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ABSTRACT
Given a formula 𝐹 , the problem of model counting is to compute
the number of solutions (also known as models) of 𝐹 . Over the
past decade, model counting has emerged as key building block of
quantitative reasoning in design automation and artificial intelli-
gence. Given the wide-ranging applications, scalability remains the
major challenge. Motivated by the observation that the formula
simplification can dramatically impact the performance of the state-
of-the-art exact model counters, we design a new state-of-the-art
preprocessor, Arjun2, that relies on tight integration of techniques.
The design of Arjun2 is motivated from our observation that it is of-
ten beneficial to employ preprocessing techniques whose overhead
may be prohibitive for the task of SAT solving but not for model
counting: accordingly, we rely on a specifically tailored SAT solver
design for redundancy detection, sampling-boosted backbone detec-
tion, as well as storing of redundancy information for the purposes
of improving propagation within top-down model counters. Our
detailed empirical evaluation demonstrates that Arjun2 achieves
significant performance improvements over prior model counting
preprocessors in terms of instance-size reductions achieved as well
as the runtime improvements of the downstream model counters.
ACM Reference Format:
Mate Soos and Kuldeep S. Meel. 2024. Engineering an Efficient Preprocessor
for Model Counting. In 61st ACM/IEEE Design Automation Conference (DAC
’24), June 23–27, 2024, San Francisco, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3649329.3658489

1 INTRODUCTION
Given a formula 𝐹 , the problem of model counting is to compute the
number of models (i.e., satisfying assignments or solutions) of the
formula 𝐹 . Model counting is a fundamental problem in design au-
tomation and artificial intelligence, with applications ranging from
quantified information flow analysis [14], network reliability [11],
neural network verification [3], software reliability, and the like.
Motivated by the wide ranging applications, there have been sus-
tained effort in the development of exact (as well as approximate)
model counters over the past decade; perhaps best illustrated by
the presence of yearly organized model counting competitions [15].
While the efforts over the years have significantly improved the
runtime performance of model counters, scalability continues to
remain the primary challenge.

In this study, we focus on expanding the reach and efficiency of
current state-of-the-art model counters by employing preprocessing
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methods specifically designed for model counting. It’s important
to note that in our work, we concentrate on exact model counters.
Approximate model counters, such as ApproxMC [31], operate in
a fundamentally different manner. Therefore, preprocessing tech-
niques that enhance the performance of exact model counters may
adversely affect the performance of ApproxMC [29].

One of the primary motivations for incorporating preprocess-
ing to enhance the efficiency of model counters originates from
Boolean satisfiability (SAT) solving. In SAT solving, preprocessing
has proven to be a vital component and is seamlessly integrated
into modern SAT solvers. However, it’s essential to highlight a key
distinction. While correctness in SAT preprocessing merely necessi-
tates the maintenance of the satisfiability status of input instances,
preprocessing for model counting imposes a much stricter require-
ment: the preservation of the number of satisfying assignments.
This constraint limits the applicability of certain SAT preprocessing
techniques to model counting. Conversely, since model counting is
significantly more computationally challenging than SAT solving,
it allows us to leverage more potent techniques that may not be
viable in the realm of SAT solving.

The main contribution of this work is to develop an efficient
preprocessing engine called Arjun2 for model counting. Arjun2
incorporates a wide range of preprocessing techniques. In partic-
ular, Arjun2 integrates three types of preprocessing techniques:
(A) lightweight preprocessing techniques that draw their origins
from the field of SAT solving but whose extent has been tailored to
model counting, (B) SAT-based preprocessing techniques wherein
we rely on lightweight SAT solving for redundancy detection, (C)
sampling-based backbone detection wherein we rely on recent
progress in the design of efficient CNF samplers. All these tech-
niques preserve the count of models, allowing them to be used in
conjunction with exact counters. Furthermore, we propose a new
form of preprocessing that provides a model counter with infor-
mation about redundant clauses detected during preprocessing to
enhance propagation within the counter.

Through extensive empirical evaluation, we demonstrate that
Arjun2 significantly simplifies problem instances compared to other
existing model counting preprocessors, by removing a significantly
larger number of variables and clauses from the formula. The in-
tegration of Arjun2 with state-of-the-art model counters greatly
enhances their runtime efficiency and scalability.

