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ABSTRACT

Sampling Techniques for Boolean Satisfiability

by

Kuldeep Singh Meel

Boolean satisfiability (SAT) has played a key role in diverse areas spanning test-

ing, formal verification, planning, optimization, inferencing and the like. Apart from

the classical problem of checking boolean satisfiability, the problems of generating

satisfying uniformly at random, and of counting the total number of satisfying as-

signments have also attracted significant theoretical and practical interest over the

years. Prior work offered heuristic approaches with very weak or no guarantee of per-

formance, and theoretical approaches with proven guarantees, but poor performance

in practice.

We propose a novel approach based on limited-independence hashing that allows

us to design algorithms for both problems, with strong theoretical guarantees and

scalability extending to thousands of variables. Based on this approach, we present

two practical algorithms, UniWit: a near uniform generator and ApproxMC: the first

scalable approximate model counter, along with reference implementations. Our al-

gorithms work by issuing polynomial calls to SAT solver. We demonstrate scalability

of our algorithms over a large set of benchmarks arising from different application

domains.
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Chapter 1

Introduction

Boolean satisfiability, also known as SAT, concerns determining the satisfiability of a

given propositional formula. Since Cook showed SAT to be N P-complete in 1971 [2]

and Karp demonstrated polynomial-time reductions of several important problems to

SAT [3], there has been strong theoretical and practical interest in the SAT problem.

Specifically, SAT has played a key role in diverse areas spanning testing, formal ver-

ification, planning, optimization, inferencing, combinatorics and the like [4]. Apart

from the classical problem of checking Boolean satisfiability, the problems of gener-

ating satisfying assignments uniformly at random, and of counting the total number

of satisfying assignments have also attracted significant theoretical and practical in-

terest over the years [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. This thesis focuses on the

latter two problems: uniform generation and counting, and proposes new practical

algorithms for solving them. Our first algorithm generates satisfying assignments of

a propositional near-uniformly (explained in detail in Chapter 3). The core idea of

this algorithm is then extended to approximately count the total number of satisfying

assignments of a propositional formula. Unlike prior work, our algorithms provide

strong theoretical guarantees and also scale to practical problem sizes. In the remain-

der of this Chapter, we briefly review motivating factors and previous work related

to uniform generation and counting to put our contributions in context.
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1.1 Uniform Generation

In this section, we motivate the problem of uniform generation of satisfying as-

signment. Functional verification constitutes one of the most challenging tasks in

the development of modern hardware systems. Despite significant advances in for-

mal verification over the last few decades, there is a huge mismatch between the

sizes of industrial systems and the capabilities of state-of-the-art formal-verification

tools [15]. Simulation-based verification techniques therefore dominate the functional-

verification landscape [16]. A dominant paradigm in simulation-based verification is

directed random testing, where an operational model of the system is simulated with

a set of random test stimuli satisfying a set of constraints [9, 10, 11]. The simulated

behavior is then compared with the expected behavior, and any mismatch is flagged

as indicative of a bug. The constraints that stimuli must satisfy typically arise from

various sources such as domain and application-specific knowledge, architectural and

environmental requirements, specifications of corner-case scenarios, and the like. Test

requirements from these varied sources are compiled into a set of constraints and fed

to a constraint solver to obtain test stimuli. Developing constraint solvers (and test

generators) that can reason about large sets of constraints is therefore acknowledged

to be an important activity for industrial test and verification applications [17].

Despite the diligence and insights that go into developing constraint sets for gen-

erating directed random tests, the complexity of modern hardware systems makes it

hard to predict the effectiveness of any specific test stimulus. It is therefore common

practice to generate a large number of stimuli satisfying a given set of constraints.

Since every stimulus is a priori as likely to expose a bug as any other stimulus, it is

desirable to sample the solution space of the constraints uniformly or near-uniformly

(defined formally in Chapter 3) at random [10]. A naive way to accomplish this is to
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first generate all possible solutions, and then sample them uniformly. Unfortunately,

generating all solutions is computationally prohibitive and often infeasible in practical

settings of directed random testing. For example, we have encountered systems of

constraints where the expected number of solutions is of the order of 2100, and there

is no simple way of deriving one solution from another. It is therefore interesting to

ask: Given a set of constraints, can we sample the solution space uniformly or near-

uniformly, while scaling to problem sizes typical of testing/verification scenarios? An

affirmative answer to this question has implications not only for directed random test-

ing, but also for other applications like probabilistic reasoning, approximate model

counting and Markov logic networks [12, 13]. In practical applications, the require-

ment of strict uniformity can often be relaxed to some extent without affecting the

quality of results. The relaxation in the requirement of uniformity is important, since

known techniques for generating satisfying assignments with guarantees of strict uni-

formity such as [18], do not scale well in practice. Relaxed notions of uniformity, like

“almost-uniform” or “near-uniform” are therefore important in practical applications

of uniform generation. We discuss these relaxations of uniformity in Chapter 3. In

this thesis, we discuss algorithms and tools that provide theoretical gaurantees of uni-

formity that conform to relaxed notions of uniformity and scale well in practice. Our

another contribution is scalable algorithms and tools for a related problem: counting

the satisfying assignments of given propositional formula, also known as model count-

ing. We briefly review the motivating factors behind model counting in the following

section.
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1.2 Model Counting

Propositional model counting, also known as #SAT, concerns counting the number of

models (satisfying truth assignments) of a given propositional formula. This prob-

lem has been the subject of extensive theoretical investigation since its introduction

by Valiant [5] in 1979. Several interesting applications of #SAT have been studied

in the context of probabilistic reasoning, planning, combinatorial design and other

related fields [12, 19, 13]. In particular, probabilistic reasoning and inferencing have

attracted considerable interest in recent years [20], and stand to benefit significantly

from efficient propositional model counters. For example, the belief in a statement s

for a knowledge base B with no explicit probabilistic information can be estimated

by M(s∧B)
M(B) , where s and B are both encoded as propositional formulas and M(·) is a

function that gives the model count for an input formula.

Theoretical investigations of #SAT have led to the discovery of deep connections

in complexity theory [6, 7, 8]: #SAT is #P-complete, where #P is the set of counting

problems associated with decision problems in the complexity class N P. Further-

more, P#SAT, that is, a polynomial-time machine with a #SAT oracle, can solve all

problems in the entire polynomial hierarchy. In fact, the polynomial-time machine

needs to make only one #SAT query to solve any problem in the polynomial hierar-

chy. This is strong evidence for the hardness of #SAT, which has been observed in the

practice as well [20]. The techniques proposed for #SAT have been successfully used

in small- to medium-sized problems, but scaling to larger problem instances has posed

significant challenges in practice. Consequently, a large class of practical applications

such as logistics,planning, inference has remained beyond the reach of exact model

counters. This prompts us to explore the hardness of the relaxations of the exact

counting (#SAT) from practical as well as theoretical perspective.
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In many applications of model counting, such as in probabilistic reasoning, the

exact model count may not be critically important, and approximate counts are suf-

ficient. Even when exact model counts are important, the inherent complexity of the

problem may force one to work with approximate counters in practice. Karp and Luby

presented a fully polynomial randomized approximation scheme for counting models

of a DNF formula [21]. While the DNF representation suits some applications, most

modern applications of model counting (e.g. probabilistic inference) use the CNF

representation [22]. Although exact counting for DNF and CNF formulae are polyno-

mially inter-reducible, there is no known polynomial reduction for the corresponding

approximate counting problems. In fact, Karp and Luby remark in [21] that it is

highly unlikely that their randomized approximate algorithm for DNF formulae can

be adapted to work for CNF formulae. Thus, there has been no prior implementa-

tion of approximate counters for CNF formulae that scales in practice. In this thesis,

we provide algorithms and tools for approximate model counting that scale well in

practice. Before we provide an overview of the contributions of this thesis, we explore

the deep relationship between approximate model counting and uniform generation

below.

1.3 Inter-reducibility of Approximate Counting and Almost

Uniform Generation

The motivating factors for (almost) uniform generation and approximate counting

arise from quite dissimilar areas. However, there is a deep connection between ap-

proximate counting and almost uniform generation. Jerrum, Valiant and Vazirani

showed that for SAT the problem of generating satisfying assignments almost uni-
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formly is polynomially inter-reducible with randomized approximate model count-

ing [14]. In [23], Stockmeyer showed that counting models within a specified tolerance

factor can be achieved in deterministic polynomial time using a Σp
2-oracle. Building

on Stockmeyer’s result and the inter-reducibility of approximate counting and almost

uniform generation, Jerrum et al. showed that the problem of almost uniform gener-

ation and approximate counting lie in the second level of polynomial hierarchy [14].

Our notion of approximate counting (discussed in Chapter 4) is equivalent to the

notion of randomized approximate model counting used in [14].

Our work shows a similar but different close connection: in particular, we show a

close connection between near-uniform generation of satisfying assignments and ran-

domized approximate counting. In the context of generating satisfying assignments,

the requirement of near uniformity is a more relaxed notion than that of almost uni-

formity, as proposed in [14]. However, our results does not yet generalize [14]’s

result, as will be discussed in Chapter 4. In fact, our results throws open the ques-

tion of whether the notions of almost uniform generation and near uniform generation

are themselves inter-reducible. This is discussed further in Chapter 5. In the next

section, we list and discuss the main contributions of this thesis.

1.4 Contributions

The main contribution of this thesis is a novel approach to solve the problems of

uniform generation and approximate model counting of SAT witnesses. Our approach,

which is based on limited-independence hashing, provides theoretical guarantees and

also scales to formulas with thousands of variables.

We describe UniWit, a randomized algorithm, that near-uniformly samples the

solution space of Boolean formulas and demonstrate its practical utility over large
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constraint sets. We also show that UniWit performs better than previous best-of-

breed algorithms for this problem in terms of both run time and uniformity.

A novel algorithm, ApproxMC, is proposed, which to the best of our knowledge

is the first scalable approximate model counter for CNF formulas. Experimental

comparison over a large set of problems arising from various domains show that

ApproxMC reports counts that are close to the exact counts. ApproxMC also succeeds

in reporting counts with small tolerance and with high confidence in cases that are too

large for computing exact model counts. Both UniWit and ApproxMC make polynomial

numbers of calls to a SAT solver and run in randomized polynomial time relative to

a SAT oracle.

This thesis also contributes two tools, UniWit and ApproxMC, that are based on

the algorithms as described above. Both tools have been made available in the public

domain.

The algorithms presented in this thesis were published in [24, 25].

1.5 Organization

The remainder of this thesis is organized as follows.

Chapter 2 presents notation and describes preliminaries needed for the subsequent

discussion. The notion of limited-independence hashing, which is central to the work

presented in this thesis, is briefly surveyed in this chapter.

Chapter 3 discusses the problem of uniform generation of SAT witnesses. It pro-

poses a novel approach with theoretical performance guarantees and demonstrates

the practical utility of the approach over an extensive set of benchmarks.

Chapter 4 presents the problem of approximate counting of SAT witnesses. It

proposes the first scalable approximate model counting algorithm for CNF formu-
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las. The practical utility of the approach is demonstrated over an extensive set of

benchmarks arising from the application domains of model counting.

Finally, Chapter 5 summarizes the main contributions of this thesis and outlines

possible future directions.
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Chapter 2

Preliminaries

In this chapter we introduce notations and preliminaries needed to present our work.

We begin with some basic notations.

2.1 Notations

Let Σ be an alphabet and R ⊆ Σ∗ × Σ∗ be a binary relation. We say that R is an

N P-relation if R is polynomial-time decidable, and if there exists a polynomial

p(·) such that for every (x,y) ∈ R, we have |y| ≤ p(|x|). Let LR be the language

{x ∈ Σ∗ | ∃y ∈ Σ∗, (x,y) ∈ R}. The language LR is said to be in N P if R is an N P-

relation. The set of all satisfiable propositional logic formulas in CNF is a language in

N P. Given x ∈ LR, a witness or model of x is a string y ∈ Σ∗ such that (x,y)∈ R. The

set of all models of x is denoted Rx. For notational convenience, we fix Σ to be {0,1}

without loss of generality. If R is an N P-relation, we may further assume that for

every x ∈ LR, every witness y ∈ Rx is in {0,1}n, where n = p(|x|) for some polynomial

p(·). Throughout this work, we use Pr [X ] to denote the probability of outcome X

of sampling from a probability space while E[X ] and σ2[X ] denote the expectation

and variance for a random variable X . We denote probability distribution of a set of

variables V by {V (V ).
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2.1.1 Notations Related to Uniformity

Given a N P relation R, a probabilistic generator of witnesses for R is a probabilistic

algorithm G (·) that takes as input a string x∈ LR and generates a random witness of x.

A uniform generator G u(·) is a probabilistic generator that guarantees Pr [G u(x) = y] =

1/|Rx| for every witness y of x. An almost uniform generator G au(·) relaxes the

guarantee of uniformity, and ensures that for every y ∈ Rx, we have (1 + ε)−1φ(x) ≤

Pr [G au(x) = y] ≤ (1 + ε)φ(x), where ε > 0 is the specified tolerance and φ(x) is an

appropriate function [18, 14]. A near-uniform generator G nu(·) further relaxes the

guarantee of uniformity, and ensures that Pr [G nu(x) = y] ≥ c · (1/|Rx|) for a constant

c, where 0 < c ≤ 1. Clearly, the larger c is, the closer a near-uniform generator is to

being a uniform generator.

Like previous works [18, 14], we allow our generator to occasionally “fail”, i.e.

the generator may occasionaly output no witness, but a special failure symbol ⊥. A

generator that occasionally fails must have its failure probability bounded above by

d, where d is a positive constant strictly less than 1.

