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Abstract
Given a data stream A = ⟨a1, a2, . . . , am⟩ of m elements where each ai ∈ [n], the Distinct Elements
problem is to estimate the number of distinct elements in A. Distinct Elements has been a subject
of theoretical and empirical investigations over the past four decades resulting in space optimal
algorithms for it. All the current state-of-the-art algorithms are, however, beyond the reach of an
undergraduate textbook owing to their reliance on the usage of notions such as pairwise independence
and universal hash functions. We present a simple, intuitive, sampling-based space-efficient algorithm
whose description and the proof are accessible to undergraduates with the knowledge of basic
probability theory.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Distinct Elements Estimation, Streaming, Sampling

1 Introduction

We consider the fundamental problem of estimating the number of distinct elements in a
data stream (Distinct Elements problem or the F0 estimation problem). For a data stream
A = ⟨a1, a2, . . . , am⟩, where each ai ∈ [n], F0(A) is the number of distinct elements in A:
F0(A) = |{a1, a2, . . . , am}|. Since A is clear from the context, we use F0 to refer to F0(A).

▶ Problem 1. Given a stream A = ⟨a1, a2, . . . , am⟩ of m elements where each ai ∈ [n],
parameters ε, δ, output an (ε, δ)-approximation of F0(A). That is, output c such that

Pr[(1− ε) · F0(A) ≤ c ≤ (1 + ε) · F0(A)] ≥ 1− δ.

We are interested in streaming algorithms that uses poly(log m, log n, 1
ε , log 1

δ ) bits of
memory wherein we use log to denote log2. The seminal work of Flajolet and Martin [9]
provided the first algorithm assuming the existence of hash functions with full independence.
Subsequent investigations relying on the usage of limited-independence hash functions have led
to design of algorithms with optimal space complexity O(log n + 1

ε2 · log 1
δ ). We defer detailed

bibliographical remarks to Section 3. However, all the current space-efficient algorithms are
beyond the reach of an undergraduate textbook due to their reliance on notions such as
pairwise independence and universal hash functions.

∗ The earlier version of the paper, as published at ESA 2022, contained error in the proof of Claim 4.
The current revised version fixes the error in the proof. The authors decided to forgo the old convention
of alphabetical ordering of authors in favor of a randomized ordering, denoted by r⃝. The publicly
verifiable record of the randomization is available at https://www.aeaweb.org/journals/policies/
random-author-order/search
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We present a very simple algorithm for the F0 estimation problem using a sampling
strategy that only relies on basic probability for its analysis. In particular, it does not use
universal hash functions. We believe that only using basic probability theory for the analysis
makes the algorithm presentable to undergraduates right after the introduction of basic tail
bounds. In addition, the simplicity of the code makes it appealing to be used in practical
implementations. Our algorithm builds and refines ideas introduced in the recent work on
estimating the size of the union of sets in the general setting of Delphic sets [13].

2 A Simple Algorithm

Algorithm 1 F0-Estimator

Input Stream A = ⟨a1, a2, . . . , am⟩, ε, δ

1: Initialize p← 1; X ← ∅; thresh← ⌈ 12
ε2 log( 8m

δ )⌉
2: for i = 1 to m do
3: X ← X \ {ai}
4: With probability p, X ← X ∪ {ai}
5: if |X | = thresh then
6: Throw away each element of X with probability 1

2
7: p← p

2
8: if |X | = thresh then Output ⊥
9: Output |X |

p

The algorithm F0-Estimator uses a simple sampling strategy. In order to keep the set of
samples small, it makes sure that X does not grow beyond the value thresh by adjusting the
sampling rate p accordingly. After all the elements of the stream are processed, it outputs
|X |
p where p is the final sampling rate1.

2.1 Theoretical Analysis
We present the theoretical analysis entirely based on first principles, which adds to its length.
For readers who are familiar with randomized algorithms, the proof is standard.

We state the following well-known concentration bound, Chernoff bound, for completeness.

▶ Fact 2.1 (Chernoff’s Bound). Let v1, ..., vk be independent random variables taking values
in {0, 1}. Let V =

∑k
i=1 vi and µ = E[V]. Then, for β > 0, Pr (|V − µ| ≥ βµ) ≤ 2e− β2µ

2+β

The following theorem captures the correctness and space complexity of F0-Estimator.

▶ Theorem 2. For any data stream A and any 0 < ε, δ < 1, the algorithm F0-Estimator
outputs an (ε, δ)-approximation of F0(A). The algorithm uses O( 1

ε2 · log n · (log m + log 1
δ ))

space in the worst case.

Proof. The stated space complexity bound of the algorithm follows because, from the
description, it is clear that the size of the set of samples kept by the algorithm is always
≤ thresh, and each item requires ⌈log2 n⌉ bits to store.