2 BACKGROUND
Let 𝑋 = {𝑥1, 𝑥2, . . . 𝑥𝑛} be the set of Boolean variables and let 𝐹 be
a Boolean formula in conjunctive normal form (CNF) defined over
𝑋 . An assignment 𝜎 : 𝑋 ↦→ {0, 1} is called a satisfying assignment
or solution of 𝐹 if it makes 𝐹 evaluate to true. We denote the set
of all solutions of 𝐹 by Sol(𝐹 ). Often, we are only interested in
counting over a subset of variables 𝑃 ⊆ 𝑋 . Let Sol(𝐹 )↓𝑃 to indicate
the projection of Sol(𝐹 ) on 𝑃 . Given a formula 𝐹 over𝑋 , the problem
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of model counting is to compute |Sol(𝐹 ) |. Similarly, given a formula
𝐹 and projection set 𝑃 ⊆ 𝑋 , the problem of projected counting is to
compute |Sol(𝐹 )↓𝑃 |.

A formula is represented inNegationNormal Form (NNF)wherein
every internal node is either a disjunction (∨) or conjunction (∧),
and every leaf is a literal. We say that a formula 𝐹 is in d-DNNF
if every ∨-node of 𝐹 is deterministic and every ∧-node of 𝐹 is
decomposable.

2.1 Top-Down Model Counters
Top-down model counters combine conflict-driven clause learning
(CDCL) with component caching to achieve scalability. On a high
level, the trace of a top-downmodel counter can be represented by a
d-DNNF as the counters operate by branching on a variable, which
can be represented by a deterministic ∨. Whenever the counter
finds that the current residual formula can be decomposed into dis-
joint components such that the subformulas do not share variables,
then the counter proceeds to perform decomposition followed by
counting each of these subformulas independently, and multiplies
the returned counts. Top-down counters refer to the formula rep-
resented at each node as a component. Caching refers to these
counter’s cache to store a component and check whether the cur-
rent component has already been encountered by the counter in its
execution. If so, it can retrieve the count of the component from
the cache, saving on processing time.

Top-down counters have dominated the model counting com-
petition over the past three years. As indicated earlier, scalability
continues to remain a major challenge for model counters and there-
fore, we focus on achieving further scalability of top-down model
counters through the design of efficient preprocessing techniques.
To guide the development of preprocessing techniques, we rely on
minimizing the following two features of the preprocessed CNF:
1. Variables With fewer variables, the counter has to make fewer
decisions and propagations to reach a leaf, which can significantly
reduce the size of the (implicit) d-DNNF it produces. Furthermore,
the performance of top-down model counters is heavily affected by
the efficacy of the component cache whose performance depends
on the number of variables in the formula. The fewer the number
of variables, the smaller is the expected size of each component in
the cache, leading to higher expected cache hit rate.
2. Clauses With fewer clauses, the counter has a higher chance
of performing disjunctions. Furthermore, removing clauses can
further improve the cache hit rate, similarly to removing variables.

It is worth remarking that while these two features serve as a use-
ful rules of thumb to help in improving preprocessing techniques,
they are not the primary measures of effectiveness of a preprocessor.
The primary measure for effectiveness is the reduction of total time
taken by the preprocessor and the model counter.

2.2 Related Work
Preprocessing has emerged as a crucial component of modern CDCL
solvers and as such all state-of-the-art SAT solvers heavily rely
on pre- and in-processing. We refer the interested reader to [8]
for an excellent survey. Motivated by the success of preprocess-
ing techniques in the context of SAT solving, Lagniez and Mar-
quis [24] initiated the study of preprocessing techniques in the

context of model counting. They evaluated the effectiveness of stan-
dard preprocessing techniques proposed in SAT solving, such as
vivification, occurrence reduction, backbone identification, as well
as equivalence, AND, and XOR gate identification and replacement.
These techniques were implemented in the tool pmc. Subsequently,
Lagniez, Lonca, and Marquis sought to enhance the size reduction
of preprocessed Conjunctive Normal Forms (CNFs) by leveraging
the concept of definability. They developed the tool B+E (now re-
ferred to as BiPe), which has been widely adopted by researchers
as a preprocessing step before invoking model counters, and has
been utilized as a preprocessor in the model counting competition.