2.1.2 Notations Related to Counting

The counting problem corresponding to R asks “Given x ∈ {0,1}∗, what is |Rx|?”. If R

relates CNF propositional formulae to their satisfying assignments, the corresponding

counting problem is called #SAT. Let ε and δ be real numbers such that 0 < ε ≤ 1

and 0 < δ ≤ 1. For every propositional formula F , let #F denote the number of

models. A counter of solutions of F is an algorithm J (·) that takes as input F and

an optional list of parameters: confidence (δ ) and tolerance (ε), and returns a count

estimating #F . An exact counter J e(·) guarantees J e(F) = |Rx|. An (ε,δ ) counter

J a(·) guarantees that Pr[(1 + ε)−1#F ≤ J a(F,ε ,δ ) ≤ #F ] ≥ 1− δ [26]. An upper
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bounding counter J u(·) ensures that Pr[J u(F,δ ) ≥ #F] ≥ 1− δ [27]. Similarly a

lower bounding counter J l(·) ensures that Pr[J l(F,δ ) ≥ #F] ≤ 1− δ . Noe that

bounding counters do not provide any tolerance guarantees. A guarantee-less counter

J g(·) does not provide any guarantees over the estimate of the count.

2.2 Standard Probability Results

We state some standard probability results that are used throughout this work. Stan-

dard textbooks [28, 29] can be consulted for detailed information.

r-wise Independence

A Set V of random variables is said to exhibit r−wise independence iff for every

subset of V size r or less, the joint probability distribution function of the subset is

equal to product of individual marginal distributions.

Markov Inequality

Let X be a nonnegative random variable and a > 0, then

Pr[X > a] ≤ E[X ]

a
(2.1)

Chebyshev Inequality

Let β > 0, then

Pr[|X −E[X ]| ≥ βσ 2[X ]] ≤ 1
β 2 (2.2)

Tail Bound for Pairwise Independent Hash Functions

We use Chebyshev inequality to obtain a tighter tail bound for pairwise inequality.
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Theorem 2.2.1. Let Γ be the sum of 2-wise independent random variables, each

of which is confined to the interval [0,1], and suppose E[Γ] = µ. For 0 < β ≤ 1, if

2 ≤
⌊

β 2µe−1/2
⌋
, then Pr [ |Γ−µ | ≥ β µ ] ≤ e−3/2.

Proof. Let Xi, i ∈ [n] be r-wise independent random variables confined to the interval

[0,1] and Γ = Σn
i=1Xi with E[Γ] = µ . Let σ2[Γ] denote the variance of Γ and for

pairwise independent hash functions, we have σ2[Γ] = ∑n
i=1 σ2[Xi]. Since Xi ∈ [0,1],

we have σ2[Xi] ≤ E[Xi]. Thus, σ2[Γ] ≤ E[Γ]. The proof is now completed by applying

Chebyshev’s inequality.

Pr(|Γ−E[Γ]| ≥ βE[Γ]) ≤ σ2[Γ]

(βE[Γ])2 ≤ e−1/2

3
≤ e−3/2

2.3 Limited-Independence Hashing

A key idea in our work for uniform generation and model counting is to use limited-

independence hash functions that map strings in {0,1}n to {0,1}m, for m ≤ n. The

following notion and terminology used in the context of limited-independence hashing

has also been discussed in the works of [18] and [30].

Definitions

Let n,m and r be positive integers, and let H(n,m, ·) denote a family of hash functions

mapping from {0,1}n to {0,1}m. We use h R←−H(n,m, ·) to denote the act of choosing a

hash function h uniformly at random from H(n,m, ·). We say that a family H(n,m, ·)

exhibits r−wise independence if for each α1, . . .αr ∈ {0,1}m and for each distinct

y1, . . .yr ∈ {0,1}n, Pr
[∧r

i=1 h(yi) = αi : h R←− H(n,m, ·)
]

= 2−mr. We use H(n,m,r) to

denote such a family of r−wise independent hash functions.
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For every α ∈ {0,1}m and h ∈ H(n,m,r), let h−1(α) denote the set {y ∈ {0,1}n |

h(y) = α}. Given Rx ⊆ {0,1}n and h ∈ H(n,m,r), we use Rx,h,α to denote the set

Rx ∩ h−1(α). If we keep h fixed and let α range over {0,1}m, the sets Rx,h,α form a

partition of Rx. Following the notation of [18], we call each element of such a partition

a cell of Rx induced by h. It has been shown in [18] that if h is chosen uniformly at

random from H(n,m,r) for r ≥ 1, the expected size of Rx,h,α , denoted E
[
|Rx,h,α |

]
, is

|Rx|/2m, for each α ∈ {0,1}m.

Construction of Limited-Independence Hash Functions

In [18], the authors suggest using polynomials over finite fields to generate r-wise

independent hash functions. We call these algebraic hash functions and denote by

Halg(n,m,r). Choosing a random algebraic hash function h ∈ Halg(n,m,r) requires

choosing a sequence (a0, . . .ar−1) of elements in the field F = GF(2max(n,m)), where

GF(2k) denotes the Galois field of 2k elements. Given y ∈ {0,1}n, the hash value h(y)

can be computed by interpreting y as an element of F, computing Σr−1
j=0a jy j in F, and

selecting m bits of the encoding of the result. Unfortunately it is well known that the

multiplier operator for Galois field is quite expensive [31], thus making this approach

impractical.

Efficient Limited-Independence Hash Functions

Our approach uses computationally efficient linear hash functions. In particular, we

use pairwise and 3-wise independent hash functions. The literature describes several

families of efficiently computable pairwise independent hash functions. One such fam-

ily, which we denote Hconv(n,m,2), is based on the wrapped convolution function [32].

For a ∈ {0,1}n+m−1 and y ∈ {0,1}n, the wrapped convolution c = (a• y) is defined as
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an element of {0,1}m as follows: for each i ∈ {1, . . .m}, c[i] =
⊕n

j=1(y[ j]∧a[i+ j−1]),

where⊕ denotes logical xor and v[i] denotes the ith component of the bit-vector v. The

family Hconv(n,m,2) is defined as {ha,b(y) = (a•y)⊕m b | a ∈ {0,1}n+m−1,b ∈ {0,1}m},

where ⊕m denotes componentwise xor of two elements of {0,1}m. By randomly choos-

ing a and b, we can randomly choose a function ha,b(x) from this family. It has been

shown in [32] that Hconv(n,m,2) is pairwise independent.

Another computationally efficient family, which we denote Hxor(n,m,3), is based

on randomly choosing bits from y ∈ {0,1}n and xor-ing them. This family of hash

functions has been used in earlier works [30], and has been shown to be 3-independent

(therefore pairwise independent as well) in [33]. Let h(y)[i] denote the ith component

of the bit-vector obtained by applying hash function h to y. The family Hxor(n,m,3)

is defined as {h(y) | (h(y))[i] = ai,0⊕ (
⊕n

k=1 ai,k ·y[k]),ai, j ∈ {0,1},1 ≤ i ≤ m,0 ≤ j ≤ n}.

By randomly choosing the ai, j’s, we can randomly choose a hash function from this

family.

The algorithms presented in this thesis work with any pairwise independent family

of hash functions. The reference implementation and experimental analysis of our

algorithms uses the above two families of hash functions.
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Chapter 3

Uniform Generation

We use “uniform generation” to refer to the problem of generating satisfying assign-

ments of a propositional formula near-uniformly at random from the space of all

satisfying assignments. As mentioned in Chapter 1, this is an important problem

with applications to wide variety of applications areas ranging from random directed

testing to probabilistic reasoning [12, 13]. Since a significant body of constraints that

arise in testing and verification settings and in other application areas (like probabilis-

tic reasoning) can be efficiently encoded as Boolean constraints in conjunctive normal

form (CNF), we focus on the problem of uniform generation of satisfying assignments

of CNF formulas. Following terminology used in the literature, such assignments are

henceforth called SAT Witnesses.

The problem of uniform generation of CNF formulas has been of long-standing

theoretical and practical interest [34, 23, 33]. Industrial approaches to solving this

problem either rely on Reduced Ordered Binary Decision Diagrams(ROBDD)-based

techniques [11] , which do not scale well (see, for example, the comparison in [35]),

or use heuristics that offer no guarantee on performance or uniformity when applied

to large problem instances*. Prior published work in this area broadly belong to one

of two categories. In the first category, the focus is on heuristic sampling techniques

that scale to large systems of constraints [36, 37, 33, 35]. Markov Chain Monte Carlo

*Private communication: R. Kurshan
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(MCMC) methods and techniques based on random seedings of SAT solvers belong

to this category. These methods, however, either offer very weak or no guarantees on

the uniformity of sampling (see [35] for a comparison), or require the user to provide

hard-to-estimate problem-specific parameters that crucially affect the performance

and uniformity of sampling. In the second category of work, the focus is on stronger

guarantees on uniformity of sampling [18, 14, 11]. Unfortunately, our experience

indicates that these techniques do not scale even to relatively small problem instances

(involving few tens of variables) in practice.

The work presented here tries to bridge the above mentioned extremes. Specifi-

cally, we provide guarantees of near-uniform sampling, and of a bounded probability

of failure, without the user having to provide any hard-to-estimate parameters. We

also demonstrate that our proposed approach scales in practice to constraints involv-

ing thousands of variables. Note that there is evidence that uniform generation of

SAT witnesses is harder than SAT solving [14]. Thus, while today’s SAT solvers are

able to handle hundreds of thousands of variables and more, we believe that scalability

of our approach to thousands of variables should be considered a major improvement

in this area.

The remainder of this Chapter is organized as follows. In Section 3.1, we review

previous works in this area. Design choices behind our algorithm and some implemen-

tation issues are discussed in Section 3.2. A mathematical analysis of the guarantees

provided by our algorithm is presented in Section 3.3. Section 3.4 discusses experi-

mental results on a large set of benchmarks. Our experiments demonstrate that our

algorithm is more efficient in practice and generates witnesses that are more evenly

distributed than those generated by the best known alternative algorithm that scales

to comparable problem sizes.
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3.1 Prior Work

In this section, we briefly review various approaches proposed in the literature for

uniform generation in SAT and related domains. Finally we discuss in detail two

algorithms that come closest to our work.

Markov Chain Monte Carlo (MCMC)-based Methods: A wide variety

of MCMC-based algorithms have been proposed in the literature to sample from

complex distributions. These include Metropolis algorithm, simulated annealing and

the [37, 38, 39]. The core idea of these algorithms is to sample using carefully chosen

Markov chains in which the steady state distribution matches the desired distribution.

MCMC methods guarantee convergence to uniform distribution only when run for

sufficiently long time. Most practical algorithms based on MCMC methods, however,

use heuristic adaptations to ensure better performance. For example, Wei, Erenrich

and Selman proposed an algorithm, named SampleSAT, based on a hybrid strategy

involving random walks and simulated annealing [40]. Kitchen and Kuehlmann [35]

proposed an MCMC based approach using Metropolis-Hasting sampler to generate

stimuli for Boolean/integer constraint problems. Unfortunately, the adaptations used

in the above algorithm fail to provide any guarantees of uniformity.

Weighted Binary Decision Diagram (BDD) based Methods: A new ap-

proach based on sampling from a set of constraints based on weighted binary decision

diagrams [41] was proposed in [42, 43]. The core idea of the algorithm is to construct

a BDD-based on the input constraints and then generate uniform samples in a single

pass over the BDD. The approach works well for small to medium-sized examples

but does not scale to larger problems. Hence it is not scalable to large problems in

practice. A detailed analysis of the scalability limitations of BDD-based methods is

presented in [35].
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An alternative approach to uniform generation based on BDDs was proposed

in [44]. This approach relies on constructing an equivalent circuit for BDD con-

straints [44]. Unfortunately, this approach fails to provide guarantees of uniformity

[35].

Interval-propagation-based sampling: Interval-propagation-based sampling

techniques have been used by some researchers to address the scalability challenges

posed by uniform generation in practice [45]. The central idea underlying these

techniques is to maintain intervals of values that a variable can take and generate

samples by performing random sampling over these intervals. The simplicity of such

approaches provides good performance in practice but the distributions generated can

deviate significantly from the uniform distribution [35].

Belief networks: Another class of methods based on Constrained satisfaction

problems (CSP), particularly belief propagation, have been proposed in [46, 47]. The

proposed techniques improve on the traditional MCMC based methods by integrat-

ing sampling with back-jumping search and no-good learning. Experimental com-

parisons, however, have shown that these techniques perform poorly compared to

MCMC based techniques with random walk and simulated annealing heuristics, as in

SampleSAT [47].

Hashing-based techniques Sipser poinneered hashing-based approach in [34]

building upon the universal hashing introduced by Carter and Wegman [48]. This has

subsequently been used in theoretical [18] and practical [33] treatments of uniform

sampling. The key idea in these works is to randomly partition the solution space

into “small cells” of roughly equal size. The act of picking a solution randomly chosen

cell provides the required guarantees. Our work also falls in this category, however

there are notable differences as discussed below.
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3.1.1 BGP and XORSample′ Algorithms

We now discuss two algorithms that come closest to our work. In 1998, Bellare,

Goldreich, and Petrank proposed an algorithm, showing that uniform generation of

N P-witnesses can be achieved in probabilistic polynomial time using an N P-

oracle [18]. This improved on previous work by Jerrum, Valiant and Vazirani [14],

who showed that uniform generation can be achieved in probabilistic polynomial time

using a ΣP
2 oracle, and almost-uniform generation can be achieved in probabilistic

polynomial time using an N P oracle. In the remainder of this chapter, we refer to

Bellare et al.’s algorithm as the BGP algorithm (after the last names of the authors).

Let R be an N P-relation over Σ. The BGP algorithm takes as input an x∈ LR and

either generates a witness that is uniformly distributed in Rx, or produces a symbol

⊥ (indicating a failed run). The pseudo-code for BGP is presented in Algorithm 1. In

the presentation, we assume w.l.o.g. that n is an integer such that Rx ⊆ {0,1}n. We

also assume access to N P-oracles to answer queries about cardinalities of witness

sets and also to enumerate small witness sets.

