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Abstract. Machine learning algorithms that produce rule-based
predictions in Conjunctive Normal form (CNF) or in Disjunctive
Normal form (DNF) are arguably some of the most interpretable
ones. For example, decision set is an interpretable model in prac-
tice, that represents the decision function in the form of DNF. In
this paper, we consider relaxed definitions of standard OR/AND op-
erators which allow exceptions in the construction of a clause and
also in the selection of clauses in a rule. Building on these relaxed
definition, we introduce relaxed-CNF rules, which are motivated by
the popular usage of checklists in the medical domain and general-
izes the widely employed rule representations including CNF, DNF,
and decision sets. While the combinatorial structure of relaxed-CNF
rules offers exponential succinctness, the naive learning techniques
are computationally expensive. To this end, we propose a novel in-
cremental mini-batch learning procedure, called CRR, that employs
advances in the Integer Linear Programming (ILP) solvers to effi-
ciently learn relaxed-CNF rules. Our experimental analysis demon-
strates that CRR can generate relaxed-CNF rules, which are more
accurate and sparser compared to the alternative rule-based models.

1 Introduction

The widespread adoption of prediction systems in various safety-
critical domains such as medical diagnosis, law, education, and many
others has led to the increased importance of presenting the decision
functions in interpretable representations [14, 22, 28, 30, 31]. To en-
able safe, robust and trustworthy integration of such systems, the
end users require these systems to support interpretability, privacy,
and fairness in decision-making [6, 32, 34, 36]. In this context, rule-
based representations are particularly effective for presenting the de-
cision functions to people [16, 19, 33, 35]. A recent body of work has
studied sparsity-inducing objectives for classification rules in CNF
(Conjunctive Normal Form) or DNF (Disjunctive Normal Form) and
demonstrated that they often achieve high interpretability (defined in
terms of rule-sparsity) with minimal sacrifice in classification accu-
racy [11, 16, 19]. Although CNF/DNF rules are considered inter-
pretable, they are less expressive compared to the Boolean cardinal-
ity constraints in propositional logic, wherein a Boolean cardinality
constraint allows one to express numerical bounds on Boolean vari-
ables [27]. In this work, we introduce relaxed-CNF, a classification
rule in propositional logic that has the benefits of both worlds: it rep-
resents the decision boundary in an interpretable manner similar to
CNF/DNF and it is more expressive for allowing Boolean cardinality
constraints in its representation.
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We find the motivation of designing relaxed-CNF rules from
checklists, where a checklist is a list of conditions one needs to check,
e.g., a list of items to take on a travel trip. There are several practical
applications of checklists in interpretable decision making [2, 9]. For
example, the CHADS2 score in medicine [9], that is a clinical predic-
tion rule for estimating the risk of stroke. Another example is a psy-
chometric test, known as MyersBriggs Type Indicator (MBTI) [2],
which indicates differing psychological preferences in how people
perceive the world around them and make decisions. An influential
study on the importance of checklists [10] finds that highly complex
and specialized problems can be handled smoothly by the develop-
ment and consistent usage of checklists. In this paper, we aim to learn
classification rules in the form of a checklist, which we call relaxed-
CNF rules.

We now provide an introduction to relaxed-CNF rules. The sim-
plest logical rules are single level-rules: ORs or ANDs of a subset
of literals, where a literal can be assigned 1 (true) or 0 (false). An
OR operator requires 1 out of N literals to be assigned to 1, while
an AND operator requires all N out of N literals to be assigned to
1. A clause is a collection of literals connected by OR/AND. A CNF
formula is a conjunction (AND) of clauses where each clause is a
disjunction (OR) of literals, while a DNF formula is a disjunction
of clauses where each clause is a conjunction of literals. Therefore,
CNF and DNF formulas can be viewed as two-level rules. Some pop-
ular interpretable rule-based models can be viewed as CNF/DNF for-
mulas. For example, a decision set is a DNF rule that refers to a set
of “if-else” clauses [13, 15]. In this paper, we consider a richer set of
logical formulas that capture the structure of checklists. We consider
hard-OR clauses, where at least M > 1 out of N literals need to
be 1, and we similarly define soft-AND clauses which allow some
of the literals (at most N −M ) to be 0. To be precise, the defini-
tions of hard-OR and soft-AND overlap. We use the term hard-OR
when M ≤ N/2 and soft-AND otherwise. To extend the standard
definition of CNF (which is ANDs of ORs), we define relaxed-CNF
to denote soft-ANDs of hard-ORs. Similarly, relaxed-DNF is hard-
ORs of soft-ANDs. Since hard-OR and soft-AND are differentiated
based on the value ofM andN , relaxed-CNF and relaxed-DNF have
a similar structural representation. In early work, Craven and Shav-
lik [4] considered single level M -of-N rules to explain black-box
neural-network classifiers. Recently, Emad et al. [7] have developed
a semi-quantitative group testing approach for learning sparse single
level M -of-N rules, which are quite restrictive in their ability to fit
the data. In this work, we study a much richer family of two-level
relaxed-CNF rules.

