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Abstract. Propositional model counting (#SAT), i.e., counting the num-
ber of satisfying assignments of a propositional formula, is a problem of
significant theoretical and practical interest. Due to the inherent com-
plexity of the problem, approximate model counting, which counts the
number of satisfying assignments to within given tolerance and confi-
dence level, was proposed as a practical alternative to exact model count-
ing. Yet, approximate model counting has been studied essentially only
theoretically. The only reported implementation of approximate model
counting, due to Karp and Luby, worked only for DNF formulas. A few
existing tools for CNF formulas are bounding model counters; they can
handle realistic problem sizes, but fall short of providing counts within
given tolerance and confidence, and, thus, are not approximate model
counters.
We present here a novel algorithm, as well as a reference implementation,
that is the first scalable approximate model counter for CNF formulas.
The algorithm works by issuing a polynomial number of calls to a SAT
solver. Our tool, ApproxMC, scales to formulas with tens of thousands
of variables. Careful experimental comparisons show that ApproxMC re-
ports, with high confidence, bounds that are close to the exact count,
and also succeeds in reporting bounds with small tolerance and high
confidence in cases that are too large for computing exact model counts.

1 Introduction

Propositional model counting, also known as #SAT, concerns counting the num-
ber of models (satisfying truth assignments) of a given propositional formula.
This problem has been the subject of extensive theoretical investigation since its
introduction by Valiant [35] in 1979. Several interesting applications of #SAT
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have been studied in the context of probabilistic reasoning, planning, combinato-
rial design and other related fields [24,4,9]. In particular, probabilistic reasoning
and inferencing have attracted considerable interest in recent years [13], and
stand to benefit significantly from efficient propositional model counters.

Theoretical investigations of #SAT have led to the discovery of deep con-
nections in complexity theory [3,29,33]: #SAT is #P-complete, where #P is
the set of counting problems associated with decision problems in the complex-
ity class NP. Furthermore, P#SAT, that is, a polynomial-time machine with a
#SAT oracle, can solve all problems in the entire polynomial hierarchy. In fact,
the polynomial-time machine only needs to make one #SAT query to solve any
problem in the polynomial hierarchy. This is strong evidence for the hardness of
#SAT.

In many applications of model counting, such as in probabilistic reasoning,
the exact model count may not be critically important, and approximate counts
are sufficient. Even when exact model counts are important, the inherent com-
plexity of the problem may force one to work with approximate counters in
practice. In [31], Stockmeyer showed that counting models within a specified
tolerance factor can be achieved in deterministic polynomial time using a Σp

2 -
oracle. Karp and Luby presented a fully polynomial randomized approximation
scheme for counting models of a DNF formula [18]. Building on Stockmeyer’s
result, Jerrum, Valiant and Vazirani [16] showed that counting models of CNF
formulas within a specified tolerance factor can be solved in random polynomial
time using an oracle for SAT.

On the implementation front, the earliest approaches to #SAT were based on
DPLL-style SAT solvers and computed exact counts. These approaches consisted
of incrementally counting the number of solutions by adding appropriate mul-
tiplication factors after a partial solution was found. This idea was formalized
by Birnbaum and Lozinkii [6] in their model counter CDP. Subsequent model
counters such as Relsat [17], Cachet [26] and sharpSAT [32] improved upon this
idea by using several optimizations such as component caching, clause learning,
look-ahead and the like. Techniques based on Boolean Decision Diagrams and
their variants [23,21], or d-DNNF formulae [8], have also been used to com-
pute exact model counts. Although exact model counters have been successfully
used in small- to medium-sized problems, scaling to larger problem instances has
posed significant challenges in practice. Consequently, a large class of practical
applications has remained beyond the reach of exact model counters.