For clarity of exposition, we have made a small adaptation to the algorithm origi-

nally presented in [18]. Specifically, if h does not satisfy (∀α ∈ {0,1}i−l, |Rx,h,α |≤ 2n2)

when the loop in lines 7–10 terminates, the original algorithm forces a specific choice

of h. Instead, algorithm BGP simply outputs ⊥ (indicating a failed run) in this situ-

ation. A closer look at the analysis presented in [18] shows that all results continue

to hold with this adaptation. The authors of [18] use algebraic hash functions and

random choices of n-tuples in GF(2max(n,i−l)) to implement the selection of a random

hash function in line 9 of the pseudocode. The following theorem summarizes the key

properties of the BGP algorithm [18].
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Algorithm 1 BGP(x) :
/* Assume Rx ⊆ {0,1}n */

1: pivot ← 2n2;

2: if |Rx| ≤ pivot then

3: List all elements y1, . . .y|Rx| of Rx;

4: Choose j at random from {1, . . . |Rx|}, and return y j;

5: else

6: l ← 2⌈log2 n⌉; i ← l;

7: repeat

8: i ← i+1;

9: Choose h at random from Halg(n, i− l,n);

10: until (∀α ∈ {0,1}i−l, |Rx,h,α | ≤ 2n2) or (i = n−1);

11: if (∃α ∈ {0,1}i−l, |Rx,h,α | > 2n2) then return ⊥;

12: else

13: Choose α at random from {0,1}i−l;

14: List all elements y1, . . .y|Rx,h,α | of Rx,h,α ;

15: Choose j at random from {1, . . .pivot};

16: if j ≤ |Rx,h,α | then return y j;

17: else return ⊥;
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Theorem 3.1.1. The output generated by BGP is uniformly distributed. Formally, if

a run of the BGP algorithm is successful, the probability that y ∈ Rx is 1/|Rx|. Further,

the probability that a run of the algorithm fails is ≤ 0.8.

Since the probability of any witness y ∈ Rx being output by a successful run of the

algorithm is independent of y, the BGP algorithm guarantees uniform generation of

witnesses. However, as we argue in the next section, scaling the algorithm to even

medium-sized problem instances is quite difficult in practice. Indeed, we have found

no published report discussing any implementation of the BGP algorithm.

In 2007, Gomes, Sabharwal and Selman [33] presented two closely related algo-

rithms named XORSample and XORSample′ for near-uniform sampling of combina-

torial spaces. A key idea in both these algorithms is to constrain a given instance

F of the CNF SAT problem by a set of randomly selected xor constraints over the

variables appearing in F . A xor constraint over a set V of variables is an equation of

the form e = c, where c ∈ {0,1} and e is the logical xor of a subset of V . A probability

distribution X(|V |,q) over the set of all xor constraints over V is characterized by the

probability q of choosing a variable in V . A random xor constraint from X(|V |,q) is

obtained by forming a xor constraint where each variable in V is chosen independently

with probability q, and c is chosen uniformly at random.

We present the pseudo-code of algorithm XORSample′ below. The algorithm uses a

function SATModelCount that takes a Boolean formula F and returns the exact count

of witnesses of F . Algorithm XORSample′ takes as inputs a CNF formula F , the

parameter q discussed above and an integer s > 0. Suppose the number of variables

in F is n. The algorithm proceeds by conjoining s xor constraints to F , where the

constraints are chosen randomly from the distribution X(n,q). Let F ′ denote the

conjunction of F and the random xor constraints, and let mc denote the model count
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(i.e., number of witnesses) of F ′. If mc ≥ 1, the algorithm enumerates the witnesses

of F ′ and chooses one witness at random. Otherwise, the algorithm outputs ⊥,

indicating a failed run. Algorithm XORSample can be viewed as a variant of algorithm

Algorithm 2 XORSample′(F,q,s)
/* n = Number of variables in F */

1: Qs ← {s random xor constraints from X(n,q)};

2: F ′ = F ∧ (
∧

f∈Qs
f );

3: mc ← SATModelCount(F ′);

4: if then(mc ≥ 1)

5: Choose i at random from {1, . . .mc};

6: Enumerate the first i witnesses of F ′;

7: return ith witness of F ′;

8: else return ⊥;

XORSample′ in which we check if mc is exactly 1 (instead of mc ≥ 1) in line 4 of the

pseudocode. An additional difference is that if the check in line 4 fails, algorithm

XORSample starts afresh from line 1 by randomly choosing s xor constraints. In our

experiments, we observed that XORSample′ significantly outperforms XORSample in

performance, hence we consider only XORSample′ for comparison with our algorithm.

Let ⟨ f1, . . . fs⟩ denote the lexicographic ordering of the random xor constraints

in Qs. Choosing the set Qs is equivalent to choosing a random hash function hQs :

{0,1}n → {0,1}s, where hQs [i] = fi for i ∈ {1, . . .s}. In [33], the authors showed that if

q = 1
2 , the random hash function hQs is 3-wise independent, i.e. in Hxor(n,s,3). This

property was subsequently used in [33] to prove the following key theorem.
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Theorem 3.1.2. Let F be a SAT formula with 2s∗ solutions. Let α > 0 and s = s∗−α.

For a witness y of F, the probability with which XORSample′ with parameters q = 1
2

and s outputs y is bounded below by c′(α)2−s∗, where c′(α) = 1−2−α/3

(1+2−α )(1+2−α/3)
. Further,

XORSample′ succeeds with probability larger than c′(α).

Since the performance of the algorithm crucially depeneds on the input parameter

α , a good estimate of s∗ is needed. Finding number of solutions of a SAT formula

F , however, is #P−complete and therefore,authors of [33] propose a binary search

heuristic to estimate s∗. The search heuristic, however, is computationally very ex-

pensive as demonstrated by our experimental results in Section 3.5. While the choice

of q = 1
2 allowed the authors of [33] to prove Theorem 3.1.2, the authors acknowledge

that finding witnesses of F ′ is quite hard in practice when random xor constraints are

chosen from X(n, 1
2). Therefore, they advocate using values of q much smaller than 1

2 .

Unfortunately, the analysis that yields the theoretical guarantees in Theorem 3.1.2

does not hold with these smaller values of q [49]. This illustrates the conflict be-

tween witness generators with good performance in practice, and those with good

theoretical guarantees.

3.2 The UniWit Algorithm

We now describe an adaptation, called UniWit, of the BGP algorithm that scales to

much larger problem sizes than those that can be handled by the BGP algorithm, while

weakening the guarantee of uniform generation to that of near-uniform generation.

Experimental results, however, indicate that the witnesses generated by our algorithm

are quite uniform in practice. Our algorithm can also be viewed as an adaptation

of the XORSample′ algorithm, in which we do not need to provide hard-to-estimate

problem-specific parameters like s and q.
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We begin with some observations about the BGP algorithm. In what follows,

line numbers refer to those in the pseudo-code of the BGP algorithm presented in

Section 3.1.1. Our first observation is that the loop in lines 7–10 of the pseudo-code

iterates until either |Rx,h,α | ≤ 2n2 for every α ∈ {0,1}i−l or i increments to n− 1.

Checking the first condition is computationally prohibitive even for values of i− l

and n as small as few tens. So we ask if this condition can be simplified, perhaps

with some weakening of theoretical guarantees. Indeed, we have found that if the

condition requires that 1 ≤ |Rx,h,α | ≤ 2n2 for a random α ∈ {0,1}i−l (instead of for

every α ∈ {0,1}i−l), we can still guarantee near-uniformity (but not uniformity) of

the generated witnesses. This suggests choosing both a random h ∈ H(n, i− l,n) and

a random α ∈ {0,1}i−l within the loop of lines 7–10.

The analysis presented in [18] relies on h being sampled uniformly from a family

of n-wise independent hash functions. In the context of generating SAT witnesses, n

denotes the number of propositional variables in the input formula. This can be large

(several thousands) in problems arising from directed random testing. Unfortunately,

implementing n-wise independent hash functions using algebraic hash functions (as

advocated in [18]) for large values of n is computationally infeasible in practice. This

prompts us to ask if the BGP algorithm can be adapted to work with r-wise inde-

pendent hash functions for small values of r, and if simpler families of hash functions

can be used. Indeed, we have found that with r ≥ 2, an adapted version of the BGP

algorithm can be made to generate near-uniform witnesses. We can also bound the

probability of failure of the adapted algorithm by a constant. The sufficiency of

pairwise independence allows us to use computationally efficient xor-based families

of hash functions, like Hconv(n,m,2) discussed in discussed in Section 2.3. This pro-

vides a significant scaling advantage to our algorithm vis-a-vis the BGP algorithm in
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practice.

In the context of uniform generation of SAT witnesses, checking if |Rx|≤ 2n2 (line

2 of pseudo-code) or if |Rx,h,α | ≤ 2n2 (line 10 of pseudo-code, modified as suggested

above) can be done either by approximate model-counting or by repeated invocations

of a SAT solver. State-of-the-art approximate model counting techniques rely on

randomly sampling the witness space, suggesting a circular dependency [30]. Hence,

we choose to use a SAT solver as the back-end engine for enumerating and counting

witnesses. Note that if h is chosen randomly from Hconv(n,m,2), the formula for which

we seek witnesses is the conjunction of the original (CNF) formula and xor constraints

encoding the inclusion of each witness in h−1(α). We therefore choose to use a SAT

solver optimized for conjunctions of xor constraints and CNF clauses as the back-end

engine; specifically, we use CryptoMiniSAT (version 2.9.2) [50].

Modern SAT solvers often produce partial assignments that specify values of a sub-

set of variables, such that every assignment of values to the remaining variables gives

a witness. Since we must find large numbers of witnesses(2n2 ≈ 2×106 if n ≈ 1000),

it would be useful to obtain partial assignments from the SAT solver. Unfortunately,

conjoining random xor constraints to the original formula reduces the likelihood that

large sets of witnesses can be encoded as partial assignments. Thus, each invokation

of the SAT solver is likely to generate only a few witnesses, necessitating a large

number of calls to the solver. To make matters worse, if the count of witnesses ex-

ceeds 2n2 and if i < n−1, the check in line 10 of the pseudo-code of algorithm BGP

(modified as suggested above) fails, and the loop of lines 7–10 iterates once more,

requiring generation of up to 2n2 witnesses of a modified SAT problem all over again.

This can be computationally prohibitive in practice. Indeed, our implementation of

the BGP algorithm with CryptoMiniSAT failed to terminate on formulas with few
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tens of variables, even when running on high-performance computers for 20 hours.

This prompts us to ask if the required number of witnesses, or pivot, in the BGP

algorithm (see line 1 of the pseudo-code) can be reduced. We answer this question

in the affirmative, and show that the pivot can indeed be reduced to 2n1/k, where

k is an integer ≥ 1. Note that if k = 3 and n = 1000, the value of 2n1/k is only 20,

while 2n2 equals 2 × 106. This translates to a significant improvement in the sizes

of problems for which we can generate random witnesses. There are, however, some

practical tradeoffs involved in the choice of k; we defer a discussion of these to a later

part of this section.

In lines 13–16, the value of j is chosen from the set of {1, . . . . . . pivot} instead of

{1, . . . . . . . |Rx,h,α |}. This allows authors to obtain stronger guarantees of uniformity

while weakening success probability slightly. We continue to use this insight in our

algoirthm.

We now present the UniWit algorithm, which implements the proposed modifica-

tions to the BGP algorithm. UniWit takes as inputs a CNF formula F with n variables,

and an integer k ≥ 1. The algorithm either outputs a witness that is near-uniformly

distributed over the space of all witnesses of F , or produces a symbol ⊥ indicating

a failed run. We also assume that we have access to a function BoundedSAT that

takes as inputs a propositional formula F that is a conjunction of a CNF formula and

xor constraints, and an integer r ≥ 0, and returns a set S of witnesses of F such that

|S| = min(r,#F), where #F denotes the count of all witnesses of F .

Implementation issues: There are four steps in UniWit (lines 4, 9, 10 and 16 of the

pseudo-code) where random choices are made. In our implementation, in line 10 of

the pseudo-code, we choose a random hash function from the family Hconv(n, i− l,2),

since it is computationally efficient to do so. Recall from Section 2.3 that choosing a
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Algorithm 3 UniWit(F,k)
/*Assume z1, · · · ,zn are variables in F */

1: pivot ← ⌈2n1/k⌉; S ← BoundedSAT(F, pivot +1);

2: if |S| ≤ pivot then

3: Let y1, . . .y|S| be the elements of S;

4: Choose j at random from {1, . . . |S|} and return y j;

5: else

6: l ← ⌊1
k · (log2 n)⌋; i ← l;

7: repeat

8: i ← i+1;

9: Choose h at random from Hconv(n, i− l,2);

10: Choose α at random from {0,1}i−l;

11: S ← BoundedSAT(F ∧ (h(z1, . . .zn) = α),pivot+1);

12: until (1 ≤ |S| ≤ pivot) or (i = n);

13: if (|S| > pivot) or (|S| < 1) then return ⊥;

14: else

15: Let y1, . . .y|S| be the elements of S;

16: Choose j at random from {1, . . . pivot};

17: if j ≤ |S| then return y j

18: else return ⊥;



CHAPTER 3. UNIFORM GENERATION 28

random hash function from Hconv(n,m,2) requires choosing two random bit-vectors.

It is straightforward to implement these choices and also the choice of a random

α ∈ {0,1}i−l in line 10 of the pseudo-code, if we have access to a source of independent

and uniformly distributed random bits. In lines 4 and 16, we must choose a random

integer from a specified range. By using standard techniques (see, for example, the

discussion on coin tossing in [18]), this can also be implemented efficiently if we

have access to a source of random bits. Our implementation uses random sequences

of bits generated from nuclear decay processes and available at HotBits [51]. We

download and store a long sequence of random bits in a file ( 12 MB), and access

an appropriate number of bits sequentially, with wrap around, whenever needed.

We defer experimenting with sequences of bits obtained from other pseudo-random

generators to a future study.