Relaxed-CNF rules are more flexible than pure CNF rules and
can accurately fit more complex classification boundaries. For ex-
ample, relaxed-CNF clauses allow compact encoding of the majority
function, which would require exponentially many clauses in CNF,
showing the exponential gap in the succinctness of the two repre-



Figure 1: An illustrative example of a relaxed CNF classification rule that describes the decision function in the form of a two-level checklist.
This classifier is learned on the WDBC (Wisconsin diagnostic breast cancer) dataset and predicts whether a tumor cell is malignant or not
based on the characteristics of the tumor cell. The first column in each checklist contains Boolean predicate/literals. An entry in the second
column is 1 if the corresponding predicate is true by an observed tumor cell, and 0 otherwise. In the first level, checklist A (resp. B) is true if
the count of true predicates is at least 2 (resp. 3). In the second level, a tumor cell is predicted as malignant if the count of true checklists is at
least 1.

sentations. In addition, relaxed-CNF and CNF rules have the same
functional form where a user has to compute the sum of true liter-
als/clauses and then compare the sum to different thresholds (as in
the example in Figure 1). From the computational perspective, the
structural flexibility of relaxed-CNF rules compared to CNF/DNF
rules makes them harder to learn, which poses the following ques-
tion, can we design a combinatorial framework to efficiently learn
relaxed-CNF rules?

The primary contribution of this paper is an affirmative an-
swer to the above question by proposing an efficient combinato-
rial framework for learning relaxed-CNF rules which we call CRR
(Classification Rules in Relaxed form). In CRR, we construct an
objective function to maximize both prediction accuracy and rule-
sparsity and design a Integer Linear Programming (ILP) formula-
tion for learning the optimal relaxed-CNF rules. To learn a k-clause
relaxed-CNF rule (say R) using the direct (naive) MILP formula-
tion, the size of the MILP query expressed as the number of con-
straints is O(n · k), where the number of features/attributes in the
dataset is fixed and n is the number of training samples. Conse-
quently, the naive MILP formulation fails to handle large datasets.
To address scalability concerns, we propose an efficient mini-batch
training methodology based incremental approach for learning R.
The proposed incremental approach significantly enhances the scal-
ability of CRR.

Through a comprehensive experimental evaluation over datasets
from the UCI and Kaggle repository, we observe that CRR with
relaxed-CNF rules achieves an improved trade-off between accuracy
and rule sparsity and scales to datasets with more than 105 samples.
More significantly, CRR can generate relaxed-CNF rules which have
higher accuracy than CNF rules generated by [11]. Also, compared
to decision lists generated by [3], relaxed-CNF rules are sparser in
large datasets.

The rest of the paper is organized as follows. We discuss related
works in Section 2, introduce the notation and preliminaries in Sec-
tion 3 and formulate the problem in Section 4. We describe the main
contribution of this paper, CRR, in Section 5 and extend to an in-
cremental mini-batch learning in Section 5.3. We then describe the
experimental results in Section 6 and conclude in Section 7.

2 Related Work

In the growing field of interpretable machine learning, several rule-
based systems such as decision trees [23], decision lists [26], de-

cision sets [13, 15] and classification rules [3, 5] have been pro-
posed over the years. More recently, a Bayesian framework has
been adopted to learn rule sets [35], rule lists [17], and falling
rule lists [33]. Building on the connection between rule learning
and Boolean compression sensing, a rule-based classification sys-
tem was proposed to trade-off classification accuracy and represen-
tation size [20]. Su et al. [29] proposed an extension that allows two-
level Boolean rules. In addition to designing classifiers that produce
forms amenable to end-users, there is a large body of work to de-
scribe the working of opaque models (model-agnostic interpretabil-
ity) [16, 18, 25]. While our work can also be applied to interpret
black-box classifiers, we do not pursue this direction in this paper
and leave for future work.

In recent work, Ghosh and Meel [11] propose an incremental
approach for efficiently learning CNF classification rules using a
MaxSAT-based framework. They adopt a sequential partition-based
training methodology in incremental learning. Although the said ap-
proach achieves the runtime improvement, the generated rules highly
depend on the order/position of samples in the training dataset. In
contrast, the incremental framework proposed in this work does not
suffer from strong dependencies on the order of samples in the train-
ing dataset.

3 Preliminaries
We use capital boldface letters such as X to denote matrices, while
lower boldface letters y are reserved for vectors. For a matrix X, Xi

represents the i-th row of X while for a vector y, yi represents the
i-th element of y.