Over the past two years, we have witnessed the development
of three new model counters which have demonstrated impressive
runtime performance: GPMC [33], ExactMC [26], and SharpSAT-
TD [21, 22]. Each of these counters have been accompanied by a
dedicated preprocessing engine, which highlights the crucial role
of preprocessors in the runtime performance of current state-of-
the-art model counters.

3 Arjun2
In this section, we present the core technical contribution of our
work: Arjun21, an efficient pre-processor that improves the runtime
performance of state-of-the-art model counters.

Our algorithmic engineering is heavily motivated by the obser-
vation that model counting is a significantly harder problem than
plain SAT solving, supported by theoretical as well as empirical
evidence. Therefore, in contrast to SAT solving where preprocess-
ing techniques need to be relatively lightweight, it is worthwhile
to rely on preprocessing techniques for counting that may require
calls to a SAT solver or even a sampler. Another novel aspect of
Arjun2 is to allow model counters to take advantage of clauses that
are removed during preprocessing. These redundant clauses are
marked as such in the preprocessed formula and can be used by the
model counter to improve conflict-driven clause learning search.
This technique allows the model counter to achieve the best of both
worlds: use clauses for conflicts but without making the resulting
components larger.

In the rest of this section, we discuss the preprocessing tech-
niques incorporated in Arjun2: Section 3.1 lists the lightweight
preprocessing techniques, Section 3.2 lists techniques relying on
lightweight SAT solving, Section 3.3 discusses sampling-based pre-
processing, and Section 3.4 discusses redundancy recycling. Finally,
Section 3.5 shows how these techniques are combined.

3.1 Lightweight Preprocessing
Preprocessing in the context of SAT solving has had a long history
with many techniques proposed over the years [9, 12, 19, 20, 30].
We use the following set of techniques in Arjun2:

Backward Subsumption This is the standard clause subsump-
tion algorithm used by SatELite [12] that generates a hash of each
clause and uses a Bloom filter [10] to pre-filter candidates that can
be subsumed. It does this in a backward manner, in the sense that
instead of looking for a clause that could subsume𝐶 , we are looking
for clauses that are subsumed by 𝐶 .

1Code available at: github.com/meelgroup/arjun
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Backward Subsumption with Resolvents This technique
computes all resolvents of all variables and runs the backward
subsumption query with the resulting resolvents. For example, if
variable 𝑥1 is in clauses (𝑥1 ∨ 𝑥2) and (¬𝑥1 ∨ 𝑥3), its resolvent,
𝐶𝑟 = (𝑥2 ∨ 𝑥3). 𝐶𝑟 , can be used to subsume 𝐶𝑠 = (𝑥2 ∨ 𝑥3 ∨ 𝑥4).

Replacement with OR-gates This algorithm finds OR gates of
the form 𝑥1 = 𝑥2 ∨ 𝑥3 using [27], where each gate has two inputs.
Then, it finds a clause of the form (𝑥1 ∨ 𝑥2 ∨𝐶) where 𝐶 is any set
of literals, and replaces it with the clause (𝑥1 ∨𝐶). This rewriting
removes a literal from the formula via each successful execution.

Bounded Variable Elimination (BVE) Bounded variable elim-
ination is ran as per SatELite [12]. However, we use all the ideas
employed by the Kissat SAT solver to reduce the number of resol-
vents [7], via regular and irregular gate detection through UNSAT
cores produced by PicoSAT [6] and through weakening. Weakening
is a technique whereby a clause is copied and temporarily enlarged
via reverse self-subsuming resolution using binary clauses. For ex-
ample, the clause (𝑥1 ∨ 𝑥2 ∨ 𝑥3) can be weakened via (𝑥1 ∨ ¬𝑥4)
to (𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∨ 𝑥4). This helps improve the chance of obtaining
more tautological resolvents during BVE.

Ternary Resolvents Arjun2 produces ternary resolvents as
redundant clauses from all 3-long clauses that can be resolved with
each other as per [5]. These clauses become useful later when they
can subsume potentially larger irredundant clauses or can be used
to strengthen them. In Section 3.4, we inject these ternary clauses
into the redundant clause database of the model counter to improve
its Boolean Constraint Propagation (BCP) performance, while not
negatively impacting its ability to find disconnected components.

