
On the Usefulness of Linear Modular Arithmetic
in Constraint Programming

Gilles Pesant1, Kuldeep S. Meel2, Mahshid Mohammadalitajrishi1

1 Polytechnique Montréal, Canada
gilles.pesant@polymtl.ca
2 National University of Singapore
meel@comp.nus.edu.sg

Abstract. Linear modular constraints are a powerful class of constraints that
arise naturally in cryptanalysis, checksums, hash functions, and the like. Given
their importance, the past few years have witnessed the design of combinatorial
solvers with native support for linear modular constraints, and the availability
of such solvers has led to the emergence of new applications. While there exist
global constraints in CP that consider congruence classes over domain values,
linear modular arithmetic constraints have yet to appear in the global constraint
catalogue despite their past investigation in the context of model counting for
CSPs. In this work we seek to remedy the situation by advocating the integration
of linear modular constraints in state-of-the-art CP solvers.
Contrary to previous belief, we conclude from an empirical investigation that
Gauss-Jordan Elimination based techniques can provide an efficient and scalable
way to handle linear modular constraints. On the theoretical side, we remark on
the pairwise independence offered by hash functions based on linear modular
constraints, and then discuss the design of hashing-based model counters for CP,
supported by empirical results showing the accuracy and computational savings
that can be achieved. We further demonstrate the usefulness of native support for
linear modular constraints with applications to checksums and model counting.

1 Introduction

Given a set of variables X = {x1, x2, . . . , xn} with their associated domains of values
D = {D1, D2, . . . , Dn} and set of constraints C over X , the Constraint Satisfaction
Problem (CSP), denoted ϕ = (X ,D, C), seeks to assign to each variable xi ∈ X a value
from Di such that every constraint in C is satisfied. It is often convenient and effective
to use constraints that can succinctly express recurring relations of arbitrary arity. The
global constraints catalogue [2] has grown over the years to encompass a wide variety
of such constraints, including the case of values considered modulo a given parameter
(e.g. ALLDIFFERENT MODULO, AMONG MODULO, MAXIMUM MODULO). But de-
spite the investigation of linear modular arithmetic constraints by Gomes et al. [11] in
the context of model counting for CSPs, the latter constraints seem to have gone largely
unnoticed in the CP community and indeed do not appear in that catalogue.3

3 One exception is the work on bit-vector domains, involving some modular arithmetic, with
applications to software verification and cryptography [1, 13, 8].

2 Gilles Pesant, Kuldeep S. Meel, Mahshid Mohammadalitajrishi

The purpose of this paper is to advocate the inclusion of modular arithmetic con-
straints in CP solvers, motivated by important applications such as model counting, and
to investigate the algorithmic opportunities currently available for efficient inference
on such constraints as well as remaining challenges, through an empirical evaluation
featuring linear modular arithmetic constraints.

In this paper we address the question of how to efficiently integrate linear modu-
lar constraints in a CP solver. As mentioned before, Gomes et al. [11] studied linear
modular equalities in the context of model counting and remarked that a system based
on Gauss-Jordan Elimination (GJE) would be inefficient. As a result, they proposed
an adaptation of Trick’s dynamic programming algorithm [18] to handle individual
constraints. Their empirical evaluation was limited to short constraints (i.e. on about
six variables). We take advantage of the compact table implementation for extensional
constraints [9] to revisit GJE and thus reach the opposite conclusion: GJE applied to a
system of linear modular constraints achieves significantly better performance than the
alternative dynamic programming algorithm on individual constraints.

We demonstrate the scalability of our framework through an empirical evaluation
on large linear modular constraints and show the opportunities offered by a solver with
native support for linear modular constraints. Here we can draw a parallel with the
availability of CryptoMiniSat, a SAT solver with native support for linear modular con-
straints in the Boolean domain (i.e., XOR constraints), which has opened up several
applications. Linear modular arithmetic constraints naturally occur in several domains
such as checksums, error correcting codes, cryptography, learning parity without noise,
and model counting. In this paper we present applications to checksums and model
counting.

The rest of the paper is organized as follows. We first present background and formal
definition and representation of linear modular arithmetic constraints in Section 2. We
present domain filtering algorithms for linear modular constraints in Section 3. We then
present applications to checksums and model counting in Sections 4 and 5. Finally, we
conclude in Section 6.

2 Background

An integer modulus p > 1 defines a congruence equivalence relation on the set of all
integers Z: integers i and j are said to be congruent if there exists an integer k such that
i− j = kp. Thus it partitions Z into p congruence classes, the ring of integers modulo
p, on which addition and multiplication are defined in the obvious way.

We are interested in linear modular arithmetic constraints of the general form

` ≤ ax ≤ u (mod p)

where x is a vector of n integer finite-domain variables, a a vector of integer coeffi-
cients, ` and u two integers, and p the modulus. We will also be interested in systems
of m linear modular equalities in n integer finite-domain variables,

Ax = b (mod p).

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 3

An integer i in such a ring has a multiplicative inverse if and only if i and p are
coprime. When p is prime then clearly every 0 < i < p is coprime with p. In fact
the ring of integers modulo p is a finite field Fp — every non-zero element having a
multiplicative inverse — if and only if p is prime.

Gauss-Jordan Elimination can solve systems of linear equations not only over the
real numbers but also over any field, such as Fp. We take advantage of this in Section 3.