Let F be a Boolean formula and b = {b1, b2, . . . , bm} be the
set of Boolean propositional variables appearing in F . A literal vi
is a variable (bi) or its complement (¬bi). A satisfying assignment
or a witness σ of F is an assignment of variables in b that makes
F evaluate to 1 and is denoted as σ |= F . If σ is an assignment
of variables and bi ∈ b, we use σ(bi) to denote the value assigned
to bi in σ. F is in CNF if F :=

∧k
i=1 Ci is conjunction (AND) of

clauses, where each clause Ci :=
∨
j vj is represented as a disjunc-

tion (OR) of literals. A hard OR (resp. soft AND) clause (C, η) has
an extra parameter η, where η is the threshold on the literals in C.
Let 1[true] = 1 and 1[false] = 0. Motivated by checklists, we
propose relaxed-CNF where in addition to F , we have two more pa-
rameters ηc and ηl. We say that (F, ηc, ηl) is in relaxed-CNF and σ is
its witness if σ |= (F, ηc, ηl) whenever

∑k
i=1 1[σ |= (Ci, ηl)] ≥ ηc



where σ |= (Ci, ηl) iff
∑
v∈Ci

1[σ |= v] ≥ ηl. Informally, σ satis-
fies a clause (Ci, ηl) if at least ηl literals in Ci are set to true by σ
and σ satisfies (F, ηc, ηl) if at least ηc of {(Ci, ηl)} are true. In the
example in Figure 1, ηc = 1 and ηl = 2.

Theorem 1 ([1]). Let (C, η) be a clause in relaxed-CNF where C
has m literals and η ∈ {1, . . . ,m} is the threshold on literals. An
equivalent compact encoding of (C, η) into a CNF formula F =∧
i Ci requires

(
m

m−η+1

)
clauses where each clause is distinct and

hasm−η+1 literals of (C, η). Therefore, the total number of literals
in F is (m − η + 1)

(
m

m−η+1

)
= m when η = 1, otherwise (m −

η + 1)
(

m
m−η+1

)
> m.

Between two vectors u and v of the same size over Boolean vari-
ables/constants (e.g., 0, 1), we use u ◦ v to denote the inner product,
i.e., u ◦ v =

∑
i(ui · vi), where ui and vi are a variable/constant at

the i-th index of u and v, respectively. In this context, the operator
“·” between a variable and a constant follows the standard interpre-
tation, i.e., 0 · b = 0 and 1 · b = b.

We consider a standard binary classification problem, where we
are given a collection of training samples {(Xi, yi)}. For sam-
ple i, Xi ∈ {0, 1}m contains the valuation of the feature vector
x = {x1, x2, . . . , xm}, and yi ∈ {0, 1} is the binary class la-
bel. A classifier R is a mapping that takes in the feature vector x
and returns a class ŷ ∈ {0, 1}, i.e., ŷ = R(x). The goal is not
only to design R to approximate the training set, but also to gen-
eralize to unseen samples arising from the same distribution. We
focus on classifiers that can be expressed as relaxed-CNF. We use
clause(R, i) to denote the i-th clause ofR and |clause(R, i)| to de-
note the size of clause(R, i), which is measured as the number of
literals in the i-th clause. Furthermore, we use |R| to denote the rule-
size of classifier R, which is defined as the number of literals in all
the clauses, i.e., |R| = Σi|clause(R, i)|. In the example in Figure 1,
|R| = |clause(R, 1)|+ |clause(R, 2)| = 3 + 3 = 6.

In this work, we consider the learning problem as an optimiza-
tion problem, wherein we reduce the construction of R to comput-
ing assignments of appropriately designed variables. An optimization
problem consisting of Boolean variables can be solved using Integer
Linear Programming (ILP) where each variable takes value either 0
or 1.4 Given an objective function and a set of constraints compris-
ing of variables with range {0, 1}, ILP finds an optimal assignment
of variables that minimizes the objective function.

4 Problem Formulation
We now present the formal definition of the problem. Given (i) an
instance space (X,y), where X ∈ {0, 1}n×m is the feature ma-
trix with m binary features and n samples,5 and y ∈ {0, 1}n is
the class label vector, (ii) a positive integer k indicating the num-
ber of clauses in the desired rule, (iii) an integer threshold on lit-
erals ηl ∈ {0, . . . ,m} indicating the minimum number of literals
required to be true to satisfy a clause, (iv) an integer threshold on
clauses ηc ∈ {0, . . . , k} indicating the minimum number of clauses
required to be true to satisfy a formula, and (v) the data-fidelity pa-
rameter λ ∈ [0, 1], we learn a classification ruleR, that is expressed
as a k clause relaxed-CNF formula.

Our goal is to find rules that balance two goals: being accurate
while also sparse to avoid over-fitting. To this end, we seek to min-
imize the total number of literals in all clauses, which motivates us
4 The problem can be viewed as either ILP or MaxSAT, but we obtained better

performance from ILP solvers.
5 X contains both the features and their complements as columns as in [20].

to find R with minimum |R|. In particular, suppose R classifies all
samples correctly, i.e., ∀i, yi = R(Xi). Among all the rules that
classify all samples correctly, we choose the sparsest suchR:

min
R
|R| such that ∀i, yi = R(Xi)

In practical classification tasks, perfect classification is very un-
usual. Hence, we need to balance rule-sparsity with prediction er-
ror. Let ER be the set of samples which are misclassified by R, i.e.,
ER = {Xi|yi 6= R(Xi)}. Hence we aim to findR as follows:6

min
R

λ

n
|ER|+

1− λ
k ·m |R| such that ∀Xi ∈ ER, yi 6= R(Xi).

