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ABSTRACT
Constrained-random simulation is the predominant approach
used in the industry for functional verification of complex
digital designs. The effectiveness of this approach depends
on two key factors: the quality of constraints used to gener-
ate test vectors, and the randomness of solutions generated
from a given set of constraints. In this paper, we focus on the
second problem, and present an algorithm that significantly
improves the state-of-the-art of (almost-)uniform generation
of solutions of large Boolean constraints. Our algorithm pro-
vides strong theoretical guarantees on the uniformity of gen-
erated solutions and scales to problems involving hundreds
of thousands of variables.

1. INTRODUCTION
Functional verification constitutes one of the most chal-

lenging and time-consuming steps in the design of modern
digital systems. The primary objective of functional veri-
fication is to expose design bugs early in the design cy-
cle. Among various techniques available for this purpose,
those based on simulation overwhelmingly dominate indus-
trial practice. In a typical simulation-based functional ver-
ification exercise, a gate-level or RTL model of the circuit
is simulated for a large number of cycles with specific in-
put patterns. The values at observable outputs, as computed
by the simulator, are then compared against their expected
values, and any discrepancy is flagged as manifestaton of
a bug. The state of simulation technology today is mature
enough to allow simulation of large designs within reason-
able time using modest computational resources. Generating
input patterns that exercise diverse corners of the design’s
behavior space, however, remains a challenging problem [4].
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In recent years, constrained-random simulation (also called
constrained-random verification, or CRV) [21] has emerged
as a practical approach to address the problem of simulat-
ing designs with “random enough” input patterns. In CRV,
the verification engineer declaratively specifies a set of con-
straints on the values of circuit inputs. Typically, these con-
straints are obtained from usage requirements, environmen-
tal constraints, constraints on operating conditions and the
like. A constraint solver is then used to generate random val-
ues for the circuit inputs satisfying the constraints. Since the
distribution of errors in the design’s behavior space is not
known a priori, every solution to the set of constraints is as
likely to discover a bug as any other solution. It is therefore
important to sample the space of all solutions uniformly or
almost-uniformly (defined formally below) at random. Un-
fortunately, guaranteeing uniformity poses significant tech-
nical challenges when scaling to large problem sizes. This has
been repeatedly noted in the literature (see, for example, [8,
22, 16]) and also confirmed by industry practitioners1. The
difficulties of generating solutions with guarantees of unifor-
mity have even prompted researchers to propose alternative
techniques for generating input patterns [8, 22]. This paper
takes a step towards remedying this situation. Specifically,
we describe an algorithm for generating solutions to a set of
Boolean constraints, with stronger guarantees on uniformity
and with higher scalability in practice than that achieved
earlier.

Since constraints that arise in CRV of digital circuits are
encodable as Boolean formulae, we focus on uniform gener-
ation of solutions of Boolean formulae. Henceforth, we call
such solutions SAT witnesses. Besides its usefulness in CRV
and in other applications [2, 23], uniform generation of SAT
witnesses has had strong theoretical interest as well [14].
Most prior approaches to solving this problem belong to
one of two categories: those that focus on strong guaran-
tees of uniformity but scale poorly in practice (examples be-
ing [27, 3, 14]), and those that provide practical heuristics
to scale to large problem instances with weak or no guar-
antees of uniformity (examples being [7, 16, 25])). In [5],
Chakraborty, Meel and Vardi attempted to bridge these ex-
tremes through an algorithm called UniWit. More recently,
Ermon, Gomes, Sabharwal and Selman [9] proposed an algo-
rithm called PAWS for sampling witnesses from discrete dis-
tributions over large dimensions. While PAWS is designed
to work with any discrete distribution specified through a
graphical model, for purposes of this paper, we focus only
on distributions that assign equal weight to every assign-

1Private communication: R. Kurshan



ment. For such distributions, both PAWS and UniWit repre-
sent alternative (albeit related) approaches to solve the same
problem – that of uniform generation of SAT witnesses. Un-
fortunately, both algorithms suffer from inherent limitations
that make it difficult to scale them to Boolean constraints
with tens of thousands of variables and beyond. In addition,
the guarantees provided by these algorithms (in the context
of uniform generation of SAT witnesses) are weaker than
what one would desire in practice.

In this paper, we propose an algorithm called UniGen that
addresses some of the deficiencies of UniWit and PAWS. This
enables us to improve both the theoretical guarantees and
practical performance vis-a-vis earlier algorithms in the con-
text of uniform generation of SAT witnesses. UniGen is the
first algorithm to provide strong two-sided guarantees of
almost-uniformity, while scaling to problems involving hun-
dreds of thousands of variables. We also improve upon the
success probability of the earlier algorithms significantly,
both in theory and as evidenced by our experiments.

2. NOTATION AND PRELIMINARIES
Let F be a Boolean formula in conjunctive normal form

(CNF), and let X be the set of variables appearing in F . The
set X is called the support of F . A satisfying assignment or
witness of F is an assignment of truth values to variables in
its support such that F evaluates to true. We denote the set
of all witnesses of F as RF . Let D ⊆ X be a subset of the
support such that there are no two satisfying assignments of
F that differ only in the truth values of variables in D. In
other words, in every satisfying assignment of F , the truth
values of variables in X \ D uniquely determine the truth
value of every variable in D. The set D is called a dependent
support of F , and X \ D is called an independent support
of F . Note that there may be more than one independent
supports of F . For example, (a ∨ ¬b) ∧ (¬a ∨ b) has three
independent supports: {a}, {b} and {a, b}. Clearly, if I is
an independent support of F , so is every superset of I. For
notational convenience, whenever the formula F is clear from
the context, we omit mentioning it.

We use Pr [X : P] to denote the probability of outcome X
when sampling from a probability space P. For notational
clarity, we omit P when it is clear from the context. The
expected value of the outcome X is denoted E [X]. Given a
Boolean formula F , a probabilistic generator of witnesses of
F is a probabilistic algorithm that generates a random wit-
ness in RF . A uniform generator Gu(·) is a probabilistic gen-
erator that guarantees Pr [Gu(F ) = y] = 1/|RF |, for every
y ∈ RF . An almost-uniform generator Gau(·, ·) ensures that
for every y ∈ RF , we have 1

(1+ε)|RF |
≤ Pr [Gau(F, ε) = y] ≤

1+ε
|RF |

, where ε > 0 is the specified tolerance. A near-uniform

generator Gnu(·) further relaxes the guarantee of unifor-
mity, and ensures that Pr [Gnu(F ) = y] ≥ c/|RF | for a con-
stant c, where 0 < c ≤ 1. Probabilistic generators are al-
lowed to occasionally “fail” in the sense that no witness may
be returned even if RF is non-empty. The failure proba-
bility for such generators must be bounded by a constant
strictly less than 1. The algorithm presented in this pa-
per falls in the category of almost-uniform generators. An
idea closely related to that of almost-uniform generation,
and used in a key manner in our algorithm, is approxi-
mate model counting. Given a CNF formula F , an exact
model counter returns the size of RF . An approximate model

counter ApproxMC(·, ·, ·) relaxes this requirement to some
extent. Given a CNF formula F , a tolerance ε > 0 and a con-
fidence 1−δ ∈ (0, 1], and approximate model counter ensures

that Pr[ |RF |
1+ε
≤ ApproxMC(F, ε, 1−δ) ≤ (1+ε)|RF |] ≥ 1−δ.