To counter the scalability challenge, more efficient techniques for counting
models approximately have been proposed. These counters can be broadly di-
vided into three categories. Counters in the first category are called (ε, δ) coun-
ters, following Karp and Luby’s terminology [18]. Let ε and δ be real num-
bers such that 0 < ε ≤ 1 and 0 < δ ≤ 1. For every propositional formula F
with #F models, an (ε, δ) counter computes a number that lies in the interval
[(1 + ε)−1#F, (1 + ε)#F ] with probability at least 1 − δ. We say that ε is the
tolerance of the count, and 1− δ is its confidence. The counter described in this
paper and also that due to Karp and Luby [18] belong to this category. The
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approximate-counting algorithm of Jerrum et al. [16] also belongs to this cat-
egory; however, their algorithm does not lend itself to an implementation that
scales in practice. Counters in the second category are called lower (or upper)
bounding counters, and are parameterized by a confidence probability 1− δ. For
every propositional formula F with #F models, an upper (resp., lower) bound-
ing counter computes a number that is at least as large (resp., as small) as
#F with probability at least 1 − δ. Note that bounding counters do not pro-
vide any tolerance guarantees. The large majority of approximate counters used
in practice are bounding counters. Notable examples include SampleCount [14],
BPCount [20], MBound (and Hybrid-MBound) [12], and MiniCount [20]. The final
category of counters is called guarantee-less counters. These counters provide no
guarantees at all but they can be very efficient and provide good approxima-
tions in practice. Examples of guarantee-less counters include ApproxCount [36],
SearchTreeSampler [10], SE [25] and SampleSearch [11].

Bounding both the tolerance and confidence of approximate model counts is
extremely valuable in applications like probabilistic inference. Thus, designing
(ε, δ) counters that scale to practical problem sizes is an important problem.
Earlier work on (ε, δ) counters has been restricted largely to theoretical treat-
ments of the problem. The only counter in this category that we are aware of
as having been implemented is due to Karp and Luby [22]. Karp and Luby’s
original implementation was designed to estimate reliabilities of networks with
failure-prone links. However, the underlying Monte Carlo engine can be used to
approximately count models of DNF, but not CNF, formulas.

The counting problems for both CNF and DNF formulae are #P-complete.
While the DNF representation suits some applications, most modern applica-
tions of model counting (e.g. probabilistic inference) use the CNF representa-
tion. Although exact counting for DNF and CNF formulae are polynomially
inter-reducible, there is no known polynomial reduction for the corresponding
approximate counting problems. In fact, Karp and Luby remark in [18] that it
is highly unlikely that their randomized approximate algorithm for DNF formu-
lae can be adapted to work for CNF formulae. Thus, there has been no prior
implementation of (ε, δ) counters for CNF formulae that scales in practice. In
this paper, we present the first such counter. As in [16], our algorithm runs in
random polynomial time using an oracle for SAT. Our extensive experiments
show that our algorithm scales, with low error, to formulae arising from several
application domains involving tens of thousands of variables.

The organization of the paper is as follows. We present preliminary material
in Section 2, and related work in Section 3. In Section 4, we present our algo-
rithm, followed by its analysis in Section 5. Section 6 discusses our experimental
methodology, followed by experimental results in Section 7. Finally, we conclude
in Section 8.
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2 Notation and Preliminaries

Let Σ be an alphabet and R ⊆ Σ∗×Σ∗ be a binary relation. We say that R is an
NP-relation if R is polynomial-time decidable, and if there exists a polynomial
p(·) such that for every (x, y) ∈ R, we have |y| ≤ p(|x|). Let LR be the language
{x ∈ Σ∗ | ∃y ∈ Σ∗, (x, y) ∈ R}. The language LR is said to be in NP if R is
an NP-relation. The set of all satisfiable propositional logic formulae in CNF is
a language in NP. Given x ∈ LR, a witness or model of x is a string y ∈ Σ∗
such that (x, y) ∈ R. The set of all models of x is denoted Rx. For notational
convenience, fix Σ to be {0, 1} without loss of generality. If R is an NP-relation,
we may further assume that for every x ∈ LR, every witness y ∈ Rx is in {0, 1}n,
where n = p(|x|) for some polynomial p(·).

Let R ⊆ {0, 1}∗ × {0, 1}∗ be an NP relation. The counting problem cor-
responding to R asks “Given x ∈ {0, 1}∗, what is |Rx|?”. If R relates CNF
propositional formulae to their satisfying assignments, the corresponding count-
ing problem is called #SAT. The primary focus of this paper is on (ε, δ) counters
for #SAT. The randomized (ε, δ) counters of Karp and Luby [18] for DNF for-
mulas are fully polynomial, which means that they run in time polynomial in the
size of the input formula F , 1/ε and log(1/δ). The randomized (ε, δ) counters
for CNF formulas in [16] and in this paper are however fully polynomial with
respect to a SAT oracle.