In line 11 of the pseudo-code for UniWit, we invoke BoundedSAT with arguments

F ∧ (h(z1, . . .zn) = α) and pivot + 1. The function BoundedSAT is implemented us-

ing CryptoMiniSAT (version 2.9.2), which allows passing a parameter indicating the

maximum number of witnesses to be generated. The sub-formula (h(z1, . . .zn) = α) is

constructed as follows. As mentioned in Section 2.3, a random hash function from the

family Hconv(n, i− l,2) can be implemented by choosing a random a∈ {0,1}n+i−l−1 and

a random b ∈ {0,1}i−l. Recalling the definition of h from Section 2.3, the sub-formula

(h(z1, . . .zn) = α) is given by ∧i−l
j=1

((⊕n
p=1(zp ∧a[ j + p−1])⊕b[ j]

)
⇔ α [ j]

)
.

A heuristic optimization: A (near-)uniform generator is likely to be invoked a large

number of times for the same formula F when generating a set of witnesses of F . If the

performance of the generator is sensitive to problem-specific parameter(s) not known

a priori, a natural optimization is to estimate values of these parameter(s), perhaps

using computationally expensive techniques, in the first few runs of the generator,
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and then re-use these estimates in subsequent runs on the same problem instance.

Of course, this optimization works only if the parameter(s) under consideration can

be reasonably estimated from the first few runs. We call this heuristic optimization

“leapfrogging”.

In the case of algorithm UniWit, the loop in lines 7–12 of the pseudo-code starts

with i set to l − 1 and iterates until either i increments to n, or |RF,h,α | becomes no

larger than 2n1/k. For each problem instance F , we propose to estimate a lower bound

of the value of i when the loop terminates, from the first few runs of UniWit on F . In

all subsequent runs of UniWit on F , we propose to start iterating through the loop

with i set to this lower bound. We call this specific heuristic “leapfrogging i” in the

context of UniWit. Our analysis of UniWit shows that the probabilistic guarantees

of UniWit continue to hold as long as the lower bound of i used in leapfrogging is

smaller than log2 |RF |− (1/k) log2 n. The heuristic“leapfrogging i” however does not

provide any guarantees on the lower bound of i, therefore the current guarantees

can not be shown to hold for all inputs. Note that leapfrogging may also be used

for the parameter s in algorithms XORSample′ and XORSample (see pseudo-code of

XORSample′). We discuss more about this in Section 3.4.

3.3 Analysis of UniWit

Let RF denote the set of witnesses of the input formula F . Using notation discussed

in Section 2.1, suppose RF ⊆ {0,1}n. For simplicity of exposition, we assume that

log2 |RF |− (1/k) · log2 n is an integer in the following discussion. A more careful anal-

ysis removes this assumption with constant factor reductions in the probability of

generation of an arbitrary witness and in the probability of failure of UniWit.
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3.3.1 Near Uniformity

Theorem 3.3.1. Suppose F has n variables, k ≥ 1, and n > 2k. For every witness y

of F, the probability that algorithm UniWit outputs y on inputs F and k is bounded

below by 1
8|RF | .

Proof. Referring to the pseudo-code of UniWit, if |RF | ≤ 2n1/k, the theorem holds

trivially. Suppose |RF | > 2n1/k, and let Y denote the event that witness y in RF

is output by UniWit on inputs F and k. We break the event Y into two stages: (i)

termination of loop in lines 7–12 with y in RF,h,α , and (ii) choosing y when y∈ S in lines

15–17. Let pi,y denote the probability that the loop in lines 7–12 of the pseudo-code

terminates in iteration i with y in RF,h,α , where α ∈ {0,1}i−l is the value chosen in line

10. Let ps(y) denote the probability of returning y when y∈ S in lines 15–17. It follows

from the pseudo-code that Pr [Y ]≥ pi,y ps(y), for every i∈ {l, . . .n}. Since pivot = 2n1/k,

we have ps(y) = 1
pivot = 1

2n1/k . Let us denote log2 |RF |− (1/k) · log2 n by m, which by

our assumption is an integer. Therefore, 2m · n1/k = |RF |. Since 2n1/k < |RF | ≤ 2n

and since l = ⌊(1/k) · log2 n⌋ (see line 6 of pseudo-code), we have l < m+ l ≤ n. From

Lemma 3.3.2, we know that pm+l,y ≥ 1−n−1/k

2m+1 . Consequently, Pr [Y ] ≥ pm+l,y · ps(y) ≥
1−n−1/k

2m+2·n1/k = 1−n−1/k

4|RF | ≥ 1
8|RF | , if n > 2k.

Lemma 3.3.2. pm+l,y ≥ 1−n−1/k

2m+1

Proof. To calculate pm+l,y, we first note that since y∈RF , the requirement “y∈RF,h,α”

reduces to “y ∈ h−1(α)”. For α ∈ {0,1}m and y ∈ {0,1}n, we define qm+l,y,α as

Pr
[
|RF,h,α | ≤ 2n1/k and h(y) = α : h R←− H(n,m,r)

]
, where r ≥ 2. The proof is now

completed by showing that qm+l,y,α ≥ (1 − n−1/k)/2m+1 for every α ∈ {0,1}m and

y ∈ {0,1}n. Towards this end, we define an indicator variable γy,α for every y ∈ {0,1}n

and α ∈ {0,1}m as follows: γy,α = 1 if h(y) = α and γy,α = 0 otherwise. Thus,
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γy,α is a random variable with probability distribution induced by that of h. It is

easy to show that (i) E [γy,α ] = 2−m, and (ii) the pairwise independence of h im-

plies pairwise independence of the γy,α variables. We now define Γα = ∑z∈RF γz,α

and µy,α = E [Γα | γy,α = 1]. Clearly, Γα = |RF,h,α | and µy,α = E
[
∑z∈RF γz,α | γy,α = 1

]

= ∑z∈RF E [γz,α | γy,α = 1]. Using pairwise independence of the γy,α variables, the above

simplifies to µy,α = 2−m(|RF |−1)+1 ≤ 2−m|RF |+1 = n1/k +1. From Markov’s inequal-

ity, we know that Pr [Γα ≤ κ · µy,α | γy,α = 1] ≥ 1−1/κ for κ > 0. With κ = 2
1+n−1/k ,

this gives Pr
[
|RF,h,α | ≤ 2n1/k | γy,α = 1] ≥ (1− n−1/k)/2. Since h is chosen at ran-

dom from H(n,m,r), we also have Pr [h(y) = α] = 1/2m. It follows that qm+l,y,α ≥

(1−n−1/k)/2m+1.

3.3.2 Success Probability

Theorem 3.3.3. Assuming n > 2k, algorithm UniWit succeeds (i.e. does not return

⊥) with probability at least 1
8 .

Proof. Let Psucc denote the probability that a run of algorithm UniWit succeeds. By

definition, Psucc = ∑y∈RF Pr [Y ]. Using Theorem 3.3.1, Psucc ≥ ∑y∈RF
1

8|RF | = 1
8 .

3.3.3 Complexity

Theorem 3.3.4. Given an oracle for SAT, UniWit (F,k) runs in time polynomial in

|F| and n1+1/k relative to a SAT oracle where n denotes the number of propositional

variables in |F|.

Proof. The pseudo-code for UniWit can be partitioned into three regions for ease of

analysis: (i) line 1, (ii) line 2–4 and line 13-18, and (iii) line 7–12 (repeat-until loop).

Line 1 makes one call to BoundedSAT. Lines 2–4 and 13-18 enumerate up to pivot
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solutions (each of which has length n), therefore take time no more than a polynomial

in n and pivot, which is in O(n1+1/k).

Referring to the pseudo-code for UniWit, the repeat-until loop is repeated O(n)

times. Each iteration of the loop makes one call to BoundedSAT. Each call to

BoundedSAT can be implemented by at most pivot + 1 calls to a SAT oracle, and

since pivot is in O(n1/k), the cumulative number of calls to the SAT oracle ins all calls

to BoundedSAT is in O(n1+1/k). Construction and writing of F ∧ (h(z1, . . .zn) = α) on

the memory takes time polynomial in |F|. Therefore, the total time taken by all calls

to BoundedSAT is bounded by a polynomial in |F| and n1/k. Hence the repeat-loop

in lines 7–12 takes time polynomial in |F| and n1+1/k relative to a SAT oracle.

Summing up for all three regions, UniWit runs in time polynomial in |F | and n1+1/k

relative to a SAT oracle.

The complexity analysis above is very conservative. In practice, we observe that the

repeat-until loop iterates approximately log |RF |− log pivot times. This observation

forms the basis of our extension of this technique to model counting (see Chapter 4).

Also, the use of “leapfrogging” reduces the number of iterations of the for repeat-until

loop significantly, as demonstrated by our extensive experiments (see Section 3.5).

3.3.4 Choice of parameter k

One might be tempted to use large values of the parameter k to keep the value of

pivot low. There are, however, tradeoffs involved in the choice of k. As k increases,

the pivot 2n1/k decreases, and the chances that BoundedSAT finds more than 2n1/k

witnesses increases, necessitating further iterations of the loop in lines 7–12 of the

pseudo-code. Of course, reducing the pivot also implies that BoundedSAT has to

find fewer witnesses, and each invocation of BoundedSAT is likely to take less time.
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The increase in the number of invocations of BoundedSAT, however, contributes to

increased overall time. In our experiments, we have found that choosing k to be either

2 or 3 works well for all our benchmarks (including those containing several thousand

variables).

3.4 Experimental Results

To evaluate the performance of UniWit, we built a prototype implementation in

Python and conducted an extensive set of experiments. Since our motivation stems

primarily from functional verification, our benchmarks were mostly derived from func-

tional verification of hardware designs. Specifically, we used “bit-blasted” versions

of word-level constraints arising from bounded model checking of public-domain and

proprietary word-level VHDL designs. In addition, we also used bit-blasted versions of

several SMTLib [52, 53] benchmarks of the “QF_BV/bruttomesso/ simple_processor/”

category, and benchmarks arising from “Type I” representations of ISCAS’85 circuits,

as described in [54].

Our experiments were conducted on a high-performance computing cluster. Each

individual experiment was run on a single node of the cluster, and the cluster allowed

multiple experiments to run in parallel. Every node in the cluster had two quad-core

Intel Xeon processors running at 2.83 GHz with 4 GB of physical memory. We used

3000 seconds as the timeout interval for each invokation of BoundedSAT in UniWit,

and 20 hours as the timeout interval for the overall algorithm. If an invokation of

BoundedSAT in line 11 of the pseudocode timed out (after 3000 seconds), we repeated

the iteration (lines 7–12 of the pseudocode of UniWit) without incrementing i. If the

overall algorithm timed out (after 20 hours), we considered the algorithm to have

failed. We used either 2 or 3 for the value of the parameter k (see pseudocode
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of UniWit). This corresponds to restricting the pivot to few tens of witnesses for

formulae with a few thousand variables. The exact values of k used for a subset of

the benchmarks are indicated in Table 3.1. A full analysis of the effect of parameter

k requires a separate study. As explained earlier, our implementation uses the family

Hconv(n,m,2) to select random hash functions in step 9 of the pseudocode.

For purposes of comparison, we also implemented and conducted experiments with

algorithms BGP [18], XORSample and XORSample′ [33], using CryptoMiniSAT as the

SAT solver in all cases. Algorithm BGP timed out without producing any witness in all

but the simplest of cases (involving less than 20 variables). This is primarily because

checking whether |Rx,h,α | ≤ 2n2 for a given h ∈ H(n,m,n) and for every α ∈ {0,1}m,

as required in step 10 of algorithm BGP, is computationally prohibitive for values of

n and m exceeding few tens. Hence, we do not report any comparison with algorithm

BGP. Of the algorithms XORSample and XORSample′, algorithm XORSample′ consis-

tently out-performed algorithm XORSample in terms of both actual time taken and

uniformity of generated witnesses. This can be largely attributed to the stringent re-

quirement of algorithm XORSample that its input parameter s must render the model

count of the input formula F constrained with s random xor constraints to exactly

1. Our experiments indicated that it was extremely difficult to identify the range of

values for s such that it met the strict requirement of the model count being exactly

1. This forced us to expend significant computing resources to estimate the right

value value for s in almost every run, leading to huge performance overheads. Since

algorithm XORSample′ consistently outperformed algorithm XORSample, we focus on

comparisons with only algorithm XORSample′ in the subsequent discussion. Also,

algorithm XORSample′ has been shown to perform better than SampleSAT which in

turn was shown to perform better than the algorithms based on belief networks [47].
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Thus,we report results with the best of breed algorithm XORSample′. Note that our

benchmarks, when viewed as Boolean circuits, had upto 695 circuit inputs, and 21 of

them had more than 95 inputs each. While UniWit and XORSample′ completed exe-

cution on all these benchmarks, we could not build ROBDDs for 18 of the above 21

benchmarks within our timeout limit and with 4GB of memory. Hence no comparison

with ROBDD-based techniques is reported.

3.5 Results

The results are presented here only for a small subset of benchmarks for lack of

space. The tool and the complete set of results on over 200 benchmarks are available

at http://www.cfdvs.iitb.ac.in/reports/UniWit. Table 3.1 presents results of

our experiments comparing performance and uniformity of generated witnesses for

UniWit and XORSample′ on a subset of benchmarks.

The first three columns in Table 3.1 give the name, number of variables and

number of clauses of the benchmarks represented as CNF formulae. The columns

grouped under UniWit give details of runs of UniWit, while those grouped under

XORSample′ give details of runs of XORSample′. For runs of UniWit, the column

labeled “k” gives the value of the parameter k used in the corresponding experiment.

The column labeled “Range (i)” shows the range of values of i when the loop in

lines 7–12 of the pseudocode (see Section 3.2) terminated in 100 independent runs

of the algorithm on the benchmark under consideration. Significantly, this range is

uniformly narrow for all our experiments with UniWit. As a result, leapfrogging i is

very effective for UniWit.