Tree-based Lookahead Tree-based lookahead [17] is a tech-
nique that can achieve three goals at the same time. It performs
(1) hyper-binary resolution [2], (2) transitive reduction [1], and
(3) BCP-based probing. Transitive reduction sparsifies the binary
implication graph, and hyper-binary resolution adds redundant
binary clauses to ensure stronger propagation properties of the
formula. The new redundant binary clauses can later be used to
subsume larger clauses or to strengthen them. Furthermore, they
come useful later in Section 3.4 to improve the BCP strength of the
model counter.

Backwards Subsumption and Strengthening This step is
similar to Backwards Subsumption but this time we also per-
form backwards strengthening, using the algorithm from SatELite.
Strengthening works by discovering clause pairs of the form {(𝑥1 ∨
𝐶), (¬𝑥1∨𝐷)}where𝐷 ⊆ 𝐶 and replaces it with the pair {(𝐶), (¬𝑥1∨
𝐷)}, removing a literal.

BCP-based Clause Vivification Vivification [28] enqueues the
negation of the literals of a clause one by one and performs BCP
after each literal enqueued. If the BCP fails, the rest of the literals
not yet enqueued can be deleted from the clause. Furthermore,
conflict analysis is performed to determine the literals responsible
for the conflict, potentially further strengthening the clause.

3.2 SAT-based Preprocessing
We now discuss preprocessing techniques that rely on a SAT solver.

We present a high-level overview of vivification in Algorithm 1.
This algorithm attempts to check, for each clause cl and for each
literal ℓ appearing in the clause cl, whether ℓ can be removed. To

achieve this, we invoke a SAT solver with the assumption that it is
the conjunction of the negation of all literals except ℓ appearing in
cl. If the solver returns UNSAT, we can deduce that the formula 𝜑
implies cl \ ℓ (i.e., a stronger clause formed by removing the literal
ℓ from cl). Therefore, ℓ can be removed from cl.

We now present a high-level overview of sparsification in Algo-
rithm 2. Here, we create and add a new indicator variable for each
clause. This indicator variable is later used to turn the clause on
or off. To check whether a clause is needed, its relevant indicator
variable is assumed to TRUE, along with all active clauses’ indicator
variables assumed FALSE, as well as the negation of the clause in
question. A solve() call is then performed. If the result is UNSAT,
the clause is implied by the rest of the clauses, and the clause can
be removed. The clause is removed by letting its indicator literal be
TRUE at toplevel, and continuing.

Both algorithms detailed above are special in that they require
many assumptions for each SAT call, hence a solver that can handle
assumptions at a high rate is of paramount importance. For example,
if the number of clauses is𝑚, and say 10% of clauses can be removed
via sparsification, then𝑚 calls need to bemade during sparsification,
each with on average .95𝑚 assumption literals. Here,𝑚 can be large,
almost always above 1000. Normal SAT solvers would enqueue
and propagate these ≈ 𝑚 assumption literals one by one [13] for
each solve() call and each restart within the solve() call. This
is extremely time-consuming and would take the majority of the
solving time for most SAT solvers.

The heavy usage of assumptions necessitates the design of a
specialized solver, as evidenced by the development of Kitten in-
side the Kissat solver, and the specialized CDCL loop inside the
Arjun tool [32]. In the same vein, we rely on a specialized SAT
solver architecture implemented by SharpSAT-TD [22]. To handle
the large number of assumptions, the lightweight SAT solver inside
SharpSAT-TD, calledOracle2, allows one to set and change assump-
tions at any point, without the need to propagate all assumptions
at every call to solve() or after every restart. Instead, only the
updated assumption(s) need to be propagated once, after solve().

The above change necessitates that no literal can be learnt at top-
level, or re-propagation would be needed. It also makes it impossible
to return a minimal reason clause in case of an UNSAT result.
However, neither of these issues affect our use case.

Satisfying Assignments Cache for Vivification. During vivification
every SAT result to solve() is a solution to the original CNF. Hence,
if during any solve() call the set of assumptions has been seen in a
solution, the call will terminate with SAT. To take advantage of this,
for every solve() call, Oracle caches the solution and therefore,
in the future instead of invoking the call to solve(), it can check
if the set of assumptions is present in any solution already in the
cache.