A special class of hash functions, called r-wise independent hash functions,
play a crucial role in our work. Let n,m and r be positive integers, and let
H(n,m, r) denote a family of r-wise independent hash functions mapping {0, 1}n
to {0, 1}m. We use Pr [X : P] to denote the probability of outcome X when sam-

pling from a probability space P, and h
R←− H(n,m, r) to denote the prob-

ability space obtained by choosing a hash function h uniformly at random
from H(n,m, r). The property of r-wise independence guarantees that for all
α1, . . . αr ∈ {0, 1}m and for all distinct y1, . . . yr ∈ {0, 1}n, Pr [

∧r
i=1 h(yi) = αi

: h
R←− H(n,m, r)

]
= 2−mr. For every α ∈ {0, 1}m and h ∈ H(n,m, r), let

h−1(α) denote the set {y ∈ {0, 1}n | h(y) = α}. Given Rx ⊆ {0, 1}n and
h ∈ H(n,m, r), we use Rx,h,α to denote the set Rx ∩ h−1(α). If we keep h fixed
and let α range over {0, 1}m, the sets Rx,h,α form a partition of Rx. Following
the notation in [5], we call each element of such a partition a cell of Rx induced
by h. It was shown in [5] that if h is chosen uniformly at random from H(n,m, r)
for r ≥ 1, then the expected size of Rx,h,α, denoted E [|Rx,h,α|], is |Rx|/2m, for
each α ∈ {0, 1}m.

The specific family of hash functions used in our work, denoted Hxor(n,m, 3),
is based on randomly choosing bits from y ∈ {0, 1}n and xor-ing them. This
family of hash functions has been used in earlier work [12], and has been shown to
be 3-independent in [15]. Let h(y)[i] denote the ith component of the bit-vector
obtained by applying hash function h to y. The family Hxor(n,m, 3) is defined as
{h(y) | (h(y))[i] = ai,0 ⊕ (

⊕n
k=1 ai,k · y[k]), ai,j ∈ {0, 1}, 1 ≤ i ≤ m, 0 ≤ j ≤ n},

where ⊕ denotes the xor operation. By randomly choosing the ai,j ’s, we can
randomly choose a hash function from this family.
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3 Related Work

Sipser pioneered a hashing based approach in [30], which has subsequently been
used in theoretical [34,5] and practical [15,12,7] treatments of approximate
counting and (near-)uniform sampling. Earlier implementations of counters that
use the hashing-based approach are MBound and Hybrid-MBound [12]. Both these
counters use the same family of hashing functions, i.e.,Hxor(n,m, 3), that we use.
Nevertheless, there are significant differences between our algorithm and those
of MBound and Hybrid-MBound. Specifically, we are able to exploit properties
of the Hxor(n,m, 3) family of hash functions to obtain a fully polynomial (ε, δ)
counter with respect to a SAT oracle. In contrast, both MBound and Hybrid-
MBound are bounding counters, and cannot provide bounds on tolerance. In
addition, our algorithm requires no additional parameters beyond the tolerance
ε and confidence 1 − δ. In contrast, the performance and quality of results of
both MBound and Hybrid-MBound, depend crucially on some hard-to-estimate
parameters. It has been our experience that the right choice of these parameters
is often domain dependent and difficult.

Jerrum, Valiant and Vazirani [16] showed that if R is a self-reducible NP
relation (such as SAT), the problem of generating models almost uniformly is
polynomially inter-reducible with approximately counting models. The notion
of almost uniform generation requires that if x is a problem instance, then for
every y ∈ Rx, we have (1 + ε)−1ϕ(x) ≤ Pr[y is generated] ≤ (1 + ε)ϕ(x), where
ε > 0 is the specified tolerance and ϕ(x) is an appropriate function. Given an
almost uniform generator G for R, an input x, a tolerance bound ε and an error
probability bound δ, it is shown in [16] that one can obtain an (ε, δ) counter
for R by invoking G polynomially (in |x|, 1/ε and log2(1/δ)) many times, and
by using the generated samples to estimate |Rx|. For convenience of exposition,
we refer to this approximate-counting algorithm as the JVV algorithm (after the
last names of the authors).