Each term in the objective function is normalized in [0, 1]. The
data-fidelity parameter λ ∈ [0, 1] serves to balance the trade-off be-
tween prediction accuracy and sparsity. Higher values of λ produce
lower prediction errors by sacrificing the sparsity of R, and vice
versa. It can be viewed as an inverse of the regularization parame-
ter.

5 CRR: Classification Rules in Relaxed Logical
Form

In this section, we describe the main contribution of our work, CRR,
a framework for learning relaxed-CNF rules. CRR converts the learn-
ing problem into an ILP-based formulation, learns the optimal as-
signment of variables and constructs rule R based on the assign-
ment. We organize the rest of this section as follows. We discuss
the decision variables in Section 5.1, the constraints and the linear
programming relaxation in Section 5.2, the incremental learning in
Section 5.3, feature discretization in Section 5.4, and adaptation of
CRR for learning other classification rules in Section 5.5.

5.1 Description of Variables
CRR considers two types of decision variables: (i) feature vari-
ables and (ii) noise (classification error) variables. Since fea-
ture xj can be present or not present in each of the k clauses,
CRR considers k variables, each denoted by bij corresponding
to feature xj to denote its participation in the i-th clause, i.e,
bij = 1[j- th feature is selected in i-th clause]. The q-th sample in
the training dataset, however, can be misclassified by R. There-
fore, CRR introduces a noise variable ξq ∈ {0, 1} correspond-
ing to the q-th sample, so that the assignment of ξq can be in-
terpreted whether Xq is misclassified by R or not, i.e., ξq =
1[q-th sample is misclassified]. Hence, the key idea of CRR for
learningR is to define an ILP query over k ·m+n decision variables,
denoted by {b11, b12, . . . , b1m, . . . , bkm, ξ1, . . . , ξn}. In this context, we
define bi = {bij | j = 1, . . . ,m} as a vector of feature variables
corresponding to the i-th clause.

5.2 Construction of ILP Query
We first discuss the objective function of the ILP queryQ for learning
a k-clause relaxed-CNF ruleR. The objective function takes care of
both the rule-sparsity and the prediction accuracy of R. Since CRR
prefers a sparser rule with as few literals as possible, we construct the

6 In our formulation, it is straightforward to add class-conditional weights
(e.g. to penalize false-alarms more than mis-detects), and to allow instance
weights (per sample).



objective function by preferring bij to be 0. Moreover, to encourage
R to predict the training samples accurately, we penalize the number
of variables ξq that are different from 0. In this context, we utilize
the parameter λ to trade off between sparsity and accuracy. There-
fore, the objective function of the ILP query Q is to minimize the
normalized sum of all noise variables ξq weighed by the data-fidelity
parameter λ and feature variables bij weighed by 1− λ (Eq. 1a).

We formulate the constraints of the ILP query Q as follows. Ini-
tially, we define the range of the decision variables and add con-
straints accordingly (Eq. 1b and 1c). For each sample, at first, we
add constraints to mimic the behavior of hard-OR of literals in a
clause, and then we add constraints to apply soft-AND of clauses
in a formula.

We first consider the case when the q-th sample has positive
class label (Eq. 1d). Xq ◦ bi ≥ ηl resembles the hard-OR opera-
tion of literals in a clause. We introduce k auxiliary 0-1 variables
{ξq,1, . . . , ξq,k} to check whether at least ηc clauses are satisfied,
i.e., ξq,i = 1[i-th clause is dissatisfied for q-th sample], which let us
impose the operation of soft-AND over clauses. We then add a con-
straint to make sure that at most k − ηc clauses are allowed to be
dissatisfied, otherwise the noise variable ξq is assigned to 1, i.e., the
q-th sample is detected as aw noise.

A negative labeled sample has to dissatisfy more than k − ηc
clauses in R so that the sample is predicted as 0, which is equiva-
lent to satisfying more than k − ηc constraints Xq ◦ bi < ηl. As
mentioned earlier, we introduce 0-1 variable ξq,i to specify if the
constraint Xq ◦bi < ηl is dissatisfied or not and restrict the count of
dissatisfied clauses

∑k
i=1 ξq,i to be less than ηc.

In the following, we present the ILP query Q.

min
λ

n

n∑
q=1

ξq +
1− λ
k ·m

k∑
i=1

m∑
j=1

bij (1a)

such that,

bij ∈ {0, 1}, i = 1, . . . , k, j = 1, . . . ,m (1b)

ξq ∈ {0, 1}, q = 1, . . . , n (1c)

if ∀q ∈ {1, . . . , n}, if yq = 1, (1d)

Xq ◦ bi +mξq,i ≥ ηl, i = 1, . . . , k (1e)

kξq + k − ηc ≥
k∑
i=1

ξq,i

ξq,i ∈ {0, 1}, i = 1, . . . , k

if ∀q ∈ {1, . . . , n}, yq = 0, (1f)

Xq ◦ bi < ηl +mξq,i, i = 1, . . . , k (1g)

kξq + ηc >

k∑
i=1

ξq,i

ξq,i ∈ {0, 1}, i = 1, . . . , k

In the following, we show the complexity of the ILP query in terms
of the number of variables and constraints.