A special class of hash functions, called r-wise indepen-
dent hash functions, play a crucial role in our work. Let n,m
and r be positive integers, and let H(n,m, r) denote a fam-
ily of r-wise independent hash functions mapping {0, 1}n

to {0, 1}m. We use h
R←− H(n,m, r) to denote the prob-

ability space obtained by choosing a hash function h uni-
formly at random from H(n,m, r). The property of r-wise
independence guarantees that for all α1, . . . αr ∈ {0, 1}m
and for all distinct y1, . . . yr ∈ {0, 1}n, Pr

[∧r
i=1 h(yi) = αi

: h
R←− H(n,m, r)

]
= 2−mr. For every α ∈ {0, 1}m and

h ∈ H(n,m, r), let h−1(α) denote the set {y ∈ {0, 1}n |
h(y) = α}. Given RF ⊆ {0, 1}n and h ∈ H(n,m, r), we use
RF,h,α to denote the set RF ∩h−1(α). If we keep h fixed and
let α range over {0, 1}m, the sets RF,h,α form a partition
of RF . For every m ∈ {1, . . . |S| − 1}, the mth prefix-slice

of h, denoted h(m), is a map from {0, 1}|S| to {0, 1}m, such

that h(m)(y)[i] = h(y)[i], for all y ∈ {0, 1}|S| and for all
i ∈ {1, . . .m}. Similarly, the mth prefix-slice of α, denoted

α(m), is an element of {0, 1}m such that α(m)[i] = α[i] for
all i ∈ {1, . . .m}.

3. RELATED WORK
Marrying scalability with strong guarantees of uniformity

has been the holy grail of algorithms that sample from solu-
tions of constraint systems. The literature bears testimony
to the significant tension between these objectives when de-
signing random generators of SAT witnesses. Earlier work
in this area either provide strong theoretical guarantees at
the cost of scalability, or remedy the scalability problem at
the cost of guarantees of uniformity. More recently, however,
there have been efforts to bridge these two extremes.

Bellare, Goldreich and Petrank [3] showed that a provably
uniform generator of SAT witnesses can be designed in the-
ory to run in probabilistic polynomial time relative to an NP
oracle. Unfortunately, it was shown in [5] that this algorithm
does not scale beyond formulae with few tens of variables in
practice. Weighted binary decision diagrams (BDD) have
been used in [27] to sample uniformly from SAT witnesses.
However, BDD-based techniques are known to suffer from
scalability problems [16]. Adapted BDD-based techniques
with improved performance were proposed in [18]; however,
the scalability was achieved at the cost of guarantees of uni-
formity. Random seeding of DPLL SAT solvers [20] has been
shown to offer performance, although the generated distri-
butions of witnesses can be highly skewed [16].

Markov Chain Monte Carlo methods (also called MCMC
methods) [16, 26] are widely considered to be a practical way
to sample from a distribution of solutions. Several MCMC al-
gorithms, such as those based on simulated annealing, Metropolis-
Hastings algorithm and the like, have been studied exten-
sively in the literature [15, 19]. While MCMC methods guar-
antee eventual convergence to a target distribution under
mild requirements, convergence is often impractically slow in
practice. The work of [26, 16] proposed several such adapta-
tions for MCMC-based sampling in the context of constrained-
random verification. Unfortunately, most of these adapta-
tions are heuristic in nature, and do not preserve theoret-



ical guarantees of uniformity. constraints, thereby increas-
ing constraint-solving time. Sampling techniques based on
interval-propagation and belief networks have been proposed
in [7, 10, 13]. The simplicity of these approaches lend scala-
bility to the techniques, but the generated distributions can
deviate significantly from the uniform distribution, as shown
in [17].

Sampling techniques based on hashing were originally pi-
oneered by Sipser [24], and have been used subsequently by
several researchers [3, 11, 5]. The core idea in hashing-based
sampling is to use r-wise independent hash functions (for
a suitable value of r) to randomly partition the space of
witnesses into “small cells” of roughly equal size, and then
randomly pick a solution from a randomly chosen cell. The
algorithm of Bellare et al. referred to above uses this idea
with n-wise independent algebraic hash functions (where n
denotes the size of the support of F ). As noted above, their
algorithm scales very poorly in practice. Gomes, Sabhar-
wal and Selman used 3-wise independent linear hash func-
tions in [11] to design XORSample′, a near-uniform gener-
ator of SAT witnesses. Nevertheless, to realize the guar-
antee of near-uniformity, their algorithm requires the user
to provide difficult-to-estimate input parameters. Although
XORSample′ has been shown to scale to constraints involv-
ing a few thousand variables, Gomes et al. acknowledge the
difficulty of scaling their algorithm to much larger problem
sizes without sacrificing theoretical guarantees [11].

Recently, Chakraborty, Meel and Vardi [5] proposed a new
hashing-based SAT witness generator, called UniWit, that
represents a small but significant step towards marrying the
conflicting goals of scalability and guarantees of uniformity.
Like XORSample′, the UniWit algorithm uses 3-wise indepen-
dent linear hashing functions. Unlike XORSample′, however,
the guarantee of near-uniformity of witnesses generated by
UniWit does not depend on difficult-to-estimate input pa-
rameters. In [5], UniWit has been shown to scale to formulas
with several thousand variables. In addition, Chakraborty
et al proposed a heuristic called “leap-frogging” that allows
UniWit to scale even further – to tens of thousands of vari-
ables [5]. Unfortunately, the guarantees of near-uniformity
can no longer be established for UniWit with “leap-frogging”.
More recently, Ermon et al. [9] proposed a hashing-based
algorithm called PAWS for sampling from a distribution de-
fined over a discrete set using a graphical model. While the
algorithm presented in this paper has some similarities with
PAWS, there are significant differences as well. Specifically,
our algorithm provides much stronger theoretical guaran-
tees vis-a-vis those offered by PAWS in the context of uni-
form generation of SAT witness. In addition, our algorithm
scales to hundreds of thousands of variables while preserv-
ing the theoretical guarantees. PAWS faces the same scala-
bility hurdles as UniWit, and is unlikely to scale beyond a
few thousand variables without heuristic adapatations that
compromise its guarantees.

4. THE UNIGEN ALGORITHM
The new algorithm, called UniGen, falls in the category

of hashing-based almost-uniform generators. UniGen shares
some features with earlier hashing-based algorithms such as
XORSample′ [11], UniWit [5] and PAWS [9], but there are
key differences that allow UniGen to significantly outper-
form these earlier algorithms, both in terms of theoretical
guarantees and measured performance.

Given a CNF formula F , we use a family of 3-independent
hash functions to randomly partition the set, RF , of wit-
nesses of F . Let h : {0, 1}n → {0, 1}m be a hash function in
the family, and let y be a vector in {0, 1}n. Let h(y)[i] de-
note the ith component of the vector obtained by applying
h to y. The family of hash functions of interest is defined as
{h(y) | h(y)[i] = ai,0 ⊕ (

⊕n
k=1 ai,k · y[k]), ai,j ∈ {0, 1}, 1 ≤

i ≤ m, 0 ≤ j ≤ n}, where ⊕ denotes the xor operation. By
choosing values of ai,j randomly and independently, we can
effectively choose a random hash function from the family. It
has been shown in [11] that this family of hash functions is
3-independent. Following notation introduced in Section 2,
we call this family Hxor(n,m, 3).