An important feature of the JVV algorithm is that it uses the almost uniform
generator G as a black box. Specifically, the details of how G works is of no conse-
quence. Prima facie, this gives us freedom in the choice of G when implementing
the JVV algorithm. Unfortunately, while there are theoretical constructions of
uniform generators in [5], we are not aware of any implementation of an almost
uniform generator that scales to CNF formulas involving thousands of variables.
The lack of a scalable and almost uniform generator presents a significant hur-
dle in implementing the JVV algorithm for practical applications. It is worth
asking if we can make the JVV algorithm work without requiring G to be an
almost uniform generator. A closer look at the proof of correctness of the JVV
algorithm [16] shows it relies crucially on the ability of G to ensure that the
probabilities of generation of any two distinct models of x differ by a factor in
O(ε2). As discussed in [7], existing algorithms for randomly generating models
either provide this guarantee but scale very poorly in practice (e.g., the algo-
rithms in [5,37]), or scale well in practice without providing the above guarantee
(e.g., the algorithms in [7,15,19]). Therefore, using an existing generator as a
black box in the JVV algorithm would not give us an (ε, δ) model counter that
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scales in practice. The primary contribution of this paper is to show that a scal-
able (ε, δ) counter can indeed be designed by using the same insights that went
into the design of a near uniform generator, UniWit [7], but without using the
generator as a black box in the approximate counting algorithm. Note that near
uniformity, as defined in [7], is an even more relaxed notion of uniformity than
almost uniformity. We leave the question of whether a near uniform generator
can be used as a black box to design an (ε, δ) counter as part of future work.

The central idea of UniWit, which is also shared by our approximate model
counter, is the use of r-wise independent hashing functions to randomly partition
the space of all models of a given problem instance into “small” cells. This idea
was first proposed in [5], but there are two novel insights that allow UniWit [7]
to scale better than other hashing-based sampling algorithms [5,15], while still
providing guarantess on the quality of sampling. These insights are: (i) the use
of computationally efficient linear hashing functions with low degrees of inde-
pendence, and (ii) a drastic reduction in the size of “small” cells, from n2 in [5]
to n1/k (for 2 ≤ k ≤ 3) in [7], and even further to a constant in the current
paper. We continue to use these key insights in the design of our approximate
model counter, although UniWit is not used explicitly in the model counter.

4 Algorithm

We now describe our approximate model counting algorithm, called ApproxMC.
As mentioned above, we use 3-wise independent linear hashing functions from
the Hxor(n,m, 3) family, for an appropriate m, to randomly partition the set
of models of an input formula into “small” cells. In order to test whether the
generated cells are indeed small, we choose a random cell and check if it is
non-empty and has no more than pivot elements, where pivot is a threshold
that depends only on the tolerance bound ε. If the chosen cell is not small,
we randomly partition the set of models into twice as many cells as before by
choosing a random hashing function from the family Hxor(n,m + 1, 3). The
above procedure is repeated until either a randomly chosen cell is found to be

non-empty and small, or the number of cells exceeds 2n+1

pivot . If all cells that were
randomly chosen during the above process were either empty or not small, we
report a counting failure and return ⊥. Otherwise, the size of the cell last chosen
is scaled by the number of cells to obtain an ε-approximate estimate of the model
count.

The procedure outlined above forms the core engine of ApproxMC. For conve-
nience of exposition, we implement this core engine as a function ApproxMCCore.
The overall ApproxMC algorithm simply invokes ApproxMCCore sufficiently many
times, and returns the median of the non-⊥ values returned by ApproxMCCore.
The pseudocode for algorithm ApproxMC is shown below.
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Algorithm ApproxMC(F, ε, δ)
1: counter ← 0;C ← emptyList;
2: pivot ← 2× ComputeThreshold(ε);
3: t← ComputeIterCount(δ);
4: repeat:
5: c← ApproxMCCore(F, pivot);
6: counter ← counter + 1;
7: if (c 6= ⊥)
8: AddToList(C, c);
9: until (counter < t);
10:finalCount ← FindMedian(C);
11:return finalCount ;

Algorithm ComputeThreshold(ε)

1: return
⌈
3e1/2

(
1 + 1

ε

)2⌉
;

Algorithm ComputeIterCount(δ)
1: return d35 log2(3/δ)e;

Algorithm ApproxMC takes as inputs a CNF formula F , a tolerance ε (0 < ε ≤ 1)
and δ (0 < δ ≤ 1) such that the desired confidence is 1 − δ. It computes two
key parameters: (i) a threshold pivot that depends only on ε and is used in
ApproxMCCore to determine the size of a “small” cell, and (ii) a parameter
t (≥ 1) that depends only on δ and is used to determine the number of times
ApproxMCCore is invoked. The particular choice of functions to compute the
parameters pivot and t aids us in proving theoretical guarantees for ApproxMC
in Section 5. Note that pivot is in O(1/ε2) and t is in O(log2(1/δ)). All non-⊥
estimates of the model count returned by ApproxMCCore are stored in the list C.
The function AddToList(C, c) updates the list C by adding the element c. The
final estimate of the model count returned by ApproxMC is the median of the
estimates stored in C, computed using FindMedian(C). We assume that if the
list C is empty, FindMedian(C) returns ⊥.