The linear modular equations are closely related to the universal hash functions.
Given two finite sets N and M , let H(N,M) , {h : N → M} be a family of hash
functions mapping N to M . We use h R←− H(N,M) to denote the probability space
obtained by choosing a function h uniformly at random fromH(N,M).

Definition 1. A family of hash functions H(N,M) is k-wise independent if

∀α1, α2, . . . αk ∈M and for distinct y1, y2, . . . yk ∈ N , h R←− H(N,M),

Pr [(h(y1) = α1) ∧ (h(y2) = α2) . . . ∧ (h(yk) = αk)] =

(
1

M

)k
(1)

Note that every k-wise independent hash family is also k − 1 wise independent.
The phrase strongly 2-universal is also used to refer to 2-wise independent as noted by
Vadhan in [19], although the concept of 2-universal hashing proposed by Carter and
Wegman [3] only required that Pr[h(x) = h(y)] ≤ 1

2m .

3 Domain Filtering for Linear Modular Constraints

Gomes et al. [11] proposed filtering algorithms for linear finite-domain constraints over
Fp — in this section we describe our implementation,4 including some important im-
provements. On equality constraints one can apply both GJE (provided p is prime) to
simplify the system and optionally reach domain consistency, and also the dynamic
programming representation for individual constraints to reach domain consistency. On
inequality constraints only the latter applies. Note that domain values belonging to the
same congruence class in Fp can be managed as a single one since their supports for
these constraints will always be identical.

3.1 Gauss-Jordan Elimination for Systems of Linear Modular Equality
Constraints with a Prime Modulus

When p is prime every element of the finite field has a multiplicative inverse, which is
required to apply GJE in order to simplify and solve systems of linear equations over Fp.
We precompute multiplicative inverses using the Extended Euclidean algorithm, which
also allows us to confirm that p is prime. We do not reproduce these two algorithms
here as they are well known.

Because our variables are not free but each have a finite domain restricting their
value, deciding satisfiability for the system is not immediate given the reduced row

4 available at https://github.com/PesantGilles/MiniCPBP

4 Gilles Pesant, Kuldeep S. Meel, Mahshid Mohammadalitajrishi

Algorithm 1: Filtering algorithm for system Ax = b (mod p)

τub ← 1
for i← 1 to np do

if xp[i] is bound then
transfer index p[i] into b

else
τub ← τub × |D(xp[i])|

if τub ≤ τmax then
T ← ∅
enumParamVars(1)
if T is empty then

fail
else

post TABLE(〈xi〉i∈p〈xi〉i∈d, T)
set Algorithm 1 as inactive

echelon form. We may find that the system is inconsistent in which case we report
it. Otherwise the resulting parametric form yields a more efficient domain consistency
algorithm and smaller (i.e. with fewer variables) individual equality constraints to feed
potentially to the dynamic programming filtering algorithm.

3.2 Domain Consistency for a System of Linear Modular Equality Constraints
in Parametric Form

Recall that Gomes et al. [11] chose not to implement GJE. We present a straightfor-
ward algorithm to achieve domain consistency on such systems and which is tractable
when the number of parametric variables is small enough. Basically we enumerate the
combinations of values for the parametric variables and check that each equation in
the parametric form is satisfiable, i.e. that the required value belongs to the domain of
the corresponding nonparametric variable. Any unsupported value in the domain of a
parametric variable should be removed — any never-required value in the domain of
a nonparametric variable should also be removed. Actually there already exists a con-
straint that can enforce this for us and even provide an efficient incremental algorithm:
a TABLE constraint on the enumerated tuples using the compact table implementation.
However as the number of tuples grows exponentially with the number of parametric
variables we only enforce domain consistency once the number of tuples falls below a
given threshold τmax as variables become bound and domains are reduced.

Let p, b, and d denote the array of indices of unbound parametric, bound paramet-
ric, and non-parametric (dependent) variables respectively, and np, nb, nd their size.
We call Algorithm 1 whenever a parametric variable becomes bound. It first transfers
newly-bound variables from p to b while at the same time computing the size of the
Cartesian product of the domains of the remaining parametric variables, which is an up-
per bound on the number of valid tuples we would enumerate. If that upper bound does
not exceed our threshold τmax we proceed to enumerate valid tuples (see Algorithm 2)

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 5

Algorithm 2: enumParamVars(r)
if r ≤ np then

foreach v ∈ D(xp[r]) do
τ [r]← v
enumParamVars(r + 1)

else
for i← 1 to nd do

s← b[d[i]]
for j ← 1 to nb do

s← s−A[d[i]][b[j]]× xb[j]

for j ← 1 to np do
s← s−A[d[i]][p[j]]× τ [j]

s← s (mod p)
if s 6∈ D(xd[i]) then

return
τ [np + i]← s

T ← T ∪ {τ}

and then post a TABLE constraint on the unbound variables. Once this happens, Algo-
rithm 1 will no longer be called until we backtrack over that posted TABLE constraint.5

Theorem 1. Algorithm 1 has a worst-case running time in Θ(m(n−m)pnp).