WhileHxor(n,m, 3) was used earlier in XORSample′, PAWS,
and (in a variant of) UniWit, there is a fundamental differ-
ence in the way we use it in UniGen. LetX = {x1, x2, . . . x|X|}
be the set of variables of F . Given m > 0, the algorithms
XORSample′, PAWS and UniWit partition RF by randomly
choosing h ∈ Hxor(|X|,m, 3) and α ∈ {0, 1}m, and by seek-
ing witnesses of F conjoined with

∧m
i=1

(
h(x1, . . . x|X|)[i]↔ α[i]

)
.

By choosing a random h(x1, . . . x|X|) ∈ Hxor(|X|,m, 3), the
set of all assignments to variables inX (regardless of whether
they are witnesses of F ) is partitioned randomly. This, in
turn, ensures that the set of satisfying assignments of F is
also partitioned randomly. Each conjunctive constraint of
the form (h(x1 . . . x|X|)[i] ↔ α[i]) is an xor of a subset of
variables of X and α[i], and is called an xor-clause. Ob-
serve that the expected number of variables in each such
xor-clause is approximately |X|/2. It is well-known (see, for
example [12]) that the difficulty of checking satisfiability of
a CNF formula with xor-clauses grows significantly with the
number of variables per xor-clause. It is therefore extremely
difficult to scale XORSample′, PAWS or UniWit to problems
involving hundreds of thousands of variables. In [5], an alter-
native family of linear hash functions is proposed to be used
with UniWit. Unfortunately, this also uses |X|/2 variables
per xor-clause on average, and suffers from the same prob-
lem. In [12], a variant of Hxor(|X|,m, 3) is used, wherein
each variable in X is chosen to be in an xor-clause with a
small probability q (< 0.5). This mitigates the performace
bottleneck significantly, but theoretical guarantees of (near-
)uniformity are lost.

We address the above problem in UniGen by making two
important observations: (i) an independent support I of F
is often far smaller (sometimes by a few orders of magni-
tude) than X, and (ii) since the value of every variable in
X \I in a satisfying assignment of F is uniquely determined
by the values of variables in I, the set RF can be randomly
partitioned by randomly partitioning its projection on I.
This motivates us to design an almost-uniform generator
that accepts a subset S of the support of F as an additional
input. We call S the set of sampling variables of F , and in-
tend to use an independent support of F (not necessarily
a minimal one) as the value of S in any invocation of the
generator. Without loss of generality, let S = {x1, . . . x|S|},
where |S| ≤ |X|. The set RF can now be partitioned by ran-
domly choosing h ∈ Hxor(|S|,m, 3) and α ∈ {0, 1}m, and
by seeking solutions of F ∧

∧m
i=1

(
h(x1, . . . x|S|)[i]↔ α[i]

)
.

If |S| � |X| (as is often the case in our experience), the
expected number of variables per xor-clause is significantly
reduced. This makes satisfiability checking easier, and allows
scaling to much larger problem sizes than otherwise possi-
ble. It is natural to ask if finding an independent support of



a CNF formula F is computationally easy. While an algo-
rithmic solution to this problem is beyond the scope of this
paper, our experience indicates that a small, not necessar-
ily minimal, independent support can often be easily deter-
mined from the source domain from which the CNF formula
F is derived. For example, when a non-CNF formula G is
converted to an equisatisfiable CNF formula F using Tseitin
encoding, the variables introduced by the encoding form a
dependent support of F .

The effectiveness of a hashing-based probabilistic gener-
ator depends on its ability to quickly partition the set RF
into “small” and “roughly equal” sized random cells. This, in
turn, depends on the parameter m used in the choice of the
hash function family H(n,m, r). A high value of m leads to
skewed distributions of sizes of cells, while a low value of m
leads to cells that are not small enough. The best choice of
m depends on |RF |, which is not known a priori. Different
algorithms therefore use different techniques to estimate a
value of m. In XORSample′, this is achieved by requiring the
user to provide some difficult-to-estimate input parameters.
In UniWit, the algorithm sequentially iterates over values
of m until a good enough value is found. The approach of
PAWS comes closest to our, although there are crucial dif-
ferences. In both PAWS and UniGen, an approximate model
counter is first used to estimate |RF | within a specified tol-
erance and with a specified confidence. This estimate, along
with a user-provided parameter, is then used to determine
a unique value of m in PAWS. Unfortunately, this does not
facilitate proving that PAWS is an almost-uniform genera-
tor. Instead, Ermon, et al. show that PAWS behaves like
an almost-uniform generator with probability greater than
1 − δ, for a suitable δ that depends on difficult-to-estimate
input parameters. In contrast, we use the estimate of |RF |
to determine a small range of candidate values of m. This
allows us to prove that UniGen is almost-uniform generator
with confidence 1.

Algorithm 1 UniGen(F, ε, S)

/*Assume S = {x1, . . . x|S|} is an independent support of F ,
and ε > 1.71 */

1: (κ, pivot)← ComputeKappaPivot(ε);
2: hiThresh← 1 + (1 + κ)pivot;
3: loThresh← 1

1+κ
pivot;

4: Y ← BSAT(F,hiThresh);
5: if (|Y | ≤ hiThresh) then
6: Let y1, . . . y|Y | be the elements of Y ;
7: Choose j at random from {1, . . . |Y |}; return yj ;
8: else
9: C ← ApproxModelCounter(F, 0.8, 0.8);

10: q ← dlogC + log 1.8− log pivote;
11: i← q − 4;
12: Choose h at random from Hxor(|S|, n, 3);
13: Choose α at random from {0, 1}n;
14: repeat
15: i← i+ 1;
16: Y ← BSAT(F ∧ (hi(x1, . . . x|S|) = αi),hiThresh);
17: until (loThresh ≤ |Y | ≤ hiThresh) or (i = q)
18: if (|Y | > hiThresh) or (|Y | < loThresh) then
19: return ⊥
20: else
21: Let y1, . . . y|Y | be the elements of Y ;
22: Choose j at random from [|Y |] and return yj ;

Algorithm 2 ComputeKappaPivot(tε)

Find κ ∈ [0, 1) such that ε = (1 + κ)(2.23 + 0.48
(1−κ)2 )− 1 ;

pivot← d3e1/2(1 + 1
κ

)2e;
return (κ, pivot)

The pseudocode for UniGen is shown in Algorithm 1. UniGen
takes as inputs a Boolean CNF formula F , a tolerance ε
(> 1.71, for teachnical reasons explained in the Appendix)
and a set S of sampling variables. It either returns a ran-
dom witness of F or ⊥ (indicating failure). The algorithm
assumes access to a source of random binary numbers, and
to two subroutines: (i) BSAT(F,N), which, for every N > 0,
returns min(|RF |, N) distinct witnesses of F , and (ii) an ap-
proximate model counter ApproxModelCounter(F, ε′, 1− δ′).