The pseudocode for algorithm ApproxMCCore is shown below.

Algorithm ApproxMCCore(F, pivot)
/* Assume z1, . . . zn are the variables of F */
1: S ← BoundedSAT(F, pivot + 1);
2: if (|S| ≤ pivot)
3: return |S|;
4: else
5: l← blog2(pivot)c − 1; i← l − 1;
6: repeat
7: i← i+ 1;
8: Choose h at random from Hxor(n, i− l, 3);
9: Choose α at random from {0, 1}i−l;
10: S ← BoundedSAT(F ∧ (h(z1, . . . zn) = α), pivot + 1);
11: until (1 ≤ |S| ≤ pivot) or (i = n);
12: if (|S| > pivot or |S| = 0) return ⊥ ;
13: else return |S| · 2i−l;
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Algorithm ApproxMCCore takes as inputs a CNF formula F and a threshold
pivot, and returns an ε-approximate estimate of the model count of F . We as-
sume that ApproxMCCore has access to a function BoundedSAT that takes as
inputs a proposition formula F ′ that is the conjunction of a CNF formula and
xor constraints, as well as a threshold v ≥ 0. BoundedSAT(F ′, v) returns a set S
of models of F ′ such that |S| = min(v,#F ′). If the model count of F is no larger
than pivot , then ApproxMCCore returns the exact model count of F in line 3 of
the pseudocode. Otherwise, it partitions the space of all models of F using ran-
dom hashing functions from Hxor(n, i− l, 3) and checks if a randomly chosen cell
is non-empty and has at most pivot elements. Lines 8–10 of the repeat-until loop
in the pseudocode implement this functionality. The loop terminates if either a
randomly chosen cell is found to be small and non-empty, or if the number of

cells generated exceeds 2n+1

pivot (if i = n in line 11, the number of cells generated

is 2n−l ≥ 2n+1

pivot ). In all cases, unless the cell that was chosen last is empty or not
small, we scale its size by the number of cells generated by the corresponding
hashing function to compute an estimate of the model count. If, however, all
randomly chosen cells turn out to be empty or not small, we report a counting
error by returning ⊥.

Implementation issues: There are two steps in algorithm ApproxMCCore (lines
8 and 9 of the pseudocode) where random choices are made. Recall from Section 2
that choosing a random hash function from Hxor(n,m, 3) requires choosing ran-
dom bit-vectors. It is straightforward to implement these choices and also the
choice of a random α ∈ {0, 1}i−l in line 9 of the pseudocode, if we have access
to a source of independent and uniformly distributed random bits. Our imple-
mentation uses pseudo-random sequences of bits generated from nuclear decay
processes and made available at HotBits [2]. We download and store a sufficiently
long sequence of random bits in a file, and access an appropriate number of bits
sequentially whenever needed. We defer experimenting with sequences of bits
obtained from other pseudo-random generators to a future study.

In lines 1 and 10 of the pseudocode for algorithm ApproxMCCore, we invoke
the function BoundedSAT. Note that if h is chosen randomly from Hxor(n,m, 3),
the formula for which we seek models is the conjunction of the original (CNF)
formula and xor constraints encoding the inclusion of each witness in h−1(α).
We therefore use a SAT solver optimized for conjunctions of xor constraints
and CNF clauses as the back-end engine. Specifically, we use CryptoMiniSAT
(version 2.9.2) [1], which also allows passing a parameter indicating the maximum
number of witnesses to be generated.