3.3 Sampling-based Preprocessing
Backbone detection [18] aims at discovering boolean values of vari-
ables that are shared by all solutions to a formula. These variables’
values can be set to the shared fixed value since all solutions must
agree on them. This in turn can help in e.g. counting solutions, as

2github.com/Laakeri/sharpsat-td/tree/main/src/preprocessor/oracle.cpp

https://github.com/Laakeri/sharpsat-td/blob/main/src/preprocessor/oracle.cpp
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Algorithm 1 Vivification (𝜑). As in SharpSAT-TD via Oracle
1: for cl ∈ clauses(𝜑 ) do
2: assump← ¬(𝑐 )
3: for lit ℓ ∈ 𝑐 do ⊲ Try removing each literal one by one
4: assump.Remove(ℓ )
5: ret← solve(assump)
6: if ret == UNSAT then
7: cl.Modify(¬assump) ⊲ Strengthen cl
8: break
9: else
10: assump.Append(ℓ ) ⊲ Couldn’t remove literal 𝑙 from cl

Algorithm 2 Sparsification(clsList). As in SharpSAT-TD viaOracle
1: indices← [𝑛 + 1, 𝑛 + 2, . . . 𝑛 + len(clsList) + 1]
2: procClsList← clsList
3: for 𝑖 ∈ [0 . . . len(clsList) ] do ⊲ Add extra literal to all clauses
4: tmp← clsList[𝑖 ]
5: tmp.Append(indices[𝑖 ] ) ⊲ indices[i] is an indicator for i-th clause
6: solver.AddClause(tmp)
7: for 𝑖 ∈ indices do solver.SetAssumpsLit(¬indices[𝑖 ] ) ⊲ ∀ clauses are active
8: for 𝑖 ∈ [0 . . . len(clsList) ] do
9: solver.SetAssumpsLit(indices[𝑖 ] ) ⊲ Disable this clause
10: tmp← ¬(clsList[𝑖 ] )
11: ret← solve(tmp) ⊲ Check if the clause is redundant
12: if ret== SAT then solver.SetAssumpsLit(¬indices[𝑖 ] )
13: else if ret== UNSAT then procClsList.Remove(clsList[𝑖 ] )
14: return procClsList

these variables effectively disappear from the formula, reducing
the variable, clause, and literal count of the formula.

Previous work on backbone computation has focused on formu-
las that were not specifically made for model counting. Formulas in
the Model Counting Competition [15], in contrast to formulas in e.g.
the SAT Competition [4] tend to be extremely easily satisfiable, i.e.
it is very easy to find a satisfying assignment to them. This opens
up the space to design backbone detection algorithms relying on
subroutines harder than SAT solving. For example, SAT samplers
could be used, which take in a formula as input and seek to return
a satisfying assignment uniformly at random. While uniform sam-
plers with rigorous guarantees struggle to scale, the past few years
have witnessed the design of samplers that work well in practice.

We can take advantage of this by sampling the solution space
and finding literals that are rotatable as per [18], since finding many
solutions is comparably fast in a model counting setting. Rotatable
literals are literals that exist both in positive and negative forms
in different solutions. Clearly, these literals cannot be part of the
backbone of a formula. To this end, we use the uniform-like sampler
CMSGen [16] to randomly sample a number of solutions (30 in our
implementation) from the solution space of the formula to discover
rotatable literals. CMSGen attempts to find widely different solu-
tions, hence, there is a high likelihood that many rotatable literals
are discovered this way. This significantly reduces the number of
potential candidates that could be backbone. We then run Algo-
rithm 3 from [18] to check for the variables that have not been
discovered to be rotatable.

3.4 Redundant Clause Recycling
During our running of Tree-based Lookahead, and Ternary Res-
olution, we collect binary (through hyper-binary resolution) and

ternary (as ternary resolvents) redundant clauses. These two redun-
dant clause classes are both known to improve the performance of
SAT solvers [5, 17]. Furthermore, during sparsification, in Arjun2
the sparsified clauses are collected as redundant clauses. While
redundant clauses are not necessary to get a correct count for the
instance, they can significantly improve the BCP efficiency of a
model counter, and hence improve its performance.