UniGen first computes two quantities, “pivot” and κ, that
represent the expected size of a“small”cell and the tolerance
of this size, respectively. The specific choices of expressions
used to compute κ and “pivot” in ComputeKappaPivot are
motivated by technical reasons explained in the Appendix.
The values of κ and “pivot” are used to determine high and
low thresholds (denoted “hiThresh” and “loThresh” respec-
tively) for the size of each cell. Lines 5–7 handle the easy case
when F has no more than “hiThresh” witnesses. Otherwise,
UniGen invokes ApproxModelCounter to obtain an estimate,
C, of |RF | to within a tolerance of 0.8 and with a confi-
dence of 0.8. Once again, the specific choices of the tolerance
and confidence parameters used in computing C are moti-
vated by technical reasons explained in the Appendix. The
estimate C is then used to determine a range of candidate
values for m. Specifically, this range is {q − 4, . . . q}, where
q is determined in line 10 of the pseudocode. The loop in
lines 12–17 checks whether some value in this range is good
enough for m, i.e., whether the number of witnesses in a cell
chosen randomly after partitioning RF usingHxor(|S|,m, 3),
lies within “hiThresh” and “loThresh”. If so, lines 21–22 re-
turn a random witness from the chosen cell. Otherwise, the
algorithm reports a failure in line 19.

An probabilistic generator is likely to be invoked multi-
ple times with the same input constraint in constrained-
random verification. Towards this end, note than lines 1–11
of the pseudocode need to executed only once for every for-
mula F . Generating a new random witness requires execut-
ing afresh only lines 12–22. While this optimization appears
similar to “leapfrogging” [5, 6], it is fundamentally different
since it does not sacrifice any theoretical guarantees, unlike
“leapfrogging”.
Implementation issues: In our implementation of UniGen,
BSAT is implemented using CryptoMiniSAT [1] – a SAT
solver that handles xor clauses efficiently. CryptoMiniSAT
uses blocking clauses to prevent already generated witnesses
from being generated again. Since the independent support
of F determines every satisfying assignment of F , blocking
clauses can be restricted to only variables in the set S. We
implemented this optimization in CryptoMiniSAT, leading
to significant improvements in performance. ApproxModelCounter
is implemented using ApproxMC [6]. Although the authors
of [6] used “leapfrogging” in their experiments, we disable
this optimization since it nullifies the theoretical guarantees
of [6]. We use “random device” implemented in C++ as the
source of pseudo-random numbers in lines 7, 14, 15 and 22 of
the pseudocode, and also as the source of random numbers
in ApproxMC.



Guarantees: The following theorem shows that UniGen is
an almost-uniform generator with a high success probability.

Theorem 1. If S is an independent support of F and if
ε > 1.71, then for every y ∈ RF , we have

1

(1 + ε)(|RF | − 1)
≤ Pr [UniGen(F, ε, S) = y] ≤ (1+ε)

1

|RF | − 1
.

In addition, Pr [UniGen(F, ε, S) 6= ⊥] ≥ 0.62.

For lack of space, we defer the proof to the Appendix. It
can be shown that UniGen runs in time polynomial in ε−1

and in the size of F , relative to an NP-oracle.
The guarantees provided by Theorem 1 are significantly

stronger than those provided by earlier generators that scale
to large problem instances. Specifically, neither XORSample′ [11]
nor UniWit [5] provide strong upper bounds for the probabil-
ity of generation of a witness. PAWS [9] offers a probabilistic
guarantee that the probability of generation of a witness lies
within a tolerance factor of the uniform probability, while
the guarantee of Theorem 1 is not prbabilistic. The success
probability of PAWS, like that of XORSample′, is bounded
below by an expression that depends on difficult-to-estimate
input parameters. Interestingly, the same parameters also
directly affect the tolerance of distribution of the generated
witnesses. The success probability of UniWit is bounded be-
low by 0.125, which is significantly smaller than the lower
bound of 0.62 guaranteed by Theorem 1.
Trading scalability with uniformity: The tolerance pa-
rameter ε provides a knob to balance scalability and unifor-
mity in UniGen. Smaller values of ε lead to stronger guaran-
tees of uniformity (by Theorem 1). Note, however, that the
value of “hiThresh” increases with decreasing values of ε, re-
quiring BSAT to find more witnesses. Thus, each invocation
of BSAT is likely to take longer as ε is reduced.

5. EXPERIMENTAL RESULTS
To evaluate the performance of UniGen, we built a proto-

type implementation and conducted an extensive set of ex-
periments. Industrial constrained-random verification prob-
lem instances are typically proprietary and unavailable for
published research. Therefore, we conducted experiments on
CNF SAT constraints arising from several problems avail-
able in the public-domain. These included bit-blasted ver-
sions of constraints arising in bounded model checking of cir-
cuits and used in [5], bit-blasted versions of SMTLib bench-
marks, constraints arising from automated program synthe-
sis, and constraints arising from ISCAS89 circuits with par-
ity conditions on randomly chosen subsets of outputs and
next-state variables.

To facilitate running multiple experiments in parallel, we
used a high-performance cluster and ran each experiment
on a node of the cluster. Each node had two quad-core In-
tel Xeon processors with 4 GB of main memory. Recalling
the terminology used in the pseudocode of UniGen (see Sec-
tion 4), we set the tolerance ε to 6, and the sampling set
S to an independent support of F in all our experiments.
Independent supports (not necessarily minimal ones) for all
benchmarks were easily obtained from the providers of the
benchmarks on request. We used 2, 500 seconds as the time-
out for each invocation of BSAT and 20 hours as the overall
timeout for UniGen, for each problem instance. If an invo-
cation of BSAT timed out in line 16 of the pseudocode of
UniGen, we repeated the execution of lines 14–16 without

incrementing i. With this set-up, UniGen was able to suc-
cessfully generate random witnesses for formulas having up
to 486, 193 variables.

For performance comparisons, we also implemented and
conducted experiments with UniWit – a state-of-art near-
uniform generator [5]. Our choice of UniWit as a reference
for comparison is motivated by several factors. First, UniGen
and UniWit share some commonalities, and UniGen can be
viewed as an improvement of UniWit. Second, XORSample′

is known to perform poorly vis-a-vis UniWit [5]; hence, com-
paring with XORSample′ is not meaningful. Third, the im-
plementation of PAWS made available by the authors of [9]
currently does not accept CNF formulae as inputs. It ac-
cepts only a graphical model of a discrete distribution as in-
put, making a direct comparison with UniGen difficult. Since
PAWS and UniWit share the same scalability problem re-
lated to large random xor-clauses, we chose to focus only on
UniWit. Since the “leapfrogging” heuristic used in [5] nullifies
the guarantees of UniWit, we disabled this optimization. For
fairness of comparison, we used the same timeouts in UniWit
as used in UniGen, i.e. 2, 500 seconds for every invocation of
BSAT, and 20 hours overall for every invocation of UniWit.

Table 1 presents the results of our performance-comparison
experiments. Column 1 lists the CNF benchmark, and columns
2 and 3 give the count of variables and size of independent
support used, respectively. The results of experiments with
UniGen are presented in the next 3 columns. Column 4 gives
the observed probability of success of UniGen when gener-
ating 1, 000 random witnesses. Column 5 gives the average
time taken by UniGen to generate one witness (averaged over
a large number of runs), while column 6 gives the average
number of variables per xor-clause used for randomly parti-
tioning RF . The next two columns give results of our exper-
iments with UniWit. Column 7 lists the average time taken
by UniWit to generate a random witness, and column 8 gives
the average number of variables per xor-clause used to parti-
tion RF . A “−” in any column means that the corresponding
experiment failed to generate any witness in 20 hours.