The column labeled “Run Time” under UniWit in Table 3.1 gives run times in

seconds, separated as time1 + time2, where time1 gives the average time (over 100 in-



CHAPTER 3. UNIFORM GENERATION 36

UniWit XORSample′

Benchmark #var Clauses k
Range
(i)

Average
Run Time (s)

Var-
iance

Average
Run Time (s)

Var-
iance

case_3_b14 779 2480
2 [34,35] 49.29+5.27

1.58 15061.85+59.31 3.47
3 [36,37] 19.32+1.44

case_2_b14 519 1607 3 [38,39] 22.13+2.09 0.57 18005.58+0.73 9.51

case203 214 580 3 [42,44] 16.41+1.04 8.98 18006.85+2.78 230.5

case145 219 558 3 [42,44] 19.84+1.42 1.62 18007.18+2.99 2.32

case14 270 717 2 [44,45] 54.07+2.33 0.65 18004.8+0.9 28.16

case61 289 773 3 [44,46] 30.39+5.49 1.33 18009.1+4.4 11.92

case9 302 821 3 [45,47] 25.64+1.54 2.07 18004.79+0.87 46.15

case10 351 946 2 [60,61] 204.93+17.99 2.68 18008.42+4.85 10.56

case15 319 842 3 [61,63] 91.84+14.64 2.61 18008.34+5.08 11.04

case140 488 1222 3 [99,101] 288.63+23.53 1.41 21214.85+200.64 6.71

squaring14 5397 18141 3 [28,30] 2399.19+1243.81 7089.6+2088.46

squaring7 5567 18969 3 [26,29] 2358.45+1720.49 4841.4+2340.84

case39 590 1789 2 [50,50] 710.65+85.22 18159.12+138.22

case_2_ptb 7621 24889 3 [72,73] 1643.2+225.41 22251.8+177.61

case_1_ptb 7624 24897
2 [70,70] 17295.45+454.64

22346.64+204.07
3 [72,73] 1639.16+219.87

Table 3.1 : Performance comparison of UniWit and XORSample′
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dependent runs) to obtain the first sample and to identify the lower bound of i for

leapfrogging in later runs, while time2 gives the average time to get an additional

sample once we leapfrog i. Our experiments clearly show that leapfrogging i reduces

run-times by almost an order of magnitude in most cases. We also report “Run Time”

for XORSample′, where times are again reported as time1 + time2. In this case, time1

gives the average time (over 100 independent runs) taken to find the value of the

parameter s in algorithm XORSample′ using a binary search technique, as outlined in

a footnote in [33]. As can be seen from Table 3.1, this is a computationally expen-

sive step, and often exceeds time1 under UniWit by more than two to three orders of

magnitude. Once the range of the parameter s is identified from the first 100 inde-

pendent runs, we use the lower bound of this range to leapfrog s in subsequent runs

of XORSample′ on the same problem instance. The values of time2 under “Run Time”

for XORSample′ give the average time taken to generate witnesses after leapfrogging s.

Note that the difference between time2 values for UniWit and XORSample′ algorithms

is far less pronounced than the difference between time1 values. In addition, the time1

values for XORSample′ are two to four orders of magnitude larger than the correspond-

ing time2 values, while this factor is almost always less than an order of magnitude

for UniWit. Therefore, the total time taken for n1 runs without leapfrogging, followed

by n2 runs with leapfrogging for XORSample′ far exceeds that for UniWit, even for

n1 = 100 and n2 ≈ 106. This illustrates the significant practical efficiency of UniWit

vis-a-vis XORSample′.

Table 3.1 also reports the scaled statistical variance of relative frequencies of wit-

nesses generated by 5 × 104 runs of the two algorithms on several benchmarks. The

scaled statistical variance is computed as K
N−1

N
∑

i=1

(
fi −

(
∑N

i=1 fi
N

))2
, where N denotes

the number of distinct witnesses generated, fi denotes the relative frequency of the ith
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witness, and K (1010) denotes a scaling constant used to facilitate easier comparison.

The smaller the scaled variance, the more uniform is the generated distribution. Un-

fortunately, getting a reliable estimate of the variance requires generating witnesses

from runs that sample the witness space sufficiently well. While we could do this for

several benchmarks (listed towards the top of Table 3.1), other benchmarks (listed

towards the bottom of Table 3.1) had too large witness spaces to conduct these ex-

periments within available resources. For those benchmarks where we have variance

data, we observe that the variance obtained using XORSample′ is larger (by upto

a factor of 43) than those obtained using UniWit in almost all cases. Overall, our

experiments indicate that UniWit always works significantly faster and gives more

(or comparably) uniformly distributed witnesses vis-a-vis XORSample′ in almost all

cases. We also measured the probability of success of UniWit for each benchmark as

the ratio of the number of runs for which the algorithm did not return ⊥ to the total

number of runs. We found that this exceeded 0.6 for every benchmark using UniWit

which is significantly higher than the conservative bounds presented in 3.3
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Figure 3.1 : Sampling by UniWit (k=2)
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Figure 3.2 : Sampling by XORSample′
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As an illustration of the difference in uniformity of witnesses generated by UniWit

and XORSample′, Figures 3.1 and 3.2 depict the frequencies of appearance of various

witnesses using these two algorithms for an input CNF formula (case110) with 287

variables and 16,384 satisfying assignments. The horizontal axis in each figure rep-

resents witnesses numbered suitably, while the vertical axis represents the generated

frequencies of witnesses. The frequencies were obtained from 10.8 × 106 successful

runs of each algorithm. The clustering of points in Figures 3.1 and 3.2 visually depict

the differences in uniformity of witnesses generated by the two algorithms. Interest-

ingly, XORSample′ could find only 15,612 solutions (note the empty vertical band

at the right end of Figure 3.2), while UniWit found all 16,384 solutions. Further,

XORSample′ generated each of 15 solutions more than 5,500 times, and more than

250 solutions were generated only once. No such major deviations from uniformity

were however observed in the frequencies generated by UniWit. We also found that

15624 out of 16384 (i.e. 95.36%) witnesses generated by UniWit had frequencies in

excess of Nuni f /8, where Nuni f = 10.8×106/16384 ≈ 659. In contrast, only 6047 (i.e.

36.91%) witnesses generated by XORSample′ had frequencies in excess of Nuni f /8.

3.6 Conclusion

We described UniWit, an algorithm that near-uniformly samples random witnesses of

Boolean formulas. We showed that the algorithm scales to reasonably large problems.

Although we focused on SAT formulas, the core ideas introduced in this chapter are

quite general and can be extended to systems with richer set of constraints like SMT

constraints or quantified formulas. In the next chapter, we show how the basic ideas

introduced in this Chapter can be extended to solve another important problem: that

of approximately counting the number of solutions for CNF SAT formulas.
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Chapter 4

Model Counting

Propositional Model counting, also known as #SAT, concerns counting the number

of models (satisfying truth assignments) of a given propositional formula. This is

an important problem with applications to a wide variety of domains ranging from

probabilistic reasoning to multi-agent adversarial planning [12, 19, 13, 20]. Since a

large body of problems arising from various domains (such as probabilistic reasoning)

are encoded as CNF SAT constraints, we focus on the problem of model counting for

CNF SAT formulas. The technique developed in in this chapter follows the limited-

independence hashing based approach introduced earlier in this thesis.

#SAT has been the subject of extensive theoretical investigation since its intro-

duction by Valiant [5]. Theoretical investigations of #SAT have led to the discovery

of deep connections in complexity theory [6, 7, 8]. Simon [7] showed #SAT to be

#P-complete, where #P is the set of counting problems associated with decision prob-

lems in the complexity class N P. Subsequently, Angluin [6] observed the equality

of the complexity classes PPP and P#P, where PC denotes the class of decision prob-

lems solvable in polynomial-time with access to an oracle for queries in C and PP

denotes the class of decision problems that can be solved in polynomial time by a

probabilistic Turing machine with an error probability of less than 1/2. Building on

this equality, Toda [8] showed that P#P is as hard as the polynomial hierarchy; in

fact, the polynomial-time machine only needs to make one #SAT query to solve any

problem in the polynomial hierarchy. A consequence of Toda’s result is that decid-
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ing a quantified Boolean formula with a constant number of ∃ and ∀ quantification

alternations can be reduced to #SAT. Thus, there is strong evidence for the hardness

of #SAT.

On the implementation front, the earliest approaches to #SAT were based on

Davis-Putnam-Loveland-Longemann(or DPLL)-style SAT solvers and computed exact

counts. These approaches consisted of incrementally counting the number of solutions

by adding appropriate multiplication factors after a partial solution was found. This

idea was formalized by Birnbaum and Lozinkii [55] in their model counter CDP.

Subsequent model counters such as Relsat [56], Cachet [57] and sharpSAT [58] improved

upon this idea by using several optimizations such as component caching, clause

learning, look-ahead and the like. Techniques based on Boolean Decision Diagrams

and their variants [59, 60], or d-DNNF formulae [61], have also been used to compute

exact model counts. Although exact model counters have been successfully used

in small to medium-sized problems, scaling to larger problem instances has posed

significant challenges in practice. Consequently, a large class of practical applications

has remained beyond the reach of exact model counters.

In many applications of model counting, such as in probabilistic reasoning, the

exact model count may not be critically important, and approximate counts are suf-

ficient. Even when exact model counts are important, the inherent complexity of

the problem may force one to work with approximate counters in practice. Thus,

designing approximate counters that scale to practical problem sizes is an important

problem. Earlier work on approximate counters has been restricted largely to theo-

retical treatments of the problem [23, 14]. The only counter in this category that we

are aware of as having been implemented is due to Karp and Luby [62]. Karp and

Luby presented a fully polynomial randomized approximation scheme for counting
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models of a DNF, but not CNF formulas.

The counting problems for both CNF and DNF formulae are #P-complete. While

the DNF representation suits some applications, most modern applications of model

counting (e.g. probabilistic inference) use the CNF representation. Although exact

counting for DNF and CNF formulae are polynomially inter-reducible, there is no

known polynomial reduction for the corresponding approximate-counting problems.

In fact, Karp and Luby remark in [21] that it is highly unlikely that their randomized

approximate algorithm for DNF formulae can be adapted to work for CNF formulas.

Thus, there has been no prior implementation of approximate model counters for CNF

formulae that scales in practice. In this chapter, we present the first such counter.

The primary focus of this chapter is on (ε,δ ) counters for #SAT. As in [14], our

algorithm runs in random polynomial time using an oracle for SAT. Our extensive

experiments show that our algorithm scales, with low error, to formulas arising from

several application domains involving tens of thousands of variables.

The remainder of this chapter is as follows. We present related work in Section

4.1. In Section 4.2, we present our algorithm, followed by its analysis in Section 4.3.

Section 4.4 discusses our experimental methodology, followed by experimental results

in Section 4.5. We finally conclude in Section 4.6 with a discussion on the extension

of the techniques presented in this chapter to other problems in #P class.

4.1 Prior Work

In this section, we briefly review various works proposed in the literature for model

counting in SAT. Finally we discuss in detail one algorithm that comes closest to our

work.

Guarantee-less and Bounding Model Counters: Several approaches have
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been proposed over the years to counter the scalability challenge posed by model

counting. Researchers have proposed guarantee-less counters which do not offer guar-

antees at all but they can be very efficient and provide good approximations in prac-

tice. Examples of guarantee-less counters include ApproxCount [40], SearchTreeSampler [63],

SE [64] and SampleSearch [65]. The large majority of approximate counters used

in practice are bounding counters. Notable examples include SampleCount [66],

BPCount [27], MBound (and Hybrid-MBound) [30], and MiniCount [27]. As noted in

Section 2.1, these upper bounding counters fail to provide any tolerance guarantees.

Approximate Model Counters: Bounding both the tolerance and confidence

of approximate model counts is extremely valuable in applications like probabilistic

inference. In [23], Stockmeyer showed that counting models within a specified toler-

ance factor can be achieved in deterministic polynomial time using a Σp
2 -oracle. Build-

ing on Stockmeyer’s result, Jerrum, Valiant and Vazirani [14] showed that counting

models of CNF formulas within a specified tolerance factor can be solved in random

polynomial time using an oracle for SAT. Earlier work on approximate counters has

been restricted largely to theoretical treatments of the problem. The only counter in

this category that we are aware of as having been implemented is due to Karp and

Luby [62]. Karp and Luby’s original implementation was designed to estimate reli-

abilities of networks with failure-prone links. However, the underlying Monte Carlo

engine can be used to approximately count models of DNF, but not CNF, formulas.

Hashing-based approaches: Bounding counters and guarantee-less counters

that have been implemented and applied to practical problem instances in the past

have overwhelmingly used Monte Carlo techniques. In contrast, our algorithm uses

a hashing-based approach, originally pioneered by Sipser in [34], and subsequently

been used in theoretical [67, 18] and practical [33, 24, 30] treatments of approximate-
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counting and (near-)uniform sampling. Earlier implementations of counters that use

the hashing-based approach are MBound and Hybrid-MBound [30]. Both these counters

use the same family of hashing functions, i.e., Hxor(n,m,3), that we use. Nevertheless,

there are significant differences between our algorithm and those of MBound and

Hybrid-MBound. Specifically, we are able to exploit properties of the Hxor(n,m,3)

family of hash functions to obtain a fully polynomial (ε,δ )-counter with respect to

a SAT oracle. In contrast, both MBound and Hybrid-MBound are bounding counters,

and cannot provide bounds on tolerance. In addition, our algorithm requires no

additional parameters beyond the tolerance ε and confidence 1 − δ . In contrast,

the performance and quality of results of both MBound and Hybrid-MBound, depend

crucially on some hard-to-estimate parameters. It has been our experience that the

right choice of these parameters is often domain dependent and difficult.