Proposition 2. Given a training dataset with n samples and m bi-
nary features, the ILP query Q for learning a binary classification
rule in relaxed-CNF has k ·m+n decision variables, k ·n auxiliary
variables, and k ·m+ n · (k + 3) integer constraints.

An ILP solver takes query Q as input and returns the optimal as-
signment σ∗of the variables. We extract relaxed-CNF rule R from
the solution as follows.

Construction 1. Let σ∗ = ILP(Q), then xj ∈ clause(R, i) iff
σ∗(bij) = 1.

Learning thresholds ηl and ηc: Given the training dataset (X,y)
and data-fidelity parameter λ, one could learn the optimum value of
the thresholds ηc and ηl of the desired rule R by specifying their
range as constraints in the ILP query Q in Eq. 1. More precisely,
we need to add two integer constraints ηc ∈ {0, . . . , k} and ηl ∈
{0, . . . ,m} in the above query and then learn their values from the
solution.

A more generalized version to CNF rules would be to learn dif-
ferent thresholds on literals for different clauses, i.e., ηl,i for the i-th
clause. This facilitates to capture the complex decision boundaries,
while still producing rule-based decisions. In our ILP formulation,
it is straight-forward to consider such generalization where we put
constraints ηl,i ∈ {0, . . . ,m}, i = 1, . . . , k and replace ηl with ηl,i
in Eq. 1e and 1g.

Relaxing the ILP problem: The ILP query Q has binary inte-
ger constraints and the solution of this integer program is compu-
tationally intractable. A common approach that efficiently finds an
approximate solution to such a problem extends to relax the integer
constraints, solves the LP-relaxed (linear programming relaxation)
problem, and then rounds the non-integer variables to get an inte-
ger solution as in [20]. In our case, we cannot relax all integer con-
straints because it may violate the structure of relaxed-CNF rules.
Specifically, ηc and ηl (or ηl,i) must be integers in the construction
of relaxed-CNF rules, and ξq,i needs to be an integer to precisely cal-
culate the noise variable ξq . However, we can relax feature variable
bij and noise variable ξq and solve the corresponding MILP problem.
To construct the MILP problem, we replace Eq. 1b with 0 ≤ bij ≤ 1
and Eq. 1c with 0 ≤ ξq ≤ 1, and the rest of the constraints in Q
remain the same. If non-zero bij is found in the solution, we set it to
1 and then construct the rule according to Construction 1.

5.3 Incremental Mini-batch Learning

In Section 5.2, we present an ILP formulation for learning relaxed-
CNF rules and then discussed the relaxation to the integer con-
straints in the MILP formulation to make the approach computation-
ally tractable. However, not all integer constraints in the formulation
can be relaxed, as discussed in Section 5.2. Thus we require an im-
proved learning technique to achieve scalability. We now describe a
mini-batch learning approach to CRR, that learns relaxed-CNF rule
R incrementally from a set of mini-batches while solving a modified
MILP query for each mini-batch.

In incremental mini-batch learning, the learning process repeats
for a fixed number of iterations. In each iteration, we randomly select
an equal number of samples from the full training set and generate a
mini-batch with less number of samples. We then construct a MILP
query on the current mini-batch with a modified objective function.
This objective function simultaneously penalizes the prediction er-
rors on the current mini-batch and the change in the rules learned in
consecutive batches. In the following, we discuss the modified ob-
jective function and the MILP formulation.

Let (X,y) be a training dataset with n samples and m binary
features and τ be the number of iterations in the learning process. In
the p-th iteration, we randomly sample a mini-batch (Xp,yp) with
equal number np of samples and np ≤ n, p = 1, . . . , τ . Note that
all mini-batches have the same binary features x = {x1, . . . , xm} as
in the training set and thus share the same feature variables bij in the
MILP query. Therefore, we devise an objective function that prefers



to keep the assignment of bij learned in the (p− 1)-th iteration while
minimizing the prediction error on the current mini-batch (Xp,yp).
To this end, each bij is assigned 0 initially in the learning process.
This technique enables us to update the learned rule in terms of the
update in assignment of feature variables bij over mini-batches.

Let Qp be the MILP query for the p-th mini-batch for learning
the k-clause relaxed-CNF rule Rp. Thus, R0 is an empty rule. We
consider an indicator function I(·) : bij → {1,−1}, that takes a
feature variable bij as input and outputs −1 if bij is assigned 1 in
the solution of Qp−1 (i.e., feature xj is selected in the i-th clause of
Rp−1), otherwise outputs 1.