Proof. Its time complexity is dominated by that of Algorithm 2. We map domains to
the set {0, 1, . . . , p− 1} and there are np parametric variables, so we have at most pnp

tuples to enumerate. For each tuple there are at most m equations (the rank of the row-
reduced matrix) on n − m + 1 variables to evaluate. We can check whether a value
belongs to a domain in constant time (sparse set representation). ut

In practice our choice of threshold τmax keeps the exponential factor pnp in check.

3.3 Dynamic Programming for a Single Linear Modular Constraint

We next describe a simple adaptation of an existing filtering algorithm for individual
linear constraints to be used when dealing with an inequality constraint or in conjunc-
tion with the previous algorithm for systems of linear equalities, as previously pro-
posed [11].

First observe that the usual bounds consistency algorithm for linear constraints does
not work correctly here. Consider for example

2x+ y = 4 x, y ∈ {1, 2, 3, 4}.

5 In practice we actually implement the compact table filtering algorithm and apply it directly
instead of repeatedly posting and retracting TABLE constraints.

6 Gilles Pesant, Kuldeep S. Meel, Mahshid Mohammadalitajrishi

Reasoning from the smallest value in the domain of x allows us to determine that the
largest feasible value for y is 2, thereby declaring values 3 and 4 unsupported and fil-
tering them out of the domain of y. But if we have instead

2x+ y = 4 (mod 5) x, y ∈ {1, 2, 3, 4}

then that same reasoning is incorrect since, for example, value 3 for y is supported by
value 3 for x since 2 · 3 + 3 = 9 ≡ 4 (mod 5). Note that the domain value yielding
the smallest contribution of a variable with positive coefficient to the equation is not
necessarily the smallest one: here value 3 gives the smallest contribution, 1, for x.

Consider the general linear modular constraint ` ≤ ax ≤ u (mod p) with an equal-
ity constraint corresponding to the special case ` = u. The pseudo-polytime domain
consistency algorithm based on dynamic programming that was originally proposed for
knapsack constraints [18] can be easily adapted for modular arithmetic, leading to a
worst-case time complexity in Θ(npmin(d, p)) where d stands for the domain size.
It potentially becomes less time- and space-consuming than its original version if the
modulus is not too large, which is typically the case in many applications, and even
truly polynomial if p is polynomially-related to the domain size or to the number of
variables. 6 If there are several equality constraints of same prime modulus, GJE will
have reduced the number of variables in each constraint, making the algorithm even
faster.

We use that algorithm once the number of unbound variables falls below some cho-
sen threshold υmax: modular arithmetic makes the state space very densely connected
which makes it hard to filter anything in the presence of several variables providing
many degrees of freedom. That same observation led Gomes et al. [11] to apply it with
at most six variables.

4 Application to Checksums

Checksums are commonly used to ensure data integrity of various identifiers such as
social security and medicare numbers. This section is meant as an illustration of the
usefulness of CP equipped with linear modular constraints, here for checksums.

The International Standard Book Number (ISBN) is a unique identifier for books
that uses a checksum in order to ensure its integrity. Originally ISBNs append a check
digit (actually ranging from 0 to 10) to a nine-digit identifier. That check digit x10 is
determined through a weighted sum with the other digits x1, . . . , x9 in modular arith-
metic:

10∑
i=1

(11− i)xi ≡ 0 (mod 11)

This added redundancy helps detect some common transcription errors: one can
detect any single digit mistake as well as any pair of swapped digits. However double

6 For example if p is chosen as the smallest prime number larger than the domain size, as one
can always find a prime between d and 2d for any d > 1.

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 7

digit mistakes may go undetected. Arguably some digit mistakes are more likely than
others, particularly from a handwritten version. For example digit “1” is easily confused
with a “7” but not with an “8”. So a natural question is: If we restrict double digit
mistakes to such easily confused pairs, can they still go undetected?

We can write a CP model to help investigate this. Consider the very conservative
set of confused ordered pairs P = {(1, 7), (7, 1), (3, 5), (5, 3), (5, 8), (8, 5)} and let
ak = 11 − k (1 ≤ k ≤ 10), the coefficients of the ISBN checksum. Sequences of
variables 〈x1, x2, . . . , x10〉 and 〈y1, y2, . . . , y10〉 each model an ISBN. For every two
digit positions 〈i, j〉 1≤i<j≤10 we ask whether, given a valid ISBN, replacing each digit
at these positions by another from a confused pair can yield another valid ISBN:

SUM MODULO(〈ak〉1≤k≤10, 〈xk〉1≤k≤10, 0, 11)
SUM MODULO(〈ak〉1≤k≤10, 〈yk〉1≤k≤10, 0, 11)
TABLE(〈xi, yi〉,P)
TABLE(〈xj , yj〉,P)
yk = xk 1≤k≤10, k 6= i, k 6= j

xi < yi

xk ∈ {0, 1, . . . , 9} 1≤k≤9

x10 ∈ {0, 1, . . . , 10}

The validity of each ISBN is enforced by a linear modular constraint SUM MODULO.
The close relationship of these ISBNs is enforced by using TABLE constraints for po-
sitions i and j constrained to exchange digits from a confused pair and by setting the
other digits to be equal. We also add an inequality between the digits at position i in
order to avoid symmetric solutions. Because many of the digits in the two ISBNs are
identical and since we only seek to know whether or not the model is satisfiable, prior to
search we arbitrarily set most of them to zero while leaving enough degrees of freedom,
which greatly accelerates search.