1 In an earlier version, it was wrongly claimed that every element seen so far is independently in X with
equal probability p. That claim was erroneous but, fortunately, not used in the analysis. It is also worth
remarking that |X |

p is not an unbiased estimator of F0.



S. Chakraborty, N. V. Vinodchandran and K. S. Meel 3

We give a formal proof of correctness below. Consider the following two events:

Error : ‘The algorithm F0-Estimator does not return a value in the range [(1−ε)F0, (1+ε)F0]’
Fail : ‘The algorithm F0-Estimator outputs ⊥.’

We will bound Pr[Error] by δ. Observe that Pr[Error] ≤ Pr[Fail]+Pr[Error∩Fail]. Theorem
follows from Claim 3 and Claim 4. ◀

▷ Claim 3. Pr[Fail] ≤ δ
8

Proof. Let Failj denote the event that Algorithm 1 returns ⊥ when i = j. Formally, Failj :
‘|X | = thresh and none of the elements of X are thrown away at line 6 for i = j’. The
probability that Failj happens is

( 1
2
)thresh. Therefore,

Pr[Fail] ≤
m∑

j=1
Pr[Failj ] ≤ m ·

(
1
2

)thresh
≤ δ

8 ◀

▷ Claim 4. Pr[Error ∩ Fail] ≤ δ
2 .

Proof of Claim 4

To bound Pr[Error ∩ Fail], we consider a relaxed version of Algorithm F0-Estimator, which is
stated as Algorithm 2. Algorithm 2 is nothing but F0-Estimator with line 8 removed. Observe
that for a given input, the algorithm F0-Estimator behaves identically to Algorithm 2 as long
as |X | < thresh after each element of X is thrown away with probability 1

2 (i.e., the event
Fail does not happen). Now, we consider the following event:

Error2 : ‘The Algorithm 2 does not output a value in the range [(1− ε)F0, (1 + ε)F0].’

Observe that Pr[Error ∩ Fail] ≤ Pr[Error2]. In Claim 6, we obtain the desired bound on
Pr[Error2] and hence on Pr[Error ∩ Fail].

Algorithm 2

Input Stream A = ⟨a1, a2, . . . , am⟩, ε, δ

1: Initialize p← 1; X ← ∅; thresh← ⌈ 12
ε2 log( 8m

δ )⌉
2: for i = 1 to m do
3: X ← X \ {ai}
4: With probability p, X ← X ∪ {ai}
5: if |X | = thresh then
6: Throw away each element of X with probability 1

2
7: p← p

2

8: Output |X |
p

To prove an upper bound on Pr[Error2] in Claim 6, we will consider the Algorithm 3.
Algorithm 3 uses two subroutines: (1) GenerateRandomBits that returns a randomly generated
array of m + 1 bits, and (2) FirstZeroIndex returns the minimum of first index of array equal
to 0 and one plus the size of array; we assume array is zero-indexed. In the following, we use
Si to denote {a1, a2, . . . , ai} – distinct elements that appear in the first i items in the stream.

▷ Claim 5. The following property holds true in line 7 of Algorithm 3

Every element in Si is in Yk independently with probability 2−k.
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Algorithm 3

Input Stream A = ⟨a1, a2, . . . , am⟩
1: for k = 0 to m do
2: Initialize Yk ← ∅;
3: for i = 1 to m do
4: r ← GenerateRandomBits(m + 1)
5: for k = 0 to m do
6: Yk ← Yk \ {ai}
7: if k ≤ FirstZeroIndex(r) then Yk ← Yk ∪ {ai}

Proof. The proof proceeds via induction on i.

Base Case: Pr[a1 ∈ Yk] = Pr[k ≤ FirstZeroIndex(r)] = 1/2k.
Inductive Step: Note that, by induction hypothesis, for all aℓ ∈ Si \ ai, we have aℓ ∈ Yk

independently with probability 1/2k. Now, for ai, we have ai /∈ Yk in line 6. In line 7,
Pr[ai ∈ Yk] = Pr[k ≤ FirstZeroIndex(r)] = 1/2k ◀

Let us use the random variables pj and Xj to denote the value of p and the set X at
the end of the loop iteration with i = j (in Algorithm 2). Similarly, we will use the random
variable Yk,j to indicate the set Yk at the end of loop iteration with i = j (in Algorithm 3).

We can view Algorithm 2 as updating value of p and X as the elements of stream A
are processed such that we have (pj , Xj) = (pj , Yk,j) where pj = 2−k. It is perhaps worth
observing that the value of p in Algorithm 2 is always at least 2−m, which is why we have k

iterate over [0, m] in Algorithm 3.
For any j ∈ [1, m] and k ∈ [0, m] and a ∈ Sj let ra

k,j denote the indicator random variable
indicating whether a is in the set Yk in line 7 for i = j (in Algorithm 3). By Claim 5, the
random variables {ra

k,j}a∈Sj
are independent and for all a ∈ Sj Pr[ra

k,j = 1] = 2−k.