I(bij) =

{
−1 if xj ∈ clause(Rp−1, i)

1 otherwise

We now discuss the modified objective function where we multi-
ply I(bij) with bij differently from the objective function in Eq. 1a.

min
λ

n

np∑
q=1

ξq +
1− λ
k ·m

k∑
i=1

m∑
j=1

bij · I(bij) (2)

In the objective function, the first term penalizes the prediction error
of samples in the current mini-batch and the second term penalizes
when bij is assigned differently than its previous assignment. Note
that the total prediction error is normalized by dividing by n, which
is the size of the full training dataset. This normalization is useful as
it assists in updating Rp while also considering the relative size of
the mini-batch. Intuitively, if the size np of the mini-batch is close to
the size n of the training set, more priority is given to the prediction
accuracy and vice versa. The constraints in the query Qp are similar
to the constraints in Eq. 1. Finally, the prediction rule R is Rτ that
is learned for the last mini-batch.

Proposition 3. At each iteration, the MILP query in the incremental
mini-batch learning approach has k ·m+ np · (k + 3) constraints,
where np is the size of the mini-batch.

Learning thresholds ηl and ηc: In the incremental learning, the
objective function in Eq 2 does not impose any constraint on the
thresholds. In fact, the thresholds are learned in each iteration by
solving the corresponding MILP query and we consider their final
values in the last iteration.

5.4 Learning with Non-binary Features
Since our problem formulation requires input instances to have bi-
nary features, datasets with categorical and continuous features re-
quire a preprocessing stage. Initially, for all continuous features, we
apply entropy-based discretization [8] to infer the most appropriate
number of categories/intervals by recursively splitting the domain of
each continuous feature to minimize the class-entropy of the given
dataset.7 For example, let xc ∈ [a, b] be a continuous feature, and
entropy-based discretization splits the domain [a, b] into three inter-
vals with two split points {a′, b′}, where a < a′ < b′ < b. There-
fore, the result intervals are xc < a′, a′ ≤ xc < b′, and xc ≥ b′.

After applying entropy-based discretization on continuous fea-
tures, the dataset contains only categorical features, that can be con-
verted to binary features using one-hot encoding as in [11, 16]. In this
encoding, a Boolean vector is introduced with cardinality equal to

7 A simple quantile-based discretization also works, but it requires an extra
parameter (i.e., the number of quantiles).

the number of distinct categories. Let a categorical feature have three
categories ‘red’,‘green’, and ‘yellow’. In one-hot encoding, samples
with category-value ‘red’,‘green’, and ‘yellow’ would be converted
into binary features while taking values 100, 010, and 001, respec-
tively.

5.5 Learning Rules in Other Logical Forms

While CRR learns classification rules in relaxed-CNF form, we can
leverage this framework for learning classification rules in other logi-
cal forms, for example, CNF, DNF, and decision sets. To learn a CNF
rule one can set ηl = 1 and ηc = k. Moreover, to learn a DNF rule,
one would first complement the class label of all samples, then learn
a CNF rule by setting the parameters as described and finally negate
the learned rule. We note that the literature on decision sets also fits
into our formulation, because decision sets can be represented by
DNF formulas. As a future work, we are investigating whether re-
lated formulations could be used to address other learning paradigms
such as decision lists.

6 Experiments

We implement a prototype of the incremental version of CRR8 based
on the Python API for CPLEX and conduct an extensive empirical
analysis to understand the behavior of CRR on real-world instances.
The objective of our experimental evaluation is to answer the follow-
ing questions:

1. How do the accuracy and training time for CRR behave vis-a-
vis state-of-the-art classifiers on large datasets arising in machine
learning problems in practice?

2. Can CRR generate sparse rules compared to that of other rule-
based models?

3. How do the training time, accuracy, and rule size vary with model
hyper-parameters?

In summary, relaxed-CNF rules generated by CRR achieves higher
accuracy and more concise representation than CNF rules in most of
the datasets. Moreover, relaxed-CNF rules are shown to be sparser
than decision lists with competitive accuracy in large datasets. Fi-
nally, we show how to control the trade-off between rule-sparsity
and accuracy using the hyper-parameter λ; and between accuracy
and training time using the hyper-parameter k and size np of each
mini-batch. In the following, we give a detailed description of the
experiments.

6.1 Experiment Methodology

We perform experiments on a high-performance computer cluster,
where each node consists of E5-2690 v3 CPU with 24 cores, 96 GB
of RAM. Each experiment is run on four cores of a node with 16
GB memory. We compare the performance of CRR with state-of-
the-art classifiers, e.g. IMLI [11], RIPPER [3], BRS [35], random
forest (RF), support vector classifier (SVC), nearest neighbors classi-
fiers (k-NN), and l1 penalized logistic regression (LR). Among them,
IMLI, BRS, and RIPPER are rule-based classifiers. In particular,
IMLI generates classification rules in CNF using a MaxSAT-based
formulation and we use Open-WBO [21] as the MaxSAT solver for

8 The source code is available at https://github.com/meelgroup/
mlic



IMLI. We compare with propositional rule learning algorithm RIP-
PER, which is implemented in WEKA [12] and generates classifica-
tion rules in the form of decision lists. BRS is a Bayesian framework
for generating rule sets expressed as DNF. For other classifiers, we
use the Scikit-learn module of Python [24]. For all classifiers, we set
the training cut-off time to 1500 seconds.