4.1.1 JVV Algorithm

We now discuss an algorithm that comes closest to our work. Jerrum, Valiant and

Vazirani [14] showed that if R is a self-reducible N P relation (such as SAT), the

problem of generating models almost uniformly is polynomially inter-reducible with

approximately counting models. Recall from Section 2.1.1 that almost-uniform gen-

eration requires that if x is a problem instance, then for every y ∈ Rx, we have

(1 + ε)−1φ(x) ≤ Pr[y is generated] ≤ (1 + ε)φ(x), where ε > 0 is the specified tol-

erance and φ(x) is an appropriate function. Given an almost uniform generator G

for R, an input x, a tolerance bound ε and a confidence bound 1− δ , it is shown in

[14] that one can obtain an (ε,δ )-counter for R by invoking G polynomially (in |x|,

1/ε and log2(1/δ )) many times, and by using the generated samples to estimate |Rx|.

For convenience of exposition, we refer to this approximate-counting algorithm as the
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JVV algorithm (after the last names of the authors).

An important feature of the JVV algorithm is that it uses the almost-uniform gen-

erator G as a black box. Specifically, the details of how G works is of no consequence.

Prima facie, this gives us freedom in the choice of G when implementing the JVV algo-

rithm. Unfortunately, while there are theoretical constructions of uniform generators

in [18], we are not aware of any implementation of an almost-uniform generator that

scales to CNF formulas involving thousands of variables. The authors of [14] give a

theoretical description of how an almost-uniform generator for a self-reducible N P

relation R can be obtained from an (ε,δ )-counter for R. Unfortunately, this implies

a cyclic dependency on the existence of an (ε,δ ) counter. The lack of a scalable and

almost-uniform generator presents a significant hurdle in implementing the JVV algo-

rithm for practical applications. It is worth asking if we can make the JVV algorithm

work without requiring G to be an almost-uniform generator. A closer look at the

proof of correctness of the JVV algorithm [14] shows that it crucially relies on the abil-

ity of G to ensure that the probabilities of generation of any two distinct models of x

differ by a factor in O(ε2). As discussed in the previous chapter, existing algorithms

for randomly generating models either provide this guarantee but scale very poorly in

practice (e.g., the algorithms in [18, 11]), or scale well in practice without providing

the above guarantee (e.g., the algorithms in [24, 33, 35]). The near-uniform generator

UniWit, proposed in the previous chapter, provides only a near-uniformity guarantee.

Therefore, using an existing generator as a black box in the JVV algorithm would not

give us an (ε,δ ) model counter that scales in practice. The primary contribution of

this chapter is to show that a scalable (ε,δ )-counter can indeed be designed by using

the same insights that went into the design of the near uniform generator UniWit, but

without using the generator as a black box in the approximate-counting algorithm.
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Note that near uniformity, as defined in Section 2.1.1, is a more relaxed notion of

uniformity than almost uniformity. We leave the question of whether a near-uniform

generator can be used as a black box to design an (ε ,δ ) counter as part of future

work.

The central idea of UniWit, which is also shared by our approximate model counter,

is the use of r-wise independent hashing functions to randomly partition the space

of all models of a given problem instance into “small” cells. This idea was first pro-

posed in [18], but there are three novel insights that allow UniWit to scale better

than other hashing-based sampling algorithms [18, 33], while still providing guaran-

tees on the quality of sampling. These insights are: (i) the use of computationally

efficient linear hashing functions with low degrees of independence, (ii) requirement

of only a randomly chosen to be “small” instead of every cell being “small” and (iii)

a drastic reduction in the size of “small” cells, from n2 in [18] to n1/k (for 2 ≤ k ≤ 3)

in UniWit (where n is the number of propositional variables), and even further to a

constant in the this chapter. We continue to use these key insights in the design of

our approximate model counter, although UniWit is not used explicitly in the model

counter.

4.2 The ApproxMC Algorithm

We now describe our approximate model counting algorithm, called ApproxMC. We

use pairwise independent linear hashing functions from the Hxor(n,m,3) family, for

an appropriate m, to randomly partition the set of models of an input formula into

“small” cells. The choice of Hxor(n,m,3) is arbitrary and any other pairwise indepen-

dent hashing family such as Hconv(n,m,2) also suffices. In order to test whether the

generated cells are indeed small, we choose a random cell and check if it is non-empty
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and has no more than pivot elements, where pivot is a threshold that depends only on

the tolerance bound ε . If the chosen cell is not small, we randomly partition the set of

models into twice as many cells as before by choosing a random hashing function from

the family Hxor(n,m+1,3). The above procedure is repeated until either a randomly

chosen cell is found to be non-empty and small, or the number of cells exceeds 2n+1

pivot .

If all cells that were randomly chosen during the above process were either empty or

not small, we report a counting failure and return ⊥. Otherwise, the size of the cell

last chosen is multiplied by the number of cells to obtain an ε-approximate estimate

of the model count.

The procedure outlined above forms the core engine of ApproxMC. For convenience

of exposition, we implement this core engine as a function ApproxMCCore. The over-

all ApproxMC algorithm simply invokes ApproxMCCore sufficiently many times, and

returns the median of the non-⊥ values returned by ApproxMCCore. The pseudo-code

for algorithm ApproxMC is shown below.

Algorithm ApproxMC takes as inputs a CNF formula F , a tolerance ε (0 < ε ≤ 1)

and δ (0 < δ ≤ 1) such that the desired confidence is 1− δ . It computes two key

parameters: (i) a threshold pivot that depends only on ε and is used in ApproxMCCore

to determine the size of a “small” cell, and (ii) a parameter t (≥ 1) that depends

only on δ and is used to determine the number of times ApproxMCCore is invoked.

The particular choice of functions to compute the parameters pivot and t aids us in

proving theoretical guarantees for ApproxMC in Section 4.3. Note that pivot is in

O(1/ε2) and t is in O(log2(1/δ )). All non-⊥ estimates of the model count returned

by ApproxMCCore are stored in the list C. The function AddToList(C,c) updates the

list C by adding the element c. The final estimate of the model count returned by

ApproxMC is the median of the estimates stored in C, computed using FindMedian(C).
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Algorithm 4 ApproxMC(F,ε,δ )

1: counter ← 0;C ← emptyList;

2: pivot ← 2×ComputeThreshold(ε);

3: t ← ComputeIterCount(δ );

4: repeat

5: c ← ApproxMCCore(F,pivot);

6: counter ← counter +1;

7: if (c ̸= ⊥) then

8: AddToList(C,c);

9: until (counter > t)

10: finalCount ← FindMedian(C);

11: return finalCount;

Algorithm 5 ComputeThreshold(ε)

1: return
⌈

3e1/2 (
1+ 1

ε
)2
⌉
;

Algorithm 6 ComputeIterCount(δ )

return ⌈35log2(3/δ )⌉;
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We assume that if the list C is empty, FindMedian(C) returns ⊥.

The pseudocode for ApproxMCCore is presented in Algorithm 7. Algorithm ApproxMCCore

Algorithm 7 ApproxMCCore(F, pivot)
/* Assume z1, . . .zn are the variables of F */

1: S ← BoundedSAT(F,pivot +1);

2: if ( then|S| ≤ pivot) return |S|;

3: else

4: l ← ⌊log2(pivot)⌋−1; i ← l −1;

5: repeat

6: i ← i+1;

7: Choose h at random from Hxor(n, i− l,3);

8: Choose α at random from {0,1}i−l;

9: S ← BoundedSAT(F ∧ (h(z1, . . .zn) = α),pivot +1);

10: until (1 ≤ |S| ≤ pivot) or (i = n);

11: if (|S| > pivot or |S| = 0) then return ⊥ ;

12: else return |S| ·2i−l;

takes as inputs a CNF formula F and a threshold pivot, and returns an approximate

estimate of the model count of F . We assume that ApproxMCCore has access to a func-

tion BoundedSAT that takes as inputs a proposition formula F ′ that is the conjunction

of a CNF formula and xor constraints, as well as a threshold v≥ 0. BoundedSAT(F ′,v)

returns a set S of models of F ′ such that |S| = min(v,#F ′). If the model count of F

is no larger than pivot, then ApproxMCCore returns the exact model count of F in

line 3 of the pseudo-code. Otherwise, it partitions the space of all models of F using

random hashing functions from Hxor(n, i− l,3) and checks if a randomly chosen cell is
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non-empty and has at most pivot elements. Lines 8–10 of the repeat-until loop in the

pseudo-code implement this functionality. The loop terminates if either a randomly

chosen cell is found to be small and non-empty, or if the number of cells generated

exceeds 2n+1

pivot (i.e. i = n in line 11). In all cases, unless the cell that was chosen last is

empty or not small, we multiply its size by the number of cells generated by the cor-

responding hashing function to compute an estimate of the model count. If, however,

all randomly chosen cells turn out to be empty or not small, we report a counting

error by returning ⊥.

Implementation issues: As in algorithm UniWit, there are two steps in algorithm

ApproxMCCore (lines 8 and 9 of the pseudocode) where random choices are made.

Recall from Section 2.3 that choosing a random hash function from Hxor(n,m,3) re-

quires choosing random bit-vectors. It is straightforward to implement these choices

and also the choice of a random α ∈ {0,1}i−l in line 9 of the pseudo-code, if we

have access to a source of independent and uniformly distributed random bits. Our

implementation uses pseudo-random sequences of bits generated from nuclear decay

processes and made available at HotBits [51]. We download and store a sufficiently

long sequence of random bits in a file, and access an appropriate number of bits se-

quentially whenever needed. We defer experimenting with sequences of bits obtained

from pseudo-random generators to a future study.

In lines 1 and 10 of the pseudo-code for algorithm ApproxMCCore, we invoke

the function BoundedSAT. Note that if h is chosen randomly from Hxor(n,m,3), the

formula for which we seek models is the conjunction of the original (CNF) formula

and xor constraints encoding the inclusion of each witness in h−1(α). We therefore

use a SAT solver optimized for conjunctions of xor constraints and CNF clauses as

the back-end engine. Specifically, we use CryptoMiniSAT (version 2.9.2) [50], which



CHAPTER 4. MODEL COUNTING 51

also allows passing a parameter indicating the maximum number of witnesses to be

generated.

Recall that ApproxMCCore is invoked t times with the same arguments in algorithm

ApproxMC. Repeating the loop of lines 6–11 in the pseudocode of ApproxMCCore

in each invocation can be time consuming if the values of i− l for which the loop

terminates are large. In the previous chapter, a heuristic called leap-frogging was

proposed to overcome this bottleneck in practice. With leap-frogging, we register the

smallest value of i− l for which the loop terminates during the first few invocations

of ApproxMCCore. In all subsequent invocations of ApproxMCCore with the same

arguments, we start iterating the loop of lines 6–11 by initializing i− l to the smallest

value registered from earlier invocations. Our experiments indicate that leap-frogging

is extremely efficient in practice and leads to significant savings in time after the first

few invocations of ApproxMCCore.

4.3 Analysis of ApproxMC

We now formally prove that algorithm ApproxMC is an (ε,δ ) counter for 0 < ε ≤ 1

and 0 < δ ≤ 1. Subsequently we also present a complexity analysis of ApproxMC.

Let F be a CNF propositional formula with n variables. The next two lemmas

show that algorithm ApproxMCCore, when invoked from ApproxMC with arguments

F , ε and δ , behaves like an (ε,d) model counter for F , for a fixed confidence 1− d

(possibly different from 1−δ ). Throughout this section, we use the notations RF and

RF,h,α introduced in Section 2.1.



CHAPTER 4. MODEL COUNTING 52

4.3.1 Approximation Guarantees

Sketch of Analysis

Theorem 4.3.4 shows that ApproxMC is (ε,δ )-counter. The proof of Theorem 4.3.4

depends on Lemma 4.3.1 and Lemma 4.3.2. Lemma 4.3.1 shows that the a non-⊥

count returned by ApproxMCCore lies within desired tolerance but with confidence

of only 1− e−3/2. Lemma 4.3.2 provides an upper (1− e−3/2) bound on the event

that ⊥ is returned by ApproxMCCore. Combining Lemmas 4.3.2 and 4.3.1 yields

Theorem 4.3.3, which states that count returned by ApproxMCCore lines within desired

tolerance with confidence at least (1− e−3/2)2. Finally in the proof of Theorem 4.3.4

shows that making t calls to ApproxMCCore and the act of choosing median allows

us to achieve the desired confidence. Furthermore, Theorem 4.3.5 provides the time

complexity for ApproxMC.

Lemma 4.3.1. Let algorithm ApproxMCCore, when invoked from ApproxMC, re-

turn c with i being the final value of the loop counter in ApproxMCCore. Then,

Pr
[
(1+ ε)−1 · |RF | ≤ c ≤ (1+ ε) · |RF |

��� c ̸= ⊥ and i ≤ log2 |RF |
]
≥ 1− e−3/2.

Proof. Referring to the pseudocode of ApproxMCCore, the lemma is trivially satisfied

if |RF | ≤ pivot. Therefore, the only non-trivial case to consider is when |RF | > pivot

and ApproxMCCore returns from line 13 of the pseudo-code. In this case, the count

returned is 2i−l.|RF,h,α |, where l = ⌊log2(pivot)⌋−1 and α , i and h denote (with abuse

of notation) the values of the corresponding variables and hash functions in the final

iteration of the repeat-until loop in lines 6–11 of the pseudo-code.

For simplicity of exposition, we assume henceforth that log2(pivot) is an integer.

A more careful analysis removes this restriction with only a constant factor scaling

of the probabilities. From the pseudo-code of ApproxMCCore, we know that pivot =
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2
⌈

3e1/2 (
1+ 1

ε
)2
⌉
.

Furthermore, the value of i is always in {l, . . .n}. Since pivot < |RF | ≤ 2n and

l = ⌊log2 pivot⌋− 1, we have l < log2 |RF | ≤ n. The lemma is now proved by show-

ing that for every i in {l, . . .⌊log2 |RF |⌋}, h ∈ H(n, i− l,3) and α ∈ {0,1}i−l, we have

Pr
[
(1+ ε)−1 · |RF | ≤ 2i−l|RF,h,α | ≤ (1+ ε) · |RF |] ≥ (1− e−3/2).