To take advantage of these collected redundant clauses, we pro-
pose an extension to the DIMACS format : these redundant clauses
are emitted into the preprocessed CNF with a special syntax ’c
red CLAUSE 0’. To demonstrate the ease of usage of our extended
format and integration of redundant clauses, we also implemented
a modification of GANAK [29], a state-of-the-art model counter to
support this format extension.

3.5 Putting it All Together
The order of preprocessing techniques matters a great deal in the
quality of the final preprocessed instance. Given the large number
of possible permutations, it is important to consider the potential
benefits and challenges of different orders. Observe that sparsifica-
tion benefits from backbone detection. Furthermore, when a clause
contains a literal that is backbone, vivification reduces it to the
literal, hence simulating backbone detection. Therefore, it is best
to run backbone detection before vivification. While vivification
and sparsification could be performed interchangeably, it is best to
perform vivification first, as this will ensure that more clauses can
later be sparsified away, given that after vivification clauses are in
general stronger.

Arjun2 combines all the preprocessing techniques mentioned
above in the following order. Firstly, we run Equivalent Literal Rea-
soning, BCP-based Probing, Backbone Detection, Subsumption via
Binary Clauses, BCP-based Sparsification, Backward Subsumption
with Resolvents, Backward Subsumption, Replacement with OR-
gates, BVE, Ternary Resolvents, Tree-based Lookahead, Backwards
Subsumption and Strengthening, and BCP-based Clause Vivifica-
tion. This set of operations is performed twice, in the same order, as
they may influence one another. We then perform Vivification and
Sparsification using Oracle. We repeat the same set of lightweight
operations twice more, to further simplify after the heavy-lifting
performed by Oracle. Finally, the remaining CNF is renumbered
such that active (i.e., non-set and uneliminated) variables are num-
bered from 1. This helps with the memory and cache efficiency of
model counters.

4 EXPERIMENTAL EVALUATION
We conducted an extensive evaluation of Arjun2 to check its perfor-
mance with respect to prior state-of-the-art preprocessorsBiPe [23],
KCBox [25],GPMC-Pre [33], and SharpSAT-TD-Pre [21, 22], where
GPMC-Pre and SharpSAT-TD-Pre refer to the preprocessors that
are integrated with the model counting toolsGPMC, and SharpSAT-
TD. To understand the impact of preprocessors on model counters,
we experimented with an extensive set of state-of-the-art model
counters: ExactMC, GPMC, D4, SharpSAT-TD, and GANAKwhere
the experimental setup consisted of first executing a preprocessor
on a given CNF file and then the output of the preprocessor is
fed to the corresponding model counter. We use 𝑃 +𝐶 to refer to
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Figure 1: Impact of Arjun2 on the number of variables (left)
and clauses (right)

running preprocessor 𝑃 followed by the model counter𝐶 . As noted
above, we have currently integrated redundant clause recycling
into a modified version of GANAK. To present a fair evaluation
that preserves the relative power of different model counters, we
provide results for the version of GANAK without the capability of
redundant clause cycling, except in the last subsection where we
investigate the potential power of redundant clause recycling.

To conduct the experiments, we used the Model Counting Com-
petition Track-1 non-projected benchmark instances that contain a
number of different benchmark families, and total 200 CNF files. For
all experiments, we used a cluster with AMD EPYC 7713 processors,
with a total of 128 cores and 440GB of memory per node. We set
6GB of memory limit per process, and set the cache limit to 3 GB
for each counter. We executed each run on a separate physical CPU
core with a timeout of 3600 seconds per model counter process,
as per Model Counting Competition3 rules. Preprocessors were
ran before the Model Counting process, with the same memory
constraints and a separate 1800s timeout.

We sought to answer the following questions:
(1) How does Arjun2 compare to prior state-of-the-art prepro-

cessors in terms of the size of the preprocessed formula?
(2) How does Arjun2 compare to prior state-of-the-art in terms

of its impact on the downstream model counters?
(3) What is the impact of sparsification, vivification, and redun-

dant clause generation by Arjun2 on model counting?

Analysis of Preprocessed CNFs. Figure 1 illustrates the reduction
of the number of variables (left) and clauses (right), using Arjun2 on
the instances. Overall, we observe that Arjun2 reduces the median
number of variables by 43.2% the median number of clauses by
86.9%, and the median number of literals by 85.7%.