It is clear from Table 1 that the average run-time for gen-
erating a random witness by UniWit can be two to three or-
ders of magnitude larger than the corresponding run-time for
UniGen. This is attributable to two reasons. The first stems
from fewer variables in xor-clauses and blocking clauses when
small independent supports are used. Benchmark “tutorial3”
exemplifies this case. Here, UniWit failed to generate any wit-
ness because all calls to BSAT in UniWit, with xor-clauses
and blocking clauses containing numbers of variables, timed
out. In contrast, the calls to BSAT in UniGen took much
less time, due to short xor-clauses and blocking clauses us-
ing only variables from the independent support. The other
reason for UniGen’s improved efficiency is that the compu-
tationally expensive step of identifying a a good range of
values for m (see Section 4 for details) needs to be executed
only once per benchmark. Subsequently, whenever a random
witness is needed, UniGen simply iterates over this narrow
range of m. In contrast, generating every witness in UniWit
(without leapfrogging) requires sequentially searching over
all values afresh to find a good choice for m. Referring to
Table 1, UniWit requires more than 20, 000 seconds on av-
erage to find a good value for m and generate a random
witness for benchmark “s953a 3 2”. Unlike in UniGen, there
is no way to amortize this large time over multiple runs in
UniWit, while preserving the guarantee of near-uniformity.



Table 1 also shows that the observed success probabil-
ity of UniGen is almost always 1, much higher than what
Theorem 1 guarantees and better than those from UniWit.
It is clear from our experiments that UniGen can scale to
problems involving almost 500K variables, while preserv-
ing guarantees of almost uniformity. This goes much beyond
the reach of any other random-witness generator that gives
strong guarantees on the distribution of witnesses.
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Figure 1: Uniformity comparison for case110
Theorem 1 guarantees that the probability of generation

of every witness lies within a specified tolerance of the uni-
form probability. In practice, however, the distribution of
witnesses generated by UniGen is much more closer to a
uniform distribution. To illustrate this, we implemented a
uniform sampler, henceforth called US, and compared the
distributions of witnesses generated by UniGen and by US
for some representative benchmarks. Given a CNF formula
F , US first determines |RF | using an exact model counter
(such as sharpSAT). To mimic generating a random witness,
US simply generates a random number i in {1 . . . |RF |}. To
ensure fair comparison, we used the same source of random-
ness in both UniGen and US. For every problem instance
on which the comparison was done, we generated a large
number N (= 4 × 106) of sample witnesses using each of
US and UniGen. In each case, the number of times various
witnesses were generated was recorded, yielding a distribu-
tion of the counts. Figure 1 shows the distributions of counts
generated by UniGen and by US for one of our benchmarks
(case110) with 16, 384 witnesses. The horizontal axis rep-
resents counts and the vertical axis represents the number
of witnesses appearing a specified number of times. Thus,
the point (242, 450) represents the fact that each of 450 dis-
tinct witnesses were generated 242 times in 4 × 106 runs.
Observe that the distributions resulting from UniGen and
US can hardly be distinguished in practice. This holds not
only for this benchmark, but for all other benchmarks we
experimented with.

Overall, our experiments confirm that UniGen is two to
three orders of magnitude more efficient than state-of-the-
art random witness generators, has probability of success
almost 1, and preserves strong guarantees about the unifor-
mity of generated witnesses. Furthermore, the distribution
of generated witnesses can hardly be distinguished from that
of a uniform sampler in practice.

6. CONCLUSION
Striking a balance between scalability and uniformity is

a difficult challenge when designing random witness genera-
tors for constrained-random verification. UniGen is the first

such generator for Boolean CNF formulae that scales to hun-
dreds of thousands of variables and still preserves strong
guarantees of uniformity. In future, we wish to investigate
the design of scalable generators with similar guarantees for
SMT constraints, leveraging recent progress in satisfiability
modulo theories.
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APPENDIX
In this section, we present a proof of Theorem 1, originally
stated in Section 4, and also present an extended table of
performance comparison results.

Recall that UniGen is a probabilistic algorithm that takes
as inputs a Boolean CNF formula F , a tolerance ε and a
subset S of the support of F . We first show that if X is the
support of F , and if S ( X is an independent support of F ,
then UniGen(F , ε, S) behaves identically (in a probabilis-
tic sense) to UniGen(F , ε, X). Once this is established, the
remainder of the proof proceeds by making the simplifying
assumption S = X.

Clearly, the above claim holds trivially if X = S. There-
fore, we focus only on the case when S ( X. For nota-
tional convenience, we assume X = {x1, . . . xn}, 0 ≤ k < n,
S = {x1, . . . xk} and D = {xk+1, . . . xn} in all the state-

ments and proofs in this section. We also use ~X to denote
the vector (x1, . . . xn), and similarly for ~S and ~D.

Lemma 1. Let F ( ~X) be a Boolean function with support
X, and let S be an independent support of F . Then there
exist Boolean functions g0, g1, . . . gn−k, each with support S
such that

F ( ~X)↔

(
g0(~S) ∧

n−k∧
j=1

(xk+j ↔ gj(~S))

)

Proof. Since S is an independent support of F , we have
D = X \ S is a dependent support of F . From the def-
inition of a dependent support, there exist Boolean func-
tions g1, . . . gk, each with support S, such that F ( ~X) →∧n−k
j=1 (xk+j ↔ gj(~S)).

Let g0(~S) be the characteristic function of the projection

ofRF on S. More formally, g0(~S) ≡
∨

(xk+1,...xn)∈{0,1}n−k F ( ~X).

It follows that F ( ~X) → g0(~S). Combining this with the re-
sult from the previous paragraph, we get the implication

F ( ~X) →
(
g0(~S) ∧

∧n−k
j=1 (xk+j ↔ gj(~S))

)
From the definition of g0(~S) given above, we have g0(~S)→

F (~S, xk+1, . . . xn), for some values of xk+1, . . . xn. However,

we also know that F ( ~X)→
∧n−k
j=1 (xk+j ↔ gj(~S)). It follows

that
(
g(~S) ∧

∧n−k
j=1 (xk+j ↔ gj(~S))

)
→ F ( ~X).

Referring to the pseudocode of UniGen in Section 4, we ob-
serve that the only steps that depend directly on S are those
in line 14, where h is chosen randomly from Hxor(|S|, i, 3),
and line 16, where the set Y is computed by calling BSAT(F∧
(h(x1, . . . x|S|) = α), hiThresh). Since all subsequent steps of
the algorithm depend only on Y , it suffices to show that if S
is an independent support of F , the probability distribution
of Y obtained at line 16 is identical to what we would obtain
if S was set equal to the entire support, X, of F .

The following lemma formalizes the above statement. As
before, we assume X = {x1, . . . xn} and S = {x1, . . . xk}.

Lemma 2. Let S be an independent support of F ( ~X). Let h
and h′ be hash functions chosen uniformly at random from
Hxor(k, i, 3) and Hxor(n, i, 3), respectively. Let α and α′ be
tuples chosen uniformly at random from {0, 1}i. Then, for
every Y ∈ {0, 1}n and for every t > 0, we have

Pr
[
BSAT

(
F ( ~X) ∧ (h(~S) = α), t

)
= Y

]
=

Pr
[
BSAT

(
F ( ~X) ∧ (h′( ~X) = α′), t

)
= Y

]
Proof. Since h′ is chosen uniformly at random fromHxor(n, i, 3),

recalling the definition ofHxor(n, i, 3), we have F ( ~X)∧(h′( ~X) =

α′) ≡ F ( ~X)∧
∧i
l=1

(
(al,0 ⊕

⊕n
j=1 al,j · x[j])↔ α′[l]

)
, where

the al,js are chosen independently and identically randomly
from {0, 1}.