For every y ∈ {0,1}n and for every α ∈ {0,1}i−l, define an indicator variable γy,α

as follows: γy,α = 1 if h(y) = α , and γy,α = 0 otherwise. Let us fix α and y and choose h

uniformly at random from H(n, i− l,3). The random choice of h induces a probability

distribution on γy,α , such that Pr [γy,α = 1] = Pr [h(y) = α ] = 2−(i−l), and E [γy,α ] =

Pr [γy,α = 1] = 2−(i−l). In addition, the pairwise independence of hash functions chosen

from H(n, i− l,3) implies that for every distinct ya, and yb ∈ RF , the random variables

γya,α , and γyb,α are pairwise independent.

Let Γα = ∑y∈RF γy,α and µα = E [Γα ]. Clearly, Γα = |RF,h,α | and µα = ∑y∈RF E [γy,α ] =

2−(i−l)|RF |. Since |RF | > pivot and i ≤ log2 |RF |, using the expression for pivot, we get

3≤
⌊

e−1/2(1+ 1
ε )−2 · |RF |

2i−l

⌋
. Therefore, using Theorem 2.2.1, Pr

[
|RF |.

(
1− ε

1+ε
)
≤ 2i−l|RF,h,α |

≤ (1+ ε
1+ε )|RF |

]
≥ 1− e−3/2. Simplifying and noting that ε

1+ε < ε for all ε > 0, we

obtain Pr
[
(1+ ε)−1 · |RF | ≤ 2i−l|RF,h,α | ≤ (1+ ε) · |RF |

]
≥ 1− e−3/2.

Lemma 4.3.2. Given |RF | > pivot, the probability that an invocation of ApproxMCCore

from ApproxMC returns non-⊥ with i ≤ log2 |RF |, is at least 1− e−3/2.

Proof. Let us denote log2 |RF |− l = log2 |RF |− (⌊log2(pivot)⌋−1) by m. Since |RF | >

pivot and |RF | ≤ 2n, we have l < m + l ≤ n. Let pi (l ≤ i ≤ n) denote the conditional

probability that ApproxMCCore(F,pivot) terminates in iteration i of the repeat-until

loop (lines 6–11 of the pseudo-code) with 1 ≤ |RF,h,α | ≤ pivot, given |RF | > pivot.

Since the choice of h and α in each iteration of the loop are independent of those in
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previous iterations, the conditional probability that ApproxMCCore(F,pivot) returns

non-⊥ with i ≤ log2 |RF | = m + l, given |RF | > pivot, is pl +(1− pl)pl+1 + · · ·+(1−

pl)(1 − pl+1) · · ·(1 − pm+l−1)pm+l. Let us denote this sum by P. Thus, P = pl +

∑m+l
i=l+1 ∏i−1

k=l(1− pk)pi ≥
(

pl +∑m+l−1
i=l+1 ∏i−1

k=l(1− pk)pi

)
pm+l + ∏m+l−1

s=l (1− ps)pm+l =

pm+l. The lemma is now proved by using Theorem 2.2.1 to show that pm+l ≥ 1−e−3/2.

It was shown in Lemma 2.2.1 that Pr
[
(1+ ε)−1 · |RF | ≤ 2i−l|RF,h,α | ≤ (1+ ε) · |RF |]≥

1−e−3/2 for every i ∈ {l, . . .⌊log2 |RF |⌋}, h ∈ H(n, i− l,3) and α ∈ {0,1}i−l. Substitut-

ing log2 |RF | = m+ l for i, re-arranging terms and noting that the definition of m im-

plies 2−m|RF | = pivot/2, we get Pr
[
(1+ ε)−1(pivot/2) ≤ |RF,h,α | ≤ (1+ ε)(pivot/2)]≥

1− e−3/2. Since 0 < ε ≤ 1 and pivot > 4, it follows that Pr
[
1 ≤ |RF,h,α | ≤ pivot

]
≥

1− e−3/2. Hence, pm+l ≥ 1− e−3/2.

Theorem 4.3.3. Let an invocation of ApproxMCCore from ApproxMC return c. Then

Pr
[
c ̸= ⊥ and (1+ ε)−1 · |RF | ≤ c ≤ (1+ ε) · |RF |

]
≥ (1− e−3/2)2 > 0.6.

Proof. It is easy to see that the required probability is at least as large as Pr
[
c ̸= ⊥ and i ≤ log2 |RF | and

From Lemmas 4.3.1 and 4.3.2, the latter probability is ≥ (1− e−3/2)2.

We now turn to proving that the confidence can be raised to at least 1− δ for

δ ∈ (0,1] by invoking ApproxMCCore O(log2(1/δ )) times, and by using the median of

the non-⊥ counts thus returned. For convenience of exposition, we use η(t,m, p) in

the following discussion to denote the probability of at least m heads in t independent

tosses of a biased coin with Pr [heads] = p. Clearly, η(t,m, p) = ∑t
k=m

(t
k

)
pk(1− p)t−k.

Theorem 4.3.4. Given a propositional formula F and parameters ε (0 < ε ≤ 1) and

δ (0 < δ ≤ 1), suppose ApproxMC(F,ε,δ ) returns c. Then Pr
[
(1+ ε)−1 · |RF | ≤ c

≤ (1+ ε) · |RF |] ≥ 1−δ .
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Proof. Throughout this proof, we assume that ApproxMCCore is invoked t times

from ApproxMC, where t = ⌈35log2(3/δ )⌉ (see pseudocode for ComputeIterCount in

Section 4.2). Referring to the pseudo-code of ApproxMC, the final count returned

by ApproxMC is the median of non-⊥ counts obtained from the t invocations of

ApproxMCCore. Let Err denote the event that the median is not in
[
(1+ ε)−1 · |RF |,

(1+ ε) · |RF |]. Let “#non⊥ = q” denote the event that q (out of t) values returned by

ApproxMCCore are non-⊥. Then, Pr [Err] = ∑t
q=0 Pr [Err | #non⊥ = q] · Pr [#non⊥ = q].

In order to obtain Pr [Err | #non⊥ = q], we define a 0-1 random variable Zi, for

1 ≤ i ≤ t, as follows. If the ith invocation of ApproxMCCore returns c, and if c is either

⊥ or a non-⊥ value that does not lie in the interval [(1+ ε)−1 · |RF |,(1+ ε) · |RF |], we

set Zi to 1; otherwise, we set it to 0. From Theorem 4.3.3, Pr [Zi = 1] = p < 0.4. If

Z denotes ∑t
i=1 Zi, a necessary (but not sufficient) condition for event Err to occur,

given that q non-⊥s were returned by ApproxMCCore, is Z ≥ (t − q + ⌈q/2⌉). To

see why this is so, note that t − q invocations of ApproxMCCore must return ⊥. In

addition, at least ⌈q/2⌉ of the remaining q invocations must return values outside

the desired interval. To simplify the exposition, let q be an even integer. A more

careful analysis removes this restriction and results in an additional constant scaling

factor for Pr [Err]. With our simplifying assumption, Pr [Err | #non⊥ = q] ≤ Pr[Z ≥

(t−q+q/2)] = η(t, t−q/2, p). Since η(t,m, p) is a decreasing function of m and since

q/2 ≤ t − q/2 ≤ t, we have Pr [Err | #non⊥ = q] ≤ η(t, t/2, p). If p < 1/2, it is easy

to verify that η(t, t/2, p) is an increasing function of p. In our case, p < 0.4; hence,

Pr [Err | #non⊥ = q] ≤ η(t, t/2,0.4).

It follows from above that Pr [Err] = ∑t
q=0 Pr [Err | #non⊥ = q] ·Pr [#non⊥ = q] ≤

η(t, t/2,0.4)· ∑t
q=0 Pr [#non⊥ = q] = η(t, t/2,0.4). Since

( t
t/2

)
≥

(t
k

)
for all t/2 ≤ k ≤ t,

and since
( t

t/2

)
≤ 2t , we have η(t, t/2,0.4) = ∑t

k=t/2

(t
k

)
(0.4)k(0.6)t−k ≤

( t
t/2

)
∑t

k=t/2(0.4)k(0.6)t−k
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≤ 2t ∑t
k=t/2(0.6)t(0.4/0.6)k≤ 2t ·3 · (0.6×0.4)t/2 ≤ 3 · (0.98)t . Since t = ⌈35log2(3/δ )⌉,

it follows that Pr [Err] ≤ δ .

4.3.2 Complexity

Theorem 4.3.5. Given an oracle for SAT, ApproxMC(F, ε,δ ) runs in time polyno-

mial in log2(1/δ ), |F| and 1/ε relative to the oracle.

Proof. The pseudo-code for ApproxMC can be partitioned into three regions for ease

of analysis: (i) lines 1–3, (ii) lines 4−−9 (repeat-until loop), and (iii) line 10. Lines

1–3 take time no more than a polynomial in log2(1/δ ) and 1/ε . The repeat-until loop

in lines 4–9 is repeated t = ⌈35log2(3/δ )⌉ times. The time taken for each iteration

is dominated by the time taken by ApproxMCCore. Finally, computing the median

in line 10 takes time linear in t. The proof is therefore completed by showing that

ApproxMCCore takes time polynomial in |F| and 1/ε relative to the SAT oracle.

Referring to the pseudo-code for ApproxMCCore, we find that BoundedSAT is called

at most O(|F |) times. Each such call can be implemented by at most pivot +1 calls

to a SAT oracle, and since pivot +1 is in O(1/ε2), the cumulative number of calls to

the SAT oracle is a polynomial in |F| and 1/ε relative to the oracle. The random

choices in lines 8 and 9 of ApproxMCCore can be implemented in time polynomial in n

(hence, in |F|) if we have access to a source of random bits. Construction and writing

of F ∧ (h(z1, . . .zn) = α) on the memory takes time polynomial in |F|. Therefore, the

total time taken by each invocation of ApproxMCCore is a polynomial in |F| and 1/ε

relative to the SAT oracle.
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4.4 Experimental Methodology

To evaluate the performance and quality of results of ApproxMC, we built a prototype

implementation and conducted an extensive set of experiments. The suite of bench-

marks represent problems from practical domains as well as problems of theoretical

interest. In particular, we considered a wide range of model counting benchmarks

from different domains including grid networks, plan recognition, DQMR networks,

Langford sequences, circuit synthesis, random k-CNF and logistics problems [68, 27].

The suite consisted of benchmarks ranging from 32 variables to 229100 variables

in CNF representation. The complete set of benchmarks (numbering above 200) is

available at http://www.cs.rice.edu/CS/Verification/Projects/ApproxMC/.

Our experiments were conducted on a high-performance computing cluster. Each

individual experiment was run on a single node of the cluster; the cluster allowed

multiple experiments to run in parallel. Every node in the cluster had two quad-

core Intel Xeon processors with 4GB of main memory. We used 2500 seconds as the

timeout for each invocation of BoundedSAT in ApproxMCCore, and 20 hours as the

timeout for ApproxMC. If an invocation of BoundedSAT in line 10 of the pseudo-code

of ApproxMCCore timed out, we repeated the iteration (lines 6-11 of the pseudocode

of ApproxMCCore) without incrementing i. The parameters ε (tolerance) and δ (con-

fidence being 1− δ ) were set to 0.75 and 0.1 respectively. With these parameters,

ApproxMC successfully computed counts for benchmarks with upto 33,000 variables.

We implemented leap-frogging, as described in [24], to estimate initial values of i

from which to start iterating the repeat-until loop of lines 6–11 of the pseudocode of

ApproxMCCore. To further optimize the running time, we obtained tighter estimates

of the iteration count t used in algorithm ApproxMC, compared to those given by

algorithm ComputeIterCount. A closer examination of the proof of Theorem 4.3.4
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shows that it suffices to have η(t, t/2,0.4) ≤ δ . We therefore pre-computed a table

that gave the smallest t as a function of δ such that η(t, t/2,0.4) ≤ δ . This sufficed

for all our experiments and gave smaller values of t (e.g., we used t=41 for δ=0.1)

compared to those given by ComputeIterCount.

For purposes of comparison, we also implemented and conducted experiments with

the exact counter Cachet [57] by setting a timeout of 20 hours on the same comput-

ing platform. We compared the running time of ApproxMC with that of Cachet for

several benchmarks, ranging from benchmarks on which Cachet ran very efficiently

to those on which Cachet timed out. We also measured the quality of approximation

produced by ApproxMC as follows. For each benchmark on which Cachet did not time

out, we obtained the approximate count from ApproxMC with parameters ε = 0.75

and δ = 0.1, and checked if the approximate count was indeed within a factor of

1.75 from the exact count. Since the theoretical guarantees provided by our anal-

ysis are conservative, we also measured the relative error of the counts reported by

ApproxCount using the L1 norm, for all benchmarks on which Cachet did not time out.

For an input formula Fi, let AFi (resp., CFi) be the count returned by ApproxCount

(resp., Cachet). We computed the L1 norm of the relative error as ∑i |AFi−CFi |
∑i CFi

.

To illustrate the trade-off between confidence (δ ) and runtime of ApproxMC, we

computed runtime for different values of δ (0.4 ≤ δ ≤ 0.1) for a subset of benchmarks.

For every benchmark, we normalized the runtime for particular value of δ by runtime

for δ = 0.1. We then average normalized runtime over the subset of benchmarks for

every δ and plot our results.