Analysis of Impact on Model Counters. Table 1 summarizes the
PAR-2 scores4 of all counters with all preprocessors. A cell in row𝑋

and column𝑌 of Table 1 corresponds to the PAR-2 score of𝑋+𝑌 : for
example, the column at the top left corner represents PAR-2 score of
Arjun2+GPMC. We make three observations: First, when compar-
ing against “No preprocessing", we witness an improvement in PAR-
2 score of more than 1000 for nearly all counters except ExactMC.
It’s worth noting that ExactMC has internal preprocessing which
can not be turned off. Secondly, we observe that in comparison to
other preprocessors, Arjun2 achieves improvement in the PAR-2

3See https://mccompetition.org/
4PAR-2 score is the average runtime of a tool, with penalization of two times the
allocated runtime in case of a time- or memory-out.

GPMC D4 GANAK SharpSAT-TD ExactMC

Arjun2 2174.9 2149.5 1963.7 1669.3 1574.8
SharpSAT-TD-Pre 2082.0 2386.7 1906.9 1919.0 1680.8
BiPe 2191.9 2145.6 2035.5 2028.5 1735.4
GPMC-Pre 2538.2 2496.0 2249.6 2072.0 1949.3
KCBox 2814.0 2894.0 2688.8 2643.2 2223.9
No preprocessing 2953.6 3174.9 3319.2 3010.4 2175.7

Table 1: PAR-2 score of all preprocessors on all model coun-
ters. Note that ExactMC’s preprocessor cannot be turned off
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Figure 2: Runtime performance of ExactMC
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Figure 3: Runtime comparison of all preprocessors

score for all counters except GANAK. Of particular note is the dif-
ference of nearly 100 points between SharpSAT-TD-Pre+ExactMC
and Arjun2+ExactMC.

Figure 2 shows in detail the performance difference that different
preprocessors have on the most well-performing, state-of-the-art
model counter ExactMC. Firstly, this figure shows that Arjun2,
SharpSAT-TD-Pre, and BiPe are in a different category than the
other preprocessors. Secondly, it demonstrates that using Arjun2 is
strongly preferred for fast counting.

Comparison with other Preprocessors. Figure 3 presents the run-
time performance comparison of Arjun2 with other preprocessors.
Notice that while Arjun2 is slower at the start than some preproces-
sors, it overtakes all butGPMC-Pre by 300s, and all by 500s timeout.
It is worth noting that all preprocessors except Arjun2 either time-
or memory-outed on some instances.

Impact of different configurations of Arjun2. We sought to also un-
derstand the effectiveness of different preprocessing techniques in
Arjun2: given the large number of techniques integrated in Arjun2,
we present results for configurations that have a significant impact.

https://mccompetition.org/
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Figure 4: The effect of different configurations of Arjun2 on
the GANAKmodel counter

To this end, we focus on understanding the effectiveness of vivifi-
cation, sparsification, and redundant clause recycling. Since not all
counters support our proposed format for redundant clauses, we
demonstrate results for one of the counters, GANAK (our choice
of GANAK was based purely on our familiarity of its code base).
We plot the results for different configurations in Figure 4. The fig-
ure demonstrates that the default configuration, with all improve-
ments turned on, performs the best. Interestingly, turning off re-
dundant clause addition results in the most significant performance
loss. This is likely because transitive reduction and sparsification
remove clauses that are beneficial for propagation performance,
even though they are redundant. Reintroducing them as redundant
clauses enables the counter to use them for propagation while elim-
inating the need to verify whether they connect potentially disjoint
components.

5 CONCLUSION
In this paper, we focus on the problem of algorithmic engineering
of an efficient preprocessor for model counting, Arjun2. The design
of Arjun2 is motivated by the observation that given the computa-
tional hardness of the problem of model counting, it is worthwhile
to integrate a diverse array of techniques, even ones that require
calls to SAT solvers and samplers. Our detailed empirical evaluation
shows that Arjun2 improves the runtime performance of almost
all the top-performing model counters. Furthermore, our empirical
analysis demonstrating the usefulness of recycling of redundant
clauses indicate that an interesting direction of future work would
be to selectively reuse redundant clauses while avoiding the over-
head on the component cache management.
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