Since S is an independent support of F , from Lemma 1,
there exist Boolean functions g1, . . . gn−k, each with sup-

port S, such that F ( ~X) →
∧n−k
j=1 (xk+j ↔ gj(~S)). There-

fore, F ( ~X) ∧ (h′( ~X) = α′) is semantically equivalent to

F ( ~X) ∧
∧i
l=1

(
(al,0 ⊕

⊕k
j=1 al,j · x[j]⊕B)↔ α′[l]

)
, where

B ≡
⊕n

j=k+1 al,j ·gj−k(~S). Rearranging terms, we get F ( ~X)∧∧i
l=1

(
(al,0 ⊕

⊕k
j=1 al,j · x[j])↔ (α′[l]⊕B)

)
.

Since α′ is chosen uniformly at random from {0, 1}i and
since B is independent of α′, it is easy to see that α′[l]⊕B is a
random binary variable with equal probability of being 0 and

1. It follows that Pr
[
BSAT(F ( ~X) ∧ (h′( ~X) = α′), t) = Y

]
=

Pr
[
BSAT(F ( ~X) ∧ (h(~S) = α), t) = Y

]
.

Lemma 2 allows us to continue with the remainder of the
proof assuming S = X. It has already been shown in [11]
that Hxor(n,m, 3) is a 3-independent family of hash func-
tions. We use this fact in a key way in the remainder of
our analysis. The following result about Chernoff-Hoeffding
bounds, proved in [6], plays an important role in our discus-
sion.

Theorem 1. Let Γ be the sum of r-wise independent ran-
dom variables, each of which is confined to the interval [0, 1],

and suppose E[Γ] = µ. For 0 < β ≤ 1, if 2 ≤ r ≤
⌊
β2µe−1/2

⌋
≤

4 , then Pr [ |Γ− µ| ≥ βµ ] ≤ e−r/2.

Using notation introduced in Section 2, let RF denote the
set of witnesses of the Boolean formula F . For convenience
of analysis, we assume that log(|RF | − 1) − log pivot is an
integer, where pivot is the quantity computed by algorithm
ComputeKappaPivot (see Section 4). A more careful analy-
sis removes this assumption by scaling the probabilities by
constant factors. Let us denote log(|RF | − 1)− log pivot by
m. The expression used for computing pivot in algorithm
ComputeKappaPivot ensures that pivot ≥ 17. Therefore, if
an invocation of UniGen does not return from line 7 of the
pseudocode, then |RF | ≥ 18. Note also that the expression
for computing κ in algorithm ComputeKappaPivot requires
ε ≥ 1.71 in order to ensure that κ ∈ [0, 1) can always be
found.

The following lemma shows that q, computed in line 10 of
the pseudocode, is a good estimator of m.

Lemma 3. Pr[q − 3 ≤ m ≤ q] ≥ 0.8

Proof. Recall that in line 9 of the pseudocode, an approx-
imate model counter is invoked to obtain an estimate, C,
of |RF | with tolerance 0.8 and confidence 0.8. By the def-
inition of approximate model counting, we have Pr[ C

1.8
≤

|RF | ≤ (1.8)C] ≥ 0.8. Thus, Pr[logC− log(1.8) ≤ log |RF | ≤
logC + log(1.8)] ≥ 0.8. It follows that Pr[logC − log(1.8)−



log pivot−log( 1
1−1/|RF |

) ≤ log(|RF |−1)−log pivot ≤ logC−
log pivot+ log(1.8)− log( 1

1−1/|RF |
)] ≥ 0.8. Substituting q =

dlogC + log 1.8 − log pivote, m = log(|RF | − 1) − log pivot ,
log(1.8) = 0.85 and log( 1

1−1/|RF |
) ≤ 0.12 (since |RF | ≥ 18

on reaching line 10 of the pseudocode), we get Pr[q − 3 ≤
m ≤ q] ≥ 0.8.

The next lemma provides a lower bound on the probabil-
ity of generation of a witness. Let wi,y,α denote the proba-

bility Pr
[
pivot
1+κ

≤ |RF,h,α| ≤ 1 + (1 + κ)pivot and h(y) = α

: h
R←− Hxor(n, i, 3)

]
. The proof of the lemma also provides

a lower bound on wm,y,α.

Lemma 4. For every witness y of F , Pr[y is output] ≥
0.8(1−e−1)

(1.06+κ)(|RF |−1)

Proof. If |RF | ≤ 1 + (1 + κ)pivot, the lemma holds triv-
ially (see lines 5–7 of the pseudocode). Suppose |RF | ≥
1 + (1 + κ)pivot and let U denote the event that witness
y ∈ RF is output by UniGen on inputs F , ε and X. Let pi,y
denote the probability that we return from line 17 for a par-
ticular value of i with y in RF,h,α, where α ∈ {0, 1}i is the
value chosen in line 15. Then, Pr[U ] = ∪qi=q−3

1
|Y |pi,y, where

Y is the set of witnesses returned by BSAT in line 16 of the
pseudocode. Let fm = Pr[q − 3 ≤ m ≤ q]. From Lemma 3,
we know that fm ≥ 0.8. From the design of the algorithm,
we also know that 1

1+κ
pivot ≤ |Y | ≤ 1 + (1 + κ)pivot.

Therefore, Pr[U ] ≥ 1
1+(1+κ)pivot

· pm,y · fm. The proof is

now completed by showing pm,y ≥ 1
2m

(1 − e−1). This gives

Pr[U ] ≥ 0.8(1−e−1)
(1+(1+κ)pivot)2m

≥ 0.8(1−e−1)
(1.06+κ)(|RF |−1)

. The last in-

equality uses the observation that 1/pivot ≤ 0.06.
To calculate pm,y, we first note that since y ∈ RF , the

requirement “y ∈ RF,h,α” reduces to “y ∈ h−1(α)”. For α ∈
{0, 1}n, we define wm,y,α as Pr

[
pivot
1+κ

≤ |RF,h,α| ≤ 1 + (1 + κ)

pivot and h(y) = α : h
R←− Hxor(n,m, 3)

]
. Therefore, pm,y =

Σα∈{0,1}m
(
wm,y,α.2

−m). The proof is now completed by

showing that wm,y,α ≥ (1 − e−1)/2m for every α ∈ {0, 1}m
and y ∈ {0, 1}n.

Towards this end, let us first fix a random y. Now we de-
fine an indicator variable γz,α for every z ∈ RF \ {y} such
that γz,α = 1 if h(z) = α, and γz,α = 0 otherwise. Let us
fix α and choose h uniformly at random from Hxor(n,m, 3).
The random choice of h induces a probability distribution on
γz,α such that E[γz,α] = Pr[γz,α = 1] = 2−m. Since we have
fixed y, and since hash functions chosen from Hxor(n,m, 3)
are 3-wise independent, it follows that for every distinct
za, zb ∈ RF \{y}, the random variables γza,α, γzb,α are 2-wise
independent. Let Γα =

∑
z∈RF \{y}

γz,α and µα = E[Γα].