Solving this model we find many solutions, indicating a real risk that such mistakes
go undetected even when we consider few pairs of confused digits. Inspecting these
solutions we find for example that if the leading digit is a “1” or a “7” being exchanged,
the second exchanged digit yielding an undetected mistake (i.e. a valid ISBN) must
occur at a position among the set {2, 3, 8, 9, 10}. We also notice that any confused pair
can be used twice at positions 〈1, 10〉, 〈2, 9〉, 〈3, 8〉 and so forth. This is actually true
for any arbitrary pair of digits (d1, d2) and can be derived analytically:

akd` + a11−kd` = (11− k)d` + kd` = 11d` ≡ 0 (mod 11) 1≤k≤10, 1≤`≤2

So even a single allowed pair of exchangeable digits, occurring at the right combination
of positions, can lead to an undetected mistake.

Now what if we added a second checksum? For example we rotate left by one po-
sition the vector of coefficients 〈ak〉1≤k≤10 and add the corresponding SUM MODULO
constraint with a new check digit. Solving this augmented model reveals that all double
digit mistakes are now detected. Can it even detect triple digit mistakes? No — even re-
stricting to the set P of confused pairs, each triplet of digit positions admits exactly one

8 Gilles Pesant, Kuldeep S. Meel, Mahshid Mohammadalitajrishi

combination of three pairs hiding the mistake. If we restrict further the confused pairs
solely to “1” and “7” then any such mistake will be detected (i.e. we find no solution
for any triplet). However if we had chosen instead a left rotation by three positions for
the second checksum, we discover by solving the corresponding CP model that there is
a single (though unlikely) undetected mistake at positions 〈5, 8, 9〉:

a5 + a8 + a9 = 6 + 3 + 2 = 11 ≡ 0 (mod 11)

a8 + a1 + a2 = 3 + 10 + 9 = 22 ≡ 0 (mod 11)

Again this serves only as an illustration of the kind of analysis made easier with CP.

5 Application to Model Counting

We now focus on the problem of model counting and demonstrate how the native sup-
port of linear modular constraints can lead to the development of scalable model count-
ing techniques.

Given a CSP ϕ, let sol(ϕ) represent the set of solutions of ϕ. The problem of model
counting is to estimate |sol(ϕ)|. An approximate model counter takes in a CSP instance
ϕ, tolerance parameter ε, and confidence parameter δ as input and returns an estimate c
such that Pr[|sol(ϕ)|1+ε ≤ c ≤ (1 + ε)|sol(ϕ)|] ≥ 1− δ.

The seminal work of Valiant [20] showed that this problem is #P-complete and
the hardness manifests itself in the practical implementations of exact counting. Con-
sequently, there has been a surge of interest in the design of approximate techniques.
Hashing-based techniques have emerged as a dominant approach over the past few years
with its promise of scalability and rigorous (ε, δ)-guarantees. The core idea is to employ
pairwise independent hash functions to partition the solution space of ϕ into roughly
equal small cells of solutions. To this end, the standard family of pairwise indepen-
dent hash functions in the context of Boolean variables consists of linear polynomials
over F2. The past few years have witnessed the development of scalable approximate
model counters such as ApproxMC [5, 6, 10]. The availability of CryptoMiniSat [15,
17], a solver with native support for XORs has been crucial for the scalability of these
hashing-based techniques. The importance of CryptoMiniSat can be witnessed in Soos
and Meel’s recent work [16, 15] that shows runtime improvements of two to three or-
ders of magnitude solely in the handling of CNF-XORs drastically improved the per-
formance of the underlying model counter, ApproxMC.

Gomes et al. [11] generalize the XOR counting framework for CSPs by using lin-
ear modular constraints. Their approach, which repeatedly tests satisfiability in cells
defined by randomly-generated linear modular constraints, provides lower bounds on
the solution count of a given problem ϕ. Another approach to counting for variables
over finite domains is due to Chakraborty et al. [4] in the context of SMT constraints.
They proposed the idea of using a conjunction of hash functions defined over a set of
distinct primes {p1, p2, . . . pk} to ensure that one can partition the solution space into
the desired number of cells M by considering the prime factorization of M .

The primary focus of our work is to showcase the potential of linear modular arith-
metic constraints, not (yet) to design a scalable approximate model counter for CSPs.

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 9

Accordingly we focus on a simple procedure proposed by Chakraborty et al. [7]: Let
d be the maximum size of the domain of a variable in ϕ and let n be the number of
variables in ϕ. Then, let N = dn. Chakraborty et al. [7] proposed the following simple
algorithmic procedure that takes in a formula ϕ and c and returns Y = 1 if |sol(ϕ)| ≥ c
and returns Y = 0 otherwise. The procedure is guaranteed to be correct with confidence
at least 1− δ.

The procedure is as follows: Repeat the following O(log 1/δ) times: at iteration i,
choose a hash function h ∈ H(N, 2dce) and check if ϕ ∧ h−1(0) is satisfiable, then set
Zi = 1 else Zi = 0. Now we return Y = 1 if the median of {Z1, Z2, . . . Zi . . .} is 1,
else we return Y = 0. We refer the reader to [7] for the proof.