We consider a comparable number of hyper-parameter choices for
each classifier. Specifically for CRR, we choose the data-fidelity pa-
rameter λ ∈ {0.5, 0.67, 0.84, 0.99}, the number of clauses k ∈
{1, 2, 3}, the relative size of mini-batch np

n
∈ {0.25, 0.50, 0.75},

and the number of iterations τ ∈ {2, 4, 8, 16}. We learn the value of
ηc and ηl from the dataset as described in Eq. 5.2. In CPLEX, we set
the maximum solving time of the LP solver to 1000 seconds ( 1000

τ

seconds for each iteration) and the remaining 500 seconds is allot-
ted to construct the MLIP instances, parse the solutions and execute
other auxiliary tasks of the learning algorithm. We present the cur-
rent best solution of CPLEX when the solver times out while finding
the optimal solution.

We control the cut-off of the number of examples in the leaf
node in the case of RF and RIPPER. For SVC, k-NN, and LR
we discretize the regularization parameter on a logarithmic grid.
For BRS, we vary the max clause-length ∈ {3, 4, 5}, support ∈
{5, 10, 15}, and two other parameters s ∈ {100, 1000, 10000} and

Dataset Size Features RIPPER BRS IMLI CRR

Heart 303 31 78.69 72.13 72.13 77.69
7 19 13 4.5

5.27s 25.07s 1.8s 122.5s

Ionosphere 351 144 88.65 91.43 89.29 91.43
8 4 8.5 20

5.87s 75.53s 2.09s 5.59s

WDBC 569 88 95.22 95.65 93.91 94.69
7.5 12 7 34.5
5.7s 630.23s 1.38s 316.32s

Magic 19020 79 84.04 74.15 71.97 81.31
115 3 24 31

15.86s 56.46s 141.2s 1012.6s

Tom’s HW 28179 910 97.4
—

95.88 97.34
36 30 4

42.73s 92.65s 1071.58s

Credit 30000 110 81.68
—

81.42 82.04
38.5 10 32

14.52s 17.66s 1021.35s

Adult 32561 144 84.31
—

82.08 84.86
94 23 18

27.61s 11.91s 1016.36s

Twitter 49999 1511 95.74
—

94.24 95.16
179.5 57 12

170.87s 238.29s 1144.66s

Weather-AUS 107696 141 84.57
—

82.83 83.34
195 7 2

121.02s 366.12s 1115.27s

Skin 245057 119 98.32
—

98.92 95.08
725 201 29

1313.19s 103.8s 825.6s

Table 1: Comparisons of test accuracy, rule-size and training time
among different rule-based classifiers. Every cell in the last four
columns contains the test accuracy in percentage (top value), rule
size (middle value), and training time in seconds (bottom value). In
the experiments, CRR shows higher test accuracy than IMLI and gen-
erates sparser rules than RIPPER.

ρ ∈ {0.9, 0.95, 0.99}. For IMLI, we consider λ ∈ {1, 5, 10} and
k ∈ {1, 2, 3} and vary the number of batches τ such that each batch
has at least 32 samples and at most 512 samples.

6.2 Results
In the following, we first discuss empirical results of rule-based clas-
sifiers, then extend analysis to non-rule-based classifiers, and finally
discuss the effect of different choices of hyper-parameters.

Performance Evaluation of CRR with Rule-based Classifiers:

We conduct an assessment of performance using five-fold nested
cross-validation as in [5] and report the median of test accuracy, rule-
size and training time of all rule-based classifiers in Table 1. Specif-
ically, we show the dataset, the number of samples and the number
of discretized features in the first three columns in Table 1. Inside
each cell of column four to 11, we present the test accuracy (top
value), rule-size (middle value) and training time (bottom value) of
each classifier for each dataset.

We first compare relaxed-CNF rules generated by CRR with CNF
rules generated by IMLI. In Table 1, relaxed-CNF rules exhibit
higher prediction accuracy than CNF rules in the majority of the
datasets, showing the effectiveness of using a more expressive repre-
sentation of classification rules in capturing the decision boundary. In
addition, the generated relaxed-CNF rules are comparatively smaller
than CNF rules in terms of rule-size in most of the datasets. There-
fore, relaxed-CNF rules improve upon CNF rules in terms of both
prediction accuracy and rule size in the majority of the datasets. In
this context, CRR provides a trade-off between accuracy and rule-
size depending on the choice of hyper-parameters and the experi-
mental results are discussed later in Section 6.2. We then compare
relaxed-CNF rules with DNF rules generated by BRS and find that
relaxed-CNF rules outperform DNF rules with respect to prediction
accuracy in several datasets. At this point, BRS fails to scale for
larger datasets as shown in Table 1. We finally compare relaxed-CNF
rules with decision lists generated by RIPPER. In the experiments,
relaxed-CNF rules achieve comparable prediction accuracy with de-
cision lists in most of the datasets. In contrast, RIPPER generates
very large decision lists compared to relaxed-CNF rules in the ma-
jority of the datasets, more precisely in large datasets. To summarize
the performance of CRR among different rule-based classifiers, CRR
can generate smaller relaxed-CNF rules with better accuracy in num-
bers of the cases with a couple of exceptions.