Since Cachet timed out on the most of the large benchmarks, we compared ApproxMC

with state-of-the-art bounding counters as well. As discussed in Section 2.1.2, bound-

ing counters do not provide any tolerance guarantees. Hence their guarantees are
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significantly weaker than those provided by ApproxMC, and a direct comparison of

performance is not meaningful. Therefore, we compared the sizes of the intervals (i.e.,

difference between upper and lower bounds) obtained from existing state-of-the-art

bounding counters with those obtained from ApproxMC. To obtain intervals from

ApproxMC, note that Theorem 4.3.4 guarantees that if ApproxMC(F, ε,δ ) returns c,

then Pr[ c
1+ε ≤ |RF | ≤ (1+ε) ·c] ≥ 1−δ . Therefore, ApproxMC can be viewed as com-

puting the interval [ c
1+ε ,(1 + ε) · c] for the model count, with confidence δ . We also

compare the lower and upper bounds of the intervals returned by various bounding

counters and ApproxMC. We considered state-of-the-art lower bounding counters, viz.

MBound [30], Hybrid-MBound [30], SampleCount [66] and BPCount [27], to compute a

lower bound of the model count, and used MiniCount [27] to obtain an upper bound.

We observed that SampleCount consistently produced better (i.e. larger) lower bounds

than BPCount for our benchmarks. Furthermore, the authors of [30] advocate using

Hybrid-MBound instead of MBound. Therefore, the lower bound for each benchmark

was obtained by taking the maximum of the bounds reported by Hybrid-MBound and

SampleCount.

Our experiments indicated that MiniCount gave incorrect upper bounds when the

required confidence was set to values smaller than 0.99. In fact, the authors of

MiniCount recommend using a confidence of 0.99, since there are stringent assump-

tions in the design of the tool. Therefore, we set the confidence bound of MiniCount

to the prescribed value of 0.99. The overall confidence of the model count lying

in an interval obtained from independently computed lower and upper bounds is

the product of the individual confidences. Therefore, to get an overall confidence

of 0.9 (for a fair comparison with ApproxMC), we needed SampleCount and Hybrid-

MBound to return lower bounds with confidence of 0.9/0.99 ≈ 0.91. The parameter
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space of SampleCount and Hybrid-MBound allows confidence levels of the form 1−2α·t ,

where both α and t are positive integers. Therefore, we used 0.875, the closest lower

confidence level (thereby allowing the computed lower bound to be higher), as the

confidence of SampleCount and Hybrid-MBound in our experiments. In our compar-

ison of the size of intervals we consider the maximum of lower bounds returned by

SampleCount and Hybrid-MBound.

Our implementation of Hybrid-MBound used the “conservative” approach described

in [30], since this provides the best lower bounds with the required confidence among

all the approaches discussed in [30]. Finally, to ensure fair comparison, we allowed

all bounding counters to run for 20 hours on the same computing platform on which

ApproxMC was run.

4.5 Results
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Figure 4.1 : Performance comparison between ApproxMC and Cachet. The bench-
marks are arranged in increasing order of running time of Cachet.
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Figure 4.1 shows how the running times of ApproxMC and Cachet compared on

our set of benchmarks. The y-axis in the figure represents time in seconds, while

the x-axis represents benchmarks arranged in ascending order of running time of

Cachet. The comparison shows that although Cachet performed better than ApproxMC

initially, it timed out as the “difficulty” of problems increased. ApproxMC, however,

continued to return bounds with the specified tolerance and confidence, for many

more difficult and larger problems. Eventually, however, even ApproxMC timed out

for very large problem instances. Figure 4.2 shows the running time of ApproxMC

combined with Cachet for timeout of 300 seconds compared with Cachet on the same

set of benchmarks. Our experiments clearly demonstrate that there is a large class

of practical problems that lie beyond the reach of exact counters, but for which we

can still obtain counts with (ε,δ )-style guarantees in reasonable time. The results

suggest that given a model counting problem, it is advisable to run Cachet initially
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Figure 4.2 : Performance comparison between ApproxMC (with Cachet timeout) and
Cachet. The benchmarks are arranged in increasing order of running time of Cachet.
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with a small timeout. If Cachet times out, ApproxMC should be run with a larger

timeout. Finally, if ApproxMC also times out, counters with much weaker guarantees

but shorter running times, such as bounding counters, should be used.
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Figure 4.3 : Comparison of normalized runtime with confidence

Figure 4.3 and Figure 4.4 compare the normalized runtime (averaged over a

subset of benchmarks) for different values of confidence. The y-axis in both the

figures represent normalized runtime (as described in Section 4.4). The x-axis in

Figure 4.3 represents log(1/δ ) while x-axis in Figure 4.4 represents (1− δ ). From

both the above two plots, we observe that the runtime increases as the value of

confidence increases (δ decreases, therefore log(1/δ ) increases), thereby illustrating

the relationship suggested by Theorem 4.3.5.

Figure 4.5 shows the observed tolerance (averaged over a subset of benchmarks)

for different values of confidence. The y-axis in the figure represents the observed

tolerance (as described in Section 4.4), while the x-axis represents confidence (1− δ ).
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Figure 4.4 : Comparison of normalized runtime with confidence

From the plot, we see that observed tolerance, expectedly, decreases with increase in

confidence. It is interesting to note that even for the lowest value of confidence (0.6),

the observed tolerance is only 0.16 (lower than allowed tolerance of 0.75), which

illustrates the conservative nature of our theoretical analysis.

Figure 4.6 compares the observed tolerance with normalized runtime for a subset

of benchmarks. The y-axis in the figure represents the observed tolerance, while the

x-axis represents normalized runtime. The plot shows that the observed tolerance

decreases as the runtime increases. It is worth noting that the maximum observed

tolerance is just 0.16 while our experiments set ε to 0.75, which indicates that in

practice we can obtain counts with desired tolerance from small values of parameter

t, which determines the number of times ApproxMCCore is invoked.

Figure 4.7 compares the model count computed by ApproxMC with the bounds

obtained by scaling the exact count obtained from Cachet by the tolerance factor
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Figure 4.5 : Observed tolerance (averaged over a subset of benchmarks) for different
values of confidence

(1.75) on a subset of our benchmarks for which both Cachet and ApproxMC returned

counts (in total). The y-axis in this figure represents the model count on a log-scale,

while the x-axis represents the benchmarks arranged in ascending order of the model

count. The figure shows that in all cases, the count reported by ApproxMC lies within

the specified tolerance of the exact count. Although we have presented results for

only a subset of our benchmarks (37 in total) in Figure 4.7 for reasons of clarity, the

counts reported by ApproxMC were found to be within the specified tolerance of the

exact counts for all 95 benchmarks for which Cachet reported exact counts. We also

found that the L1 norm of the relative error, considering all 95 benchmarks for which

Cachet returned exact counts, was 0.033. Thus, ApproxMC has approximately 4%

error in practice – much smaller than the theoretical guarantee of 75% with ε = 0.75.

Figure 4.8 compares the sizes of intervals computed using ApproxMC and using

state-of-the-art bounding counters (as described in Section 4.4) on a subset of our
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of benchmarks
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benchmarks. The comparison clearly shows that the sizes of intervals computed

using ApproxMC are consistently smaller than the sizes of the corresponding intervals

obtained from existing bounding counters. Since smaller intervals with comparable

confidence represent better approximations, we conclude that ApproxMC computes

better approximations than a combination of existing bounding counters.

Figure 4.9 compares the counts returned by ApproxMC and state-of-art bounding

counters: SampleCount, MBound, and MiniCount. The comparison clearly shows that

in all cases ApproxMC improved the upper bounds from MiniCount significantly; it

also improved lower bounds from SampleCount and MBound to a lesser extent. Thus

we conclude that not only ApproxMC provides stronger guarantees than the existing

bounding counters, it also computes better bounds than the state-or-art bounding

counters.

In summary, we showed that it is possible to design an (ε,δ ) approximate counter
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The benchmarks are arranged in increasing order of model counts.

for CNF formulae that scales to tens of thousands of variables in practice. To the

best of our knowledge, ApproxMC is the first counter in this category.

4.6 Extension to other #P Problems

The techniques presented in this chapter provide approximate model counting for

SAT formulae. Since #SAT is #P-complete, therefore, any problem, say Q, in #P can

be reduced in polynomial time to a SAT formula, say F, such that number of models

of Q is equal to number of models of F. Therefore, the algorithms presented in this

chapter can solve any problem in #P.
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Chapter 5

Conclusions and Future Work

This thesis proposes techniques for two related problems of significant theoretical

and practical interest: near uniform generation of witnesses of CNF SAT formulas,

and approximately counting models (or witnesses) of these formulas. In this chapter,

we summarize the main contributions of this thesis and outline directions for future

research.

5.1 Summary of Contributions

Although both (near) uniform generation and approximate model counting have re-

ceived attention in the past, prior work either offered very weak or no guarantees or

did not scale to real world examples. The primary contribution of this thesis is a novel

approach based on limited-independence hashing that allows us to design algorithms

for both problems, with strong theoretical guarantees and scalability extending to

formulas with thousands of variables. The proposed approach differs from existing

hashing based techniques in three key ways: (i) the use of computationally efficient

linear hashing functions with low degrees of independence as opposed to computa-

tionally inefficient algebraic hash functions with higher degrees of independence (ii)

the requirement of only a randomly chosen hash cell to be “small” instead of requiring

every cell to be “small”, and (iii) reduction in the size of “small” cells from n2 in the

previous work [18] to n1/k for 2≤ k ≤ 3, where n is the number of variables. These dif-



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 69

ferences allow our algorithms to scale to problems several orders of magnitude larger

than what was earlier possible, while still ensuring strong theoretical guarantees of

uniformity.

In the first part of the thesis, an algorithm named UniWit was presented for gen-

erating witnesses of CNF SAT formulas near uniformly in the space of all satisfying

assignments. Near-uniformity of the generated witnesses was proved theoretically,

while the practical utility of the algorithm was empirically demonstrated through

extensive experiments. Our experimental results indicate that UniWit outperforms

existing state-of-the-art algorithms, both in terms of runtime and uniformity of the

generated witnesses.

In the second part of thesis, a scalable approximate model counting technique

for CNF formulas called ApproxMC was presented. To the best of our knowledge,

ApproxMC is the first scalable approximate model counter for CNF formulas. Given

a tolerance in (0,1) and a confidence measure, our theoretical analysis shows that

ApproxMC provably achieves the specified tolerance in reporting the model count

with the specified confidence. Experiments on a large suite of benchmarks from

diverse domains show that ApproxMC scales to problems involving tens of thousands

of variables.

5.2 Looking ahead

In light of the findings of this thesis, there are several interesting questions that

remain to be answered. We outline some of them below, indicating directions for

future research.
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Stronger guarantees

As discussed in Chapter 1, Jerrum et al. have shown that for CNF SAT, the problem

of generating satisfying assignments almost uniformly is polynomially inter-reducible

with approximate model counting [14]. Significantly, their proof shows that an

almost-uniform generator can be used as a black-box in the design of an algorithm

for approximate model counting and vice versa. Our limited-independence hashing

based approach gives an algorithm for approximate model counting and also an algo-

rithm for near-uniform generation. While near-uniform generation is a more relaxed

notion than almost uniform generation, our algorithm makes crucial uses of key steps

in the near-uniform generation algorithm; hence it uses the near-uniform generator

as a white-box, instead of a black-box. This leaves open the question of whether a

near-uniform generator can be used as a black-box to design an (ε,δ ) approximate

model counter and, hence (using Jerrum etal’s result) an almost uniform generator.

Another related direction of future research is to investigate if an approximate counter

can be used to design a scalable generator with strong guarantees of uniformity.

Scaling to larger problems

This thesis made the first steps towards designing scalable near-uniform generators

and approximate model counters capable of handling tens of thousands of variables.

Many real-world applications, however, continue to be out of the reach of proposed

algorithms. Hence, extending our approach to handle very large problems is an im-

portant challenge that needs to be addressed. It is well known that adding random

XOR constraints to a CNF formula makes it harder to find satisfying assignments to

the formula [69]. Previous work in the area of linear hash functions [69] suggests that

by restricting each random XOR clause to refer to only a few variables, the difficulty
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of finding SAT assignments of the overall constraints can be mitigated in practice.

However, such restrictions fail to provide independence guarantees. Therefore, the

design of efficiently computable linear hash functions that refer to only a few variables

in each clause and provide required independence guarantees is an important prob-

lem. Specifically, a solution to this problem would translate to improved scalability

of our algorithms. Promising steps have been taken in recent works [70, 71] towards

the design of efficient hash functions.

Richer constraints

Richer constraint languages (e.g., SMTLIB) provide the ability to specify constraints

arising from real-world problems in a user friendly and succinct form. A wide variety

of industrial applications are encoded in such rich constraint languages. Our current

framework requires translation of constraints to Boolean constraints. An interesting

and practically useful extension of the current work would be to consider richer con-

straint languages and to build approximate counters and (near)-uniform generators

modulo theories, leveraging recent progress in satisfiability modulo theories, c.f., [72].

Such an endeavor would also require designing efficient limited-independence hash

functions and appropriate constraint solvers for such richer constraint languages.

Extension to other problems in NP and #P

While the algorithms presented in this thesis focused on SAT formulas, the core ideas

are quite general and can be extended to other problems in N P and #P. One

possible direction, as outlined above, is through designing appropriate hash functions

and constraint solvers. Another promising direction is to utilize N P-completeness of

SAT and #P-completeness of #P. While, as discussed in Section 4.6, the parsimonious
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reduction for #P allows us to employ our technique to perform model counting for

any #P problem but a reduction for N P is not necessarily parsimonious. Therefore

known polynomial time reduction for a N P problem to SAT may not preserve

the number of solutions, thus rendering us unable to use our current algorithms.

Nevertheless models of the original problem do agree with those of the transformed

SAT problem projected on a subset of variables. Therefore, an interesting direction

of research would be to explore if we can perform uniform sampling for assignments

projected on a subset of variables than all the variables [71].

Weighted uniform generation and approximate counting

Several applications such as probabilistic inference can be reduced to weighted model

counting [22]. Similarly, simulation based techniques benefit from the ability to handle

user provided bias, which can be reduced to weighted uniform generation. Thus,

extension of the current approach to weighted generation and counting is an important

and interesting direction for future research.
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