Clearly, Γα = |RF,h,α| − 1 and µα =
∑
z∈RF \{y}

E[γz,α]

= |RF |−1
2m

. Also, Pr[pivot
1+κ

≤ |RF,h,α| ≤ 1 + (1 + κ)pivot]

= Pr[pivot
1+κ

− 1 ≤ |RF,h,α| − 1 ≤ (1 + κ)pivot] ≥ Pr[pivot
1+κ

≤
|RF,h,α| − 1 ≤ (1 + κ)pivot]. Using the expression for pivot,

we get 2 ≤ be−1/2(1 + 1/ε)2 · |RF |−1
2m

c. Therefore using The-
orem 1 and substituting pivot = (|RF | − 1)/2m, we get
Pr[pivot

1+κ
≤ |RF,h,α| − 1 ≤ (1 +κ)pivot] ≥ 1− e−1. Therefore,

Pr[pivot
1+κ

≤ |RF,h,α| ≤ 1 + (1 + κ)pivot] ≥ 1− e−1 Since h is

chosen at random fromHxor(n,m, 3), we also have Pr[h(y) =
α] = 1/2m. It follows that wm,y,α ≥ (1− e−1)/2m.

The next lemma provides an upper bound of wi,y,α and
pi,y.

Lemma 5. For i < m, both wi,y,α and pi,y are bounded
above by 1

|RF |−1
1(

1− 1+κ

2m−i

)2 .

Proof. We will use the terminology introduced in the proof

of Lemma 4. Clearly, µα = |RF |−1

2i
. Since each γz,α is a 0-1

variable, V [γz,α] ≤ E [γz,α]. Therefore, σ2
z,α ≤

∑
z 6=y,z∈RF

E [γz,α]

≤
∑
z∈RF

E [γz,α] = E [Γα] = 2−m(|RF | − 1). So Pr[ pivot
1+κ

≤
|RF,h,α| ≤ 1+(1+κ)pivot] ≤ Pr[|RF,h,α|−1 ≤ (1+κ)pivot].
From Chebyshev’s inequality, we know that Pr [|Γα − µz,α| ≥
κσz,α] ≤ 1/κ2 for every κ > 0. By choosing κ = (1 −
1+κ
2m−i )

µz,α
σz,α

, we have Pr[|RF,h,α| − 1 ≤ (1 + κ)pivot] ≤ Pr[
|(|RF,h,α| − 1)− |RF |−1

2i
| ≥ (1− 1+κ

2m−i )
|RF |−1

2i

]
≤ 1(

1− (1+κ)

2m−i

)2 ·

2i

|RF |−1
. Since h is chosen at random from Hxor(n,m, 3), we

also have Pr[h(y) = α] = 1/2i. It follows that wi,y,α ≤
1

|RF |−1
1(

1− 1+κ

2m−i

)2 . The bound for pi,y is easily obtained by

noting that pi,y = Σα∈{0,1}i
(
wi,y,α.2

−i).
Lemma 6. For every witness y of F , Pr[y is output] ≤

1+κ
|RF |−1

(2.23 + 0.48
(1−κ)2 )

Proof. We will use the terminology introduced in the proof
of Lemma 4. Pr[U ] = ∪qi=q−3

1
|Y |pi,y ≤

1+κ
pivot

∑q
i=q−3 pi,y. We

can sub-divide the calculation of Pr[U ] into three cases based
on the range of the values m can take.
Case 1 : q − 3 ≤ m ≤ q.
Now there are four values that m can take.

1. m = q − 3. We know that pi,y ≤ Pr[h(y) = α] = 1
2i

.

Pr[U |m = q−3] ≤ 1+κ
pivot
· 1
2q−3

15
8

. Substituting the value

of pivot and m, we get Pr[U |m = q − 3] ≤ 15(1+κ)
8(|RF |−1)

.

2. m = q − 2. For i ∈ [q − 2, q] pi,y ≤ Pr[h(y) = α] =
1
2i

Using Lemma 5, we get pq−3,y ≤ 1
|RF |−1

1

(1− 1+κ
2 )2

.

Therefore, Pr[U |m = q − 2] ≤ 1+κ
pivot

1
|RF |−1

( 1

1− 1+κ
2

) +

1+κ
pivot

1
2q−2

7
4
. Noting that pivot = |RF |−1

2m
> 10, Pr[U |m =

q − 2] ≤ 1+κ
|RF |−1

( 7
4

+ 0.4
(1−κ)2 )

3. m = q − 1. For i ∈ [q − 1, q], pi,y ≤ Pr[h(y) = α] = 1
2i

.

Using Lemma 5, we get pq−3,y+pq−2,y ≤ 1
|RF |−1

(
1(

1− 1+κ

22

) + 1

(1− 1+κ
2 )2

)
.

Therefore, Pr[U |m = q−1] ≤ 1+κ
pivot

(
1

|RF |−1

(
1(

1− 1+κ

22

)2 + 1

(1− 1+κ
2 )2

)
+ 1

2q−1
3
2

)
.

Noting that pivot = |RF |−1
2m

> 10 and κ ≤ 1, Pr[U |m =

q − 1] ≤ 1+κ
|RF |−1

(1.9 + 0.4
(1−κ)2 ).

4. m = q, pq,y ≤ Pr[h(y) = α] = 1
2q

. Using Lemma 5, we

get pq−3,y+pq−2,y+pq−1,y ≤ 1
|RF |−1

(
1(

1− 1+κ

23

)2
1(

1− 1+κ

22

)2

+ 1

(1− 1+κ
2 )2

)
. Therefore, Pr[U |m = q] ≤ 1+κ

pivot

(
1

|RF |−1(
1(

1− 1+κ

23

)2 + 1(
1− 1+κ

22

)2 + 1

(1− 1+κ
2 )2

)
+ 1

)
. Noting that

pivot = |RF |−1
2m

> 10, Pr[U |m = q] ≤ 1+κ
|RF |−1

(1.58 +
0.4

(1−κ)2 ).



Pr[U |q − 3 ≤ m ≤ q] ≤ maxi(Pr[U |m = i]). Therefore,
Pr[U |q − 3 ≤ m ≤ q] ≤ Pr[U |m = q − 1] ≤ 1+κ

|RF |−1
(1.9 +

0.4
(1−κ)2 ).

Case 2 : m < q − 3. Pr[U |m < q − 3] ≤ 1+κ
pivot

· 1
2q−3

15
8

.
Substituting the value of pivot and maximizing m − q + 3,

we get Pr[U |m < q − 3] ≤ 15(1+κ)
16(|RF |−1)

.

Case 3 : m > q. Using Lemma 5, we know that Pr[U |m >

q] ≤ 1+κ
|RF |−1

2m

|RF |−1

∑q
i=q−3

1

1− 1+κ

2m−i
. The R.H.S. is maxi-

mized when m = q + 1. Hence Pr[U |m > q] ≤ 1+κ
|RF |−1

2m

|RF |−1

∑q
i=q−3

1

1− 1+κ

2q+1−i
. Noting that pivot = |RF |−1

2m
>

10 and expanding the above summation Pr[U |m > q] ≤
1+κ
|RF |−1

1
10

(
1

(1− 1+κ

24
)2

+ 1

(1− 1+κ

23
)2

+ 1

(1− 1+κ

22
)2

+ 1

(1− 1+κ

21
)2

)
.