For the purpose of this paper, we make a simple observation that the analysis of
Chakraborty et al. can be extended with respect to any bound on the number of solutions
of ϕ ∧ h−1(0), i.e., the current analysis checks whether the number of solutions of
ϕ∧h−1(0) is greater than 1 but one could substitute any fixed threshold, as is also done
in the context of (ε, δ) approximate counting algorithms. We refer the reader to [12] for
a longer discussion. The implementation of this scheme is simple enough to illustrate
the power of our framework yet retains the core aspect of the (ε, δ)-counter, thereby
allowing one to extrapolate the importance of results in the context of approximate
model counting for CSPs.

In the rest of this section we present experiments using linear modular equality con-
straints in order to evaluate both GJE on a system of constraints and the dynamic pro-
gramming algorithm on individual constraints, in the context of approximately counting
the solutions of CSPs. All experiments were run on a cluster of dual core AMD Opteron
275 @ 2.2 GHz processors running Java SE 11 on Linux CentOS 7.6 using the MiniCP
1.0 solver. For search we branch on the parametric variables identified during GJE (since
the rest are dependent on them) using variable ordering heuristic min-domain. Individ-
ual entries in the tables of results are the average of thirty runs.

5.1 Synthetic Problem

We conducted a controlled experiment using a CSP on n variables and ten domain
values (with p = 11). For half of the variables, one third of them must take value 0
(modeled using an EXACTLY constraint, which is decomposed into a SUM constraint
over indicator variables); for the other half, all values must be different (modeled using
an ALLDIFFERENT constraint enforcing domain consistency). The clean combinatorial
nature of such a CSP allows us to derive analytically the exact number of solutions with-
out the need to enumerate them, thus making it possible to measure the accuracy of an
approximate count even when the full exploration of the search space is computation-
ally prohibitive.

Figure 1 first evaluates the impact on efficiency of some choices of threshold τmax

about the number of tuples that can be included in a TABLE constraint and of using or
not the filtering algorithm in Section 3.3 for individual constraints. Though instances
are not identified on the plot, search tree size for a given instance does not tend to vary
a lot across configurations — hence its data points appear at about the same height. We
make two observations from the horizontal spread of the points for a given instance:
the dynamic programming algorithm’s occasional small reduction in search effort does

10 Gilles Pesant, Kuldeep S. Meel, Mahshid Mohammadalitajrishi

0,1 1 10 100 1000

100

1000

10000

100000

1000000

10000000

τmax=100000; noDP

τmax=10000; noDP

τmax=1000; noDP

τmax=100; noDP

τmax=100000;DP

τmax=10000; DP

τmax=1000; DP

τmax=100; DP

time (s)

s
e

a
rc

h
 t

re
e
 s

iz
e

Fig. 1. Search tree size and computation time for different choices of τmax and using the dynamic
programming algorithm for individual constraints (“DP” with υmax = 6) or not. Each data point
corresponds to an instance (n,m).

not make up for the frequent significant increase in computation time; a choice of
τmax = 1000 generally works best here. These pragmatic choices were also confirmed
on several of the instances from Section 5.2. Accordingly all remaining experiments
use these settings.

It is interesting to note that our more efficient implementation of GJE using a TABLE
constraint leads to a conclusion that is the opposite of [11]: it is better to use GJE alone
instead of the dynamic programming algorithm on each constraint and without GJE.

As mentioned before, the objective of this paper is not to build a full-blown approx-
imate model counter but develop the underlying techniques to support such a model
counter in the context of CP. Therefore, we demonstrate the effectiveness of our tech-
niques via the approach due to Chakraborty et al. [7]. To simulate such an experiment,
for a fixed number m of linear modular constraints, we seek to enumerate the solutions.
It is perhaps worth recalling that the core idea of hashing-based counting is to enumer-
ate solutions in a cell after adding a certain number of constraints, and then extrapolate
the count of the original formula by scaling the count in a cell by the number of cells. In
the context of hashing-based counters for SAT, one often needs to balance the tradeoff
of handling cells with large number of solutions and the error in the approximation due
to small cells. We seek to study whether such tradeoffs exist in CP as well, so as to
allow the future developers of CP-based approximate model counters to make informed
choices.

Table 1 reports the accuracy of our approximate count as we vary the number m
of linear modular constraints added. As expected computation time decreases as m
increases but so does the accuracy of our approximation. Nevertheless on instances
with trillions of solutions we manage to produce approximate counts with a relative
error under 1% in a matter of seconds. To achieve comparable accuracy we spend about

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 11

linear modular constraints naive
n total #solns m time (s) #solns in cell error (%) error (%)

10 9.92× 108 0 17829.8 992023200 – –
3 52.9 745356 0.04 20.49
4 5.3 67806 0.26 36.14
5 0.6 6171 0.92 45.38
6 0.1 564 3.76 52.91
7 0.0 50 11.42 57.32

15 2.25× 1012 6 373.2 1269977 0.07 76.73
7 41.1 115414 0.15 84.51
8 6.8 10497 0.75 86.80
9 1.2 950 2.45 99.01

10 0.2 85 9.28 118.33
20 2.08× 1015 9 2379.2 883113 0.09 79.04

10 232.5 80301 0.24 101.13
11 54.2 7322 1.12 79.31
12 13.9 665 3.64 94.41
13 3.3 59 9.72 101.79

Table 1. Impact of the number of linear modular constraints m on our approximate count for
synthetic instances. We also report the accuracy of a naive approach that simply fixesm variables
at random.

one order of magnitude more time for an instance with three orders of magnitude more
solutions in a search space that is five orders of magnitude larger. Consider as well
that computing an exact count by exhaustive enumeration for as few as ten variables
(n = 10; m = 0 line in the table) required almost five hours whereas an approximation
with a relative error under 1% is obtained under a second.

