such approaches can handle scenarios
where the fraction of valid configurations over the set of all config-
urations is high but fail to handle cases where the density of valid
configuration is low as typically observed in complex systems. It is
worth noting that a low density of valid configurations does not
imply a low number of valid configurations. For example, for 50
binary features, even if the set of valid configurations is 240, the
density of such a set is still 2−10.

Another set of constraint-based approach seeks to rely on em-
ploying uniform samplers constructed on top of recent advances in
combinatorial solving such as SAT solving and knowledge compila-
tion. Oh et al. [46] employed BinaryDecisionDiagrams for encoding
the configurations of feature models. The tool SMARCH [47] uses
#SAT solver for uniform sample generation. Lopez-Herrejon et al.
[36] evaluated the dependency between t-wise coverage and the
number of samples, building a Pareto front. Two uniform sampling
tools QuickSampler [16] and Unigen2 [6] have been evaluated in
[51].

Other techniques to build sample sets and their flavors have been
surveyed in [3]. Several other approaches to choose samples for
analysis of feature models, including t-wise sampling, one-disabled
[1] and statement-coverage [57] were compared in [41].

Another application of the sampling of configurable systems is
performance prediction [52, 54, 55] as different features and their
interactions can affect the performance. In recent work, Kaltenecker
et al. [25] proposed a new metric and the corresponding sampling
method tailored for performance prediction.

The problem of weighted sampling has witnessed sustained in-
terest from theoreticians and practitioners alike for the past three
decades owing to its widespread usage. Of several proposed tech-
niques, Monte Carlo Markov Chain (MCMC)-based methods[22, 37]
enjoy widespread adoption owing to their simplicity but the heuris-
tics employed to act as a proxy of mixing of the underlying Markov
Chains, however, invalidate distributional guarantees [27]. Ap-
proaches based on interval propagation and belief networks[14,
18, 21], also often lead to scalable techniques, but their distributions
can often be far from the desired distribution.[28]. While hashing-
based techniques have achieved significant progress in the context
of uniform sampling [7, 8, 42], their scalability for arbitrary distri-
butions is severely limited [5, 6, 17, 42]. In this context, we advocate
the usage of knowledge compilation-based techniques, which not
only achieve significant scalability but supports efficient adaptive
sampling.

6 CONCLUSION

Design of test generation techniques to achieve higher t−wise
coverage is a fundamental challenge in the context of testing of
configurable systems. In this work, we propose a Baital approach
for construction of test sample sets that dynamically modifies the
probability distribution of configuration to be chosen in order to
improve the t-wise coverage of the test set. We showed on a large
set of benchmarks used in prior works that our approach generates
achieves higher t-wise coverage than commonly used uniform
sampling. We explored several ways to update the weight function
and their effect on the resulted coverage.

Since our approach generates samples for combinatorial inter-
action testing, an interesting direction of future work would be to
study the impact of improved t-wise coverage on fault detection.
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