Using κ ≤ 1 for the first two summation terms, Pr[U |m >
q] ≤ 1+κ

|RF |−1
· 1
10
· (7.1 + 4

(1−κ)2 )

Summing up all the above cases, Pr[U ] = Pr[U |m < q −
3]× Pr[m < q − 3] + Pr[U |q − 3 ≤ m ≤ q]× Pr[q − 3 ≤ m ≤
q] + Pr[U |m > q] × Pr[m > q]. Using Pr[m < q − 1] ≤ 0.2,
Pr[m > q] ≤ 0.2 and Pr[q − 3 ≤ m ≤ q] ≤ 1. Therefore,
Pr[U ] ≤ 1+κ

|RF |−1
(2.23 + 0.48

(1−κ)2 )

Combining Lemma 4 and 6, the following theorem is
obtained.

Theorem 2. For every witness y of F , if ε > 1.71,

1

(1 + ε)(|RF | − 1)
≤ Pr [UniGen(F, ε,X) = y] ≤ (1+ε)

1

|RF | − 1
.

Proof. The proof is completed by using Lemmas 4 and 6 and
substituting (1 + ε) = (1 + κ)(2.23 + 0.48

(1−κ)2 ). To arrive at

the results, we use the inequality 1.06+κ
0.8(1−e−1)

≤ (1+κ)(2.23+
0.48

(1−κ)2 ).

Theorem 3. Algorithm UniGen succeeds (i.e. does not re-
turn ⊥) with probability at least 0.62.

Proof. If |RF | ≤ 1 + (1 + κ)pivot, the theorem holds triv-
ially. Suppose |RF | > 1 + (1 + κ)pivot and let Psucc de-
note the probability that a run of the algorithm UniGen suc-
ceeds. Let pi, such that (q − 3 ≤ i ≤ q) denote the condi-
tional probability that UniGen (F , ε, X) terminates in it-
eration i of the repeat-until loop (line 11-16) with pivot

1+κ
≤

|RF,h,α| ≤ 1 + (1 + κ)pivot, given |RF | > 1 + (1 + κ)pivot.

Therefore, Psucc =
∑q
i=q−3 pi

∏i
j=q−3(1 − pj). Let fm =

Pr[q − 3 ≤ m ≤ q]. Therefore, Psucc ≥ pmfm ≥ 0.8pm. The
theorem is now proved by using Theorem 1 to show that
pm ≥ 1− e−3/2 ≥ 0.77.
For every y ∈ {0, 1}n and for every α ∈ {0, 1}m, define an
indicator variable νy,α as follows: νy,α = 1 if h(y) = α, and
νy,α = 0 otherwise. Let us fix α and y and choose h uni-
formly at random from Hxor(n,m, 3). The random choice
of h induces a probability distribution on νy,α, such that
Pr[νy,α = 1] = Pr[h(y) = α] = 2−m and E[νy,α] = Pr[νy,α =
1] = 2−m. In addition 3-wise independence of hash func-
tions chosen from Hxor(n,m, 3) implies that for every dis-
tinct ya, yb, yc ∈ RF , the random variables νya,α, νyb,α and
νyc,α are 3-wise independent.

Let Γα =
∑
y∈RF

νy,α and µα = E [Γα]. Clearly, Γα =

|RF,h,α| and µα =
∑
y∈RF

E [νy,α] = 2−m|RF |. Since |RF | >
pivot and i − l > 0, using the expression for pivot , we get

3 ≤
⌊
e−1/2(1 + 1

ε
)−2 · |RF |

2m

⌋
. Therefore, using Theorem 1,

Pr
[
|RF |
2m

.
(

1− κ
1+κ

)
≤ |RF,h,α| ≤ (1 + κ) |RF |

2m

]
> 1−e−3/2.

Simplifying and noting that κ
1+κ

< κ for all κ > 0, we

obtain Pr
[
(1 + κ)−1 · |RF |

2m
≤ |RF,h,α| ≤ (1 + κ) · |RF |

2m

]
>

1− e−3/2. Also, pivot
1+κ

= 1
1+κ

|RF |−1
2m

≤ |RF |
(1+κ)2m

and 1 + (1 +

κ)pivot = 1 + (1+κ)(|RF |−1)
2m

≥ (1+κ)|RF |
2m

. Therefore, pm =

Pr[pivot
1+κ

≤ |RF,h,α| ≤ 1+(1+κ)pivot] ≥ Pr
[
(1 + κ)−1 · |RF |

2m

≤ |RF,h,α| ≤ (1 + κ) · |RF |
2m

]
≥ 1− e−3/2.

Table 2 presents an extended version of Table 1. We
observe that UniGen is two to three orders of magnitude
more efficient than state-of-the-art random witness genera-
tors, has probability of success almost 1 over a large set of
benchmarks arising from different domains.



Table 2: Extended Table of Runtime performance comparison of UniGen and UniWit
UniGen UniWit

Benchmark #Variables |S|
Succ
Prob

Avg

Run Time (s)
Avg

XOR len

Avg

Run Time (s)
Avg

XOR len
Case121 291 48 1.0 0.19 24 56.09 145

Case1 b11 1 340 48 1.0 0.2 24 755.97 170
Case2 b12 2 827 45 1.0 0.33 22 – –

Case35 400 46 0.99 11.23 23 666.14 199
Squaring1 891 72 1.0 0.38 36 – –
Squaring8 1101 72 1.0 1.77 36 5212.19 550
Squaring10 1099 72 1.0 1.83 36 4521.11 550
Squaring7 1628 72 1.0 2.44 36 2937.5 813
Squaring9 1434 72 1.0 4.43 36 4054.42 718
Squaring14 1458 72 1.0 24.34 36 2697.42 728
Squaring12 1507 72 1.0 31.88 36 3421.83 752
Squaring16 1627 72 1.0 41.08 36 2852.17 812

s526 3 2 365 24 0.98 0.68 12 51.77 181
s526a 3 2 366 24 1.0 0.97 12 84.04 182
s526 15 7 452 24 0.99 1.68 12 23.04 225
s1196a 7 4 708 32 1.0 6.9 16 833.1 353
s1196a 3 2 690 32 1.0 7.12 16 451.03 345
s1238a 7 4 704 32 1.0 7.26 16 1570.27 352
s1238a 15 7 773 32 1.0 7.94 16 136.7 385
s1196a 15 7 777 32 0.97 8.98 16 133.45 388
s1238a 3 2 686 32 0.99 10.85 16 1416.28 342
s953a 3 2 515 45 0.99 12.48 23 22414.86 257
TreeMax 24859 19 1.0 0.52 10 49.78 12423

LLReverse 63797 25 1.0 33.92 13 3460.58 31888
LoginService2 11511 36 0.98 6.14 18 – –

EnqueueSeqSK 16466 42 1.0 32.39 21 – –
ProjectService3 3175 55 1.0 71.74 28 – –

Sort 12125 52 0.99 79.44 26 – –
Karatsuba 19594 41 1.0 85.64 21 – –

ProcessBean 4768 64 0.98 123.52 32 – –
tutorial3 4 31 486193 31 0.98 782.85 16 – –