We also report in Table 1 the accuracy of a much simpler yet naive approach to ex-
trapolating the number of solutions enumerated in a subspace (cell): choosem variables
uniformly at random and fix them to some value in their domain, also chosen uniformly
at random (note that after each variable is fixed we perform constraint propagation to
filter the remaining domains). We see clearly that the relative error is much larger and
does not improve much as m decreases. It illustrates how the theoretical guarantees of
linear modular constraints do make a difference.

These instances admit many solutions, with a ratio of the number of solutions to the
size of the search space ranging from 1e-1 (n = 10) to 1e-5 (n = 20). We will see in
the next section that the gain in performance may not always be as spectacular when
that ratio is lower.

5.2 Benchmarks from [11]

In order to make some comparisons, we now consider the benchmark problems used
in Gomes et al. [11]: the n-queens problem, DIMACS graph colouring instances, and
the Spatially Balanced Latin Square problem. For each instance we set p to the smallest
prime number greater or equal to the domain size.

12 Gilles Pesant, Kuldeep S. Meel, Mahshid Mohammadalitajrishi

number of solutions
instance m time (s) in cell extrapolated error (%)
sbls12 0 1252 672 672 –

1 994 53 685 1.95
2 356 4 682 1.43

sbls14 0 170860 1968 1968 –
1 145781 116 1968 0.00
2 46170 7 2123 7.86

sbls15 0 2411411 13248 13248 –
2 668312 45 13019 1.73
3 140114 3 13101 1.11

queens13 0 98 73712 73712 –
2 49 433 73115 0.81
3 33 33 71767 2.64

queens15 0 3231 2279184 2279184 –
3 918 464 2278649 0.02
4 482 28 2360860 3.58

queens17 0 175140 95815104 95815104 –
4 23415 1141 95319733 0.52
5 11876 65 92432691 3.53

myciel4 0 224 142282920 1.423e+8 –
3 79 1138181 1.423e+8 0.01
5 36 45554 1.424e+8 0.05
7 9 1821 1.422e+8 0.04
9 3 73 1.417e+8 0.39

2 insertions 3 0 ?? ?? ?? –
11 29844 116705 5.698e+12 ??
13 8776 4662 5.691e+12 ??
15 1665 187 5.692e+12 ??
17 285 8 5.824e+12 ??

Table 2. Impact of the number of linear modular constraints m on our approximate count for
several benchmark problems.

Spatially Balanced Latin Squares. A Latin square of order n is an n × n matrix in
which each cell is assigned one of n distinct symbols such that each row and column
contains each symbol. A spatially balanced Latin square (SBLS) additionally requires
that for each pair of symbols, the sum of their distance in each row be equal to a given
constant. These find applications in experimental design. There are very few such com-
binatorial objects of any given order, i.e. their search space is very sparsely populated
with solutions. As in [14] we consider particular streamlined SBLS, a subclass restricted
to column order permutations of a cyclically-constructed Latin square. Our CP model
uses n variables with identical domain {1, 2, . . . , n} to specify the order of the columns,
an ALLDIFFERENT constraint over them to enforce a permutation, and combinations of
SUM and TABLE contraints to enforce spatial balance. We further fix the first column
in order to break some amount of symbol symmetry. Its search space is much smaller
yet solutions are still very sparsely distributed: the solution-to-search-space ratio ranges

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 13

instance vertices edges colours search space solutions ratio
myciel4 23 71 5 521 142282920 3e-7
myciel5 47 236 6 645 ?? ??
2 insertions 3 37 72 4 435 ?? ??

Table 3. Searching the space of vertex colourings for graphs.

from 2.4e-9 to 1.2e-12 for the order-12, -14, and -15 instances we consider (there can
be no solution whenever n ≡ 1 (mod 3)).

Table 2 reports our results on these instances. Because there are so few solutions,
after adding one or two linear modular constraints the cell does not contain many solu-
tions. As a result the computational savings are modest. Still, for the order-15 instance
we obtain approximations to within 1% in under two days whereas enumerating the
solutions took 28 days. Recall that the focus of [11] was to compute lower bounds with
high confidence using short (i.e. on at most six variables) linear modular constraints.
For instances sbls14 and sbls15 they report lower bounds of 591 and 1748 respec-
tively, computed in a few minutes. Though correct, these significantly underestimate
the true counts, 27552 and 198720, obtained by multiplying our m = 0 counts by n to
account for fixing the first column.

n-Queens Problem. One must place n queens on an n × n chessboard so that no
two queens can attack each other. As usual we model this problem using n variables
and three ALLDIFFERENT constraints. The solution-to-search-space ratio ranges from
2.4e-10 to 1.2e-13, slightly lower than that of the previous problem. One can get an
approximate count with relative error under 1% at a computational cost reduced by a
growing factor ranging here from 2 to 7.5 (Table 2). For queens15, [11] report 3.9e+5
as lower bound whereas the true count is close to 2.3e+6.