E [|Yk,j |] = E

 ∑
a∈Sj

ra
k,j

 =
∑

a∈Sj

Pr[ra
k,j = 1] = 2−k · |Sj | ≤ 2−k · F0. (1)

▷ Claim 6. Pr[Error2] ≤ δ
2

Proof. We decompose Pr[Error2] based on the value of p at the end of Algorithm 2. To this
end, let us define the event Bad2: “The value of p at line 8 in Algorithm 2 is less than thresh

4F0
.”

Let ℓ = ⌊log( 4F0
thresh )⌋. Since every value of p can be expressed as power of 2, we have that

p < 2−ℓ if and only if p < thresh
4F0

. Observe that Pr[Error2] ≤ Pr[Bad2] + Pr[Error2 ∩ Bad2].

Bounding Pr[Bad2]

For j ∈ [1, m], let Bad2,j denote the event that ‘jth iteration of the for loop in Algorithm 2
is the first iteration where the value of p goes below 2−ℓ’ i.e., pj−1 = 2−ℓ and pj = 2−(ℓ+1).
Therefore, Pr[Bad2] =

∑m
j=1 Pr[Bad2,j ]. We will now compute Pr[Bad2,j ] for a fixed j.

By definition of Bad2,j , we have |X | = thresh and p = 2−ℓ in line 5 of Algorithm 2 for
i = j, i.e., |Yℓ,j | = thresh. From Equation 1 we have E [|Yℓ,j |] ≤ 2ℓ · F0 ≤ thresh

4 . Thus,
Pr[Bad2,j ] ≤ Pr[|Yℓ,j | ≥ thresh] ≤ 2e− 9·thresh

20 ≤ δ
4m , where the second inequality follows from

Chernoff Bound. Therefore, Pr[Bad2] ≤ δ
4 .
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Bounding Pr[Error2 ∩ Bad2]

Let us define the event Error2,q : ‘pm = 2−q and |Xm|
2−q /∈ [(1− ϵ)F0, (1 + ϵ)F0] ’

Observe that Pr[Error2,q] ≤ Pr[|Yq,m| /∈ [(1− ϵ) · F0
2q , (1 + ϵ) · F0

2q ]].

Therefore, Pr[Error2 ∩ Bad2] ≤
ℓ∑

q=0
Pr[Error2,q]

≤
ℓ∑

q=0
Pr[|Yq,m| /∈ [(1− ϵ) · F0

2q
, (1 + ϵ) · F0

2q
]]

≤
ℓ∑

q=0
2e− ε2F0

3·2q [Using Equation 1 and Chernoff bound]

≤ 4e− ε2F0
3·2ℓ ≤ 4e− ε2thresh

12 ≤ 4 ·
(

δ

8

)log e

≤ δ

4 ◀

3 Bibliographic Remarks

Distinct Elements problem (or F0 estimation problem) is one of the most investigated
problem in the data streaming model [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. While the Distinct
Elements problem has a wide range of applications in several areas of computing, it was first
investigated in the algorithms community by Flajolet and Martin [9]. They provided the first
approximation under the assumption of the existence of hash functions with full independence.
The seminal work of Alon, Matias, and Szegedy [1] that introduced the data streaming
model of computation revisited this problem as a special case of Fk estimation problem and
achieved space complexity of O(log n) for ε > 1 and constant δ. The first (ε, δ) approximation
for Distinct Elements problem was Gibbson and Tirthpura who achieved O( log n

ε2 ) space
complexity [10]. Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan improved the space
complexity bound to Õ(log n+1/ε2) [2]. Subsequently, Kane, Nelson, and Woodruff achieved
O(log n + 1/ε2) which is optimal in n and ε [12]. All the above bounds are for a fixed
confidence parameter δ, which can be amplified to achieve confidence bounds for arbitrary
δ by simply running log( 1

δ )-estimators in parallel and returning the median. This incurs a
multiplicative factor of log( 1

δ ). Błasiok designed an (ε, δ) approximation algorithm for F0
estimation problem with space complexity of O( 1

ε2 · log 1
δ + log n), thereby matching the

lower bound in all the three parameters n, ε and δ [4]. As is expected, every subsequent
improvement added to the complexity of the algorithm or the analysis, and a majority of
these work remain beyond the reach of non-experts. A crucial technical ingredient for all
the works mentioned above is their careful usage of limited-independence hash functions in
order to make space poly(log n). Monte Carlo-based approaches have been utilized in the
context of size estimation of the union of sets, but their straightforward adaptation to the
streaming setting did not seem to yield progress. Recently, a new sampling-based approach
was proposed in the context of estimating the size of the union of sets in the streaming model
that achieves space complexity with log m-dependence [13]. The algorithm we presented
adapts ideas from this work to the context of F0 estimation.
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