Moving focus on the training time, the non-incremental version
of CRR times out on larger instances in the experiments, potentially
producing sub-optimal rules with reduced accuracy, thereby high-
lighting the need for the incremental approach. On the other hand, the
incremental version of CRR can handle most of the datasets within
the allotted amount of time. In Table 1, CRR takes a comparatively
longer time to generate relaxed-CNF rules in comparison with other
rule-based classifiers, e.g., RIPPER, and IMLI because of the flexi-
ble combinatorial structure of relaxed-CNF rules. However, the test-
ing time of CRR is insignificant (< 0.01 seconds) and thus can be
deployed in practice.

Performance Evaluation of CRR with Non-rule-based
Classifiers:

We compare the test accuracy of CRR with non-rule-based classi-
fiers: LR, SVC, RF, and k-NN and report the results in Table 2. In the



Dataset LR SVC RF k-NN CRR

Heart 84.29 83.33 81.97 78.69 77.69
Ionosphere 94.29 91.43 92.96 91.43 91.43
WDBC 98.26 96.46 96.9 95.61 94.69
Magic 85.15 84.45 85.3 77.9 81.31
Tom’s HW 97.62 97.66 97.52 94.59 97.34
Credit 82.04 82.12 81.97 80.5 82.04
Adult 87.24 86.82 86.84 84.68 84.86
Twitter 96.28 96.34 96.37 — 95.16
Weather-AUS 85.71 — 85.63 — 83.34
Skin 97.21 — 99.81 — 95.08

Table 2: Comparisons of test accuracy among CRR and non-rule-
based classifiers. In the experiments, CRR achieves competitive pre-
diction accuracy in spite of being a rule-based classifier.
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Figure 2: Effect of model hyper-parameters on test accuracy for Heart
disease dataset.

experiments, we find that CRR, in spite of being a rule-based clas-
sifier, is able to achieve competitive prediction accuracy with non-
rule-based classifiers. In this context, SVC, and k-NN can not com-
plete training within the allotted time particularly in the datasets with
more than 105 samples, while CRR can still generate relaxed-CNF
rules with competitive accuracy. Therefore, CRR shows the promise
of applying rule-based classifiers in practice with an added benefit of
interpretability along with competitive accuracy.

Varying Model Parameters:

In Figure 2, 3, and 4, we demonstrate the effect of varying the
hyper-parameters of CRR. To understand the effect of a single hyper-
parameter, we fix the values of other hyper-parameters to a default
choice where the default choice results in the most accurate rule.

Varying data-fidelity parameter (λ): As we increase data-
fidelity parameter λ in the objective function in Eq. 1a and Eq. 2,
more priority is given to the prediction accuracy than the sparsity of
the rules. In most of the datasets, we similarly observe an increase in
accuracy and also an increase in the size of the rules when λ is higher.
This suggests that improved interpretability can often come at a mi-
nor cost in accuracy. In addition, we find an increase in training time
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Figure 3: Effect of model hyper-parameters on rule-size for Heart
disease dataset.
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Figure 4: Effect of model hyper-parameters on training time for Heart
disease dataset.

for most of the datasets indicating that the MILP query usually takes
a longer time to find the solution when more priority is given on the
prediction accuracy.

Varying the number of clauses (k): As we increase k, CRR al-
lows the generated rules to capture the variance in the given dataset
more effectively, that results in higher accuracy in most of the
datasets. The rule-size also increases as we learn more clauses. In
addition, the training time increases, that can be reasoned by the fact
that the number of constraints in the MILP formulation is linear with
k. Thereby, the number of clauses k provides a control over the ac-
curacy of the generated rule and training time.

Relative size of the mini-batch: We vary the relative size of the
mini-batch np

n
to observe its effect on the accuracy and the size of

the rules. In most datasets, the accuracy increases when more sam-
ples are considered in the mini-batch, costing higher training time.
Moreover, the size of the generated rule increases as np

n
increases,

that can be supported by the increase in the variance of the samples
in the mini-batch.

Varying the number of iterations (τ ): As we allow more iter-



ations in the learning process, we find an increase in accuracy in
most datasets. The training time also increases with τ because CRR
is required to solve in total τ queries. We also observe an increase
in rule-size in most datasets. The reason is that the objective func-
tion in the incremental mini-batch approach in Eq. 2 does not put a
restriction on the size of the rules, rather on the change of rules in
consecutive iterations. In addition, the learned values of the thresh-
olds ηc and ηl in one iteration are not carried to the MILP query in
the next iteration, that may cause an increase of rule-size.

7 Conclusion
In this paper, we proposed an efficient combinatorial framework
called CRR, for learning relaxed-CNF classification rules, that are
more expressive than CNF/DNF rules. CRR uses a novel integration
of mini-batch learning procedure with the MILP framework to learn
sparse relaxed-CNF rules. Our experimental results demonstrate that
CRR is able to learn relaxed-CNF rules with higher accuracy and
more concise representation than CNF rules. Moreover, the gener-
ated rules are sparser than decision lists in large datasets.
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