Graph Colouring. Given an undirected graph, assign a colour from a given set to each
vertex so that vertices linked by an edge bear distinct colours. Our CP model has one
variable per vertex whose domain is the set of colours and a binary disequality for each
edge. We considered the four instances used by [11]. Because in our case we ultimately
explore an entire cell, most of these instances were out of reach: we report on instance
2 insertions 3 and on the next smaller instance from myciel5, whose character-
istics are given in Table 3. Here the search space is much more densely populated with
solutions but the number of variables in the model is also significantly higher. Despite
breaking some colour symmetry by arbitrarily colouring both endpoints of some edge,
we only managed to enumerate the solutions of myciel4. On this instance we obtain
an approximation with relative error under 1% at a computational cost reduced by close
to two orders of magnitude (Table 2). While we cannot measure the error on instance
2 insertions 3 our converging results suggest that the true count is near 6.83e+13
(4 × 3× 5.69e+12, factoring in the pre-coloured edge) and that a close approximation
can be computed in under 30 minutes (m = 15) by enumerating solutions in one of
515 ≈ 3e+10 cells — exploring the whole search space would take much much longer.
The lower bound computed in [11] is 2.3e+12.

14 Gilles Pesant, Kuldeep S. Meel, Mahshid Mohammadalitajrishi

5.3 Towards a Practical Scalable Model Counter

The encouraging empirical evaluation in the preceding section leads one to ask: what
would be needed to design a practical efficient model counter? To this end, we believe
a general recipe would be the one followed by Chakraborty et al. in their design of
SMTApproxMC but a direct translation of their approach would induce linear modulo
constraints over different primes. In this context, one wonders whether there is an alter-
nate approach that can ensure all the constraints are over the same modulus. We sketch
out a promising direction below by observing the construction of hash functions based
on inequalities. Instead of the usage of hash functions with different primes in order to
partition the solution space into the desired number of cells, we seek to use inequalities.
In particular we propose hash functions such that all the items x that map to a cell α
are represented using: Ax + b ≤ α (mod p) wherein p is a prime, and A, x, b, and
α are matrices of sizes m × n, n × 1, m × 1, and m × 1 respectively with entries in
[0, p − 1]. Let α[i] represent the value of the i-th coordinate of α. We now state the
desired properties of pairwise independence:

Lemma 1. For x, y ∈ [p]n, we have

Pr[Ax+ b ≤ α] =
∏
m(α[i] + 1)

pm
(2)

Pr[Ax+ b ≤ α | Ay + b ≤ α] =
∏
m(α[i] + 1)

pm
(3)

Proof. Chakraborty et al. [4] showed

Pr[Ax+ b = α] = Pr[Ax+ b = α | Ay + b = α] =
1

pm
(4)

For u, v ∈ [p]n, we define u ≺ v if for all i, u[i] ≤ v[i].

Pr[Ax+ b ≤ α] = Pr[
⋃
β≺α

Ax+ b = β]

= Pr[Ax+ b = 0]
∏
m

(α[i] + 1) =

∏
m(α[i] + 1)

pm

Similarly, we have

Pr[Ax+ b ≤ α | Ay + b ≤ α] = Pr[
⋃
β≺α

Ax+ b = β | Ay + b ≤ α] =

∏
m(α[i] + 1)

pm

ut

The expected number of solutions is |sol(ϕ)|×
∏

m(α[i]+1)

pm . Since α[i] ∈ [0, p − 1],
similar to the case of random XORs, there exists an appropriate assignment to α[i] such
that the expected number of solutions is in the desired range.

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 15

6 Conclusion and Future Outlook

Motivated by the recent surge of interest in applications based on model counting in the
SAT domain and the concurrent development of efficient hashing-based model count-
ing, we examined the key enabling factors for such a development. We observed that
the availability of solvers with native support for hashing constraints was a crucial con-
tributing factor to the aforementioned development. In the context of CSPs, the hashing
constraints with pairwise independence can be represented by linear modular arithmetic
constraints. We provided an efficient implementation of such constraints in a CP solver,
reversing previous choices of approach, and demonstrated their usefulness for model
counting but also for other applications such as checksums. Our empirical evaluation
highlighted the potential computational savings it can bring as well as the tradeoffs that
should be taken into account when developing hashing-based techniques for approxi-
mate model counting on CSPs.

From our experiments in Section 5, despite our success in being able to reach close
approximate counts at a fraction of the computational cost, we currently see two obsta-
cles to the widespread use of hashing-based techniques for model counting in CP. The
first is when the total number of solutions s is relatively small with respect to p (e.g. for
SBLS): m must be smaller than logp s to expect the resulting cell to contain solutions
so if that quantity does not exceed two or three we cannot gain much speedup. The ap-
proach outlined in Section 5.3 may remove that first obstacle. The second is when the
number of variables n is large (e.g. for graph coloring): logp s may be large enough for
us to add many linear modular constraints but having n −m parametric variables may
still be too many to fix before any GJE filtering can occur (recall threshold τmax) and
so the process remains time consuming even though in principle we are limiting our
search to a single cell. This relates more generally to the lack of filtering opportunities
for linear modular constraints on a large number of variables, as mentioned in Section 3:
propagation will only appear late in the search tree, once enough variables have been
instantiated.

Follow-up work in the short term includes building on this work to implement ap-
proximate model counting schemes, and improving the filtering capability of our GJE
algorithm by replacing our simple τmax threshold by a more sophisticated mechanism
and possibly by introducing smart tables [21] in order to attempt earlier propagation in
the search tree.

The broader objective of this paper is to initiate discussion among the CP commu-
nity on the development of solvers with native support for linear modular arithmetic
constraints. Akin to the SAT community where the initial framework proposed by Soos
et al. [17] in CryptoMiniSat received widespread attention and subsequent studies im-
proved the framework considerably, we hope the same would hold true with respect to
our work.

Acknowledgements

We thank the anonymous reviewers for their constructive criticism which helped us im-
prove the original version of the paper. Financial support for this research was provided

16 Gilles Pesant, Kuldeep S. Meel, Mahshid Mohammadalitajrishi

in part by NSERC Discovery Grant 218028/2017 and by National Research Foundation
Singapore under its NRF Fellowship Programme [NRF-NRFFAI1-2019-0004].

References

1. Sébastien Bardin, Philippe Herrmann, and Florian Perroud. An Alternative to SAT-Based
Approaches for Bit-Vectors. In Javier Esparza and Rupak Majumdar, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 16th International Conference,
TACAS 2010, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6015 of
Lecture Notes in Computer Science, pages 84–98. Springer, 2010.

2. Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. Global Constraint
Catalogue: Past, Present and Future. Constraints An Int. J., 12(1):21–62, 2007.

3. J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In ACM
Symposium on Theory of Computing, pages 106–112. ACM, 1977.

4. Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, and Moshe Y. Vardi. Approximate
Probabilistic Inference via Word-Level Counting. In Proc. of AAAI, 2016.

5. Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A Scalable Approximate
Model Counter. In Proc. of CP, pages 200–216, 2013.

6. Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic Improvements in
Approximate Counting for Probabilistic Inference: From Linear to Logarithmic SAT Calls.
In Proc. of IJCAI, 2016.

7. Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. On the Hardness of Probabilis-
tic Inference Relaxations. In Proc. of AAAI, 2019.

8. Zakaria Chihani, Bruno Marre, François Bobot, and Sébastien Bardin. Sharpening Constraint
Programming Approaches for Bit-Vector Theory. In Domenico Salvagnin and Michele Lom-
bardi, editors, Integration of AI and OR Techniques in Constraint Programming - 14th In-
ternational Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings, volume
10335 of Lecture Notes in Computer Science, pages 3–20. Springer, 2017.

9. Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez, Laurent Per-
ron, Jean-Charles Régin, and Pierre Schaus. Compact-Table: Efficiently Filtering Table Con-
straints with Reversible Sparse Bit-Sets. In Michel Rueher, editor, Principles and Practice
of Constraint Programming - 22nd International Conference, CP 2016, Toulouse, France,
September 5-9, 2016, Proceedings, volume 9892 of Lecture Notes in Computer Science,
pages 207–223. Springer, 2016.

10. Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy for
obtaining good bounds. In Proc. of AAAI, volume 21, pages 54–61, 2006.

11. Carla P. Gomes, Willem Jan van Hoeve, Ashish Sabharwal, and Bart Selman. Counting CSP
Solutions Using Generalized XOR Constraints. In AAAI, pages 204–209. AAAI Press, 2007.

12. Kuldeep S. Meel and S. Akshay. Sparse Hashing for Scalable Approximate Model Counting:
Theory and Practice. In Proceedings of Logic in Computer science (LICS), 7 2020.

13. Laurent D. Michel and Pascal Van Hentenryck. Constraint Satisfaction over Bit-Vectors. In
Michela Milano, editor, Principles and Practice of Constraint Programming - 18th Interna-
tional Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings,
volume 7514 of Lecture Notes in Computer Science, pages 527–543. Springer, 2012.

14. Casey Smith, Carla P. Gomes, and Cèsar Fernández. Streamlining Local Search for Spatially
Balanced Latin Squares. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-
05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages 1539–1540. Professional Book
Center, 2005.

On the Usefulness of Linear Modular Arithmetic in Constraint Programming 17

15. Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, Detached, and Lazy CNF-XOR
solving and its Applications to Counting and Sampling. In Proceedings of International
Conference on Computer-Aided Verification (CAV), 7 2020.

16. Mate Soos and Kuldeep S. Meel. BIRD: Engineering an Efficient CNF-XOR SAT Solver
and its Applications to Approximate Model Counting. In Proceedings of AAAI Conference
on Artificial Intelligence (AAAI), 1 2019.

17. Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers to Cryptographic
Problems. In SAT, volume 5584 of Lecture Notes in Computer Science, pages 244–257.
Springer, 2009.

18. Michael A. Trick. A Dynamic Programming Approach for Consistency and Propagation for
Knapsack Constraints. Annals OR, 118(1-4):73–84, 2003.

19. Salil P Vadhan et al. Pseudorandomness. Foundations and Trends R© in Theoretical Computer
Science, 7(1–3):1–336, 2012.

20. Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal
on Computing, 8(3):410–421, 1979.

21. Hélène Verhaeghe, Christophe Lecoutre, Yves Deville, and Pierre Schaus. Extending
Compact-Table to Basic Smart Tables. In J. Christopher Beck, editor, Principles and Prac-
tice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in
Computer Science, pages 297–307. Springer, 2017.