Recall that ApproxMCCore is invoked t times with the same arguments in
algorithm ApproxMC. Repeating the loop of lines 6–11 in the pseudocode of
ApproxMCCore in each invocation can be time consuming if the values of i− l for
which the loop terminates are large. In [7], a heuristic called leap-frogging was
proposed to overcome this bottleneck in practice. With leap-frogging, we register
the smallest value of i− l for which the loop terminates during the first few invo-
cations of ApproxMCCore. In all subsequent invocations of ApproxMCCore with
the same arguments, we start iterating the loop of lines 6–11 by initializing i− l
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to the smallest value registered from earlier invocations. Our experiments indi-
cate that leap-frogging is extremely efficient in practice and leads to significant
savings in time after the first few invocations of ApproxMCCore. A theoretical
analysis of leapfrogging is deferred to future work.

5 Analysis of ApproxMC

Let F be a CNF propositional formula with n variables. The next two lem-
mas show that algorithm ApproxMCCore, when invoked from ApproxMC with
arguments F , ε and δ, behaves like an (ε, d) model counter for F , for a fixed
confidence 1− d (possibly different from 1− δ). Throughout this section, we use
the notations RF and RF,h,α introduced in Section 2.

Lemma 1. Let algorithm BoundedSAT, when invoked from ApproxMCCore, re-
turn S with i being the value of the loop counter in ApproxMCCore. Then,

Pr
[
(1 + ε)−1 · |RF | ≤ 2i−l|S| ≤ (1 + ε) · |RF |

∣∣∣ i ≤ log2 |RF |
]
≥ 1− e−3/22i

|RF | .

Proof. For simplicity of exposition, we assume henceforth that log2(pivot) is an
integer. A more careful analysis removes this restriction with only a constant
factor scaling of the probabilities. From the pseudocode of ApproxMCCore, we

know that pivot = 2
⌈
3e1/2

(
1 + 1

ε

)2⌉
.

Furthermore, the value of i is always in {l, . . . n}. Since pivot < |RF | ≤ 2n

and l = blog2 pivotc−1, we have l < log2 |RF | ≤ n. The lemma is now proved by
showing that for every i in {l, . . . blog2 |RF |c}, h ∈ H(n, i−l, 3) and α ∈ {0, 1}i−l,
we have Pr

[
(1 + ε)−1 · |RF | ≤ 2i−l|RF,h,α| ≤ (1 + ε) · |RF |] ≥ (1− e−3/2).

For every y ∈ {0, 1}n and for every α ∈ {0, 1}i−l, define an indicator vari-
able γy,α as follows: γy,α = 1 if h(y) = α, and γy,α = 0 otherwise. Let us fix
α and y and choose h uniformly at random from H(n, i − l, 3). The random
choice of h induces a probability distribution on γy,α, such that Pr [γy,α = 1] =
Pr [h(y) = α] = 2−(i−l), and E [γy,α] = Pr [γy,α = 1] = 2−(i−l). In addition, the
3-wise independence of hash functions chosen from H(n, i− l, 3) implies that for
every distinct ya, yb, yc ∈ RF , the random variables γya,α, γyb,α and γyc,α are
3-wise independent.

Let Γα =
∑
y∈RF

γy,α and µα = E [Γα]. Clearly, Γα = |RF,h,α| and µα =∑
y∈RF

E [γy,α] = 2−(i−l)|RF |. Therefore, using Chebyshev inequality, we get

Pr
[
|RF |.

(
1− ε

1+ε

)
≤ 2i−l|RF,h,α| ≤ (1 + ε

1+ε )|RF |
]
≥ 1 − e−3/22i

|RF | . Simplify-

ing and noting that ε
1+ε < ε for all ε > 0, we obtain Pr

[
(1 + ε)−1 · |RF | ≤

2i−l|RF,h,α| ≤ (1 + ε) · |RF |
]
≥ 1− e−3/22i

|RF | .

Theorem 1. Let an invocation of ApproxMCCore from ApproxMC return c. Then
Pr
[
c 6= ⊥ and (1 + ε)−1 · |RF | ≤ c ≤ (1 + ε) · |RF |

]
≥ (1− e−3/2)2 > 0.6.

Proof sketch: It is easy to see that the required probability is at least as large as
Pr
[
i ≤ log2 |RF | and (1 + ε)−1 · |RF | ≤ c ≤ (1 + ε) · |RF |

]
. Let us denote log2 |RF |−
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l = log2 |RF | − (blog2(pivot)c − 1) by m. Since |RF | > pivot and |RF | ≤ 2n, we
have l < m + l ≤ n. Let pi (l ≤ i ≤ n) denote the conditional probability that
ApproxMCCore(F, pivot) terminates in iteration i of the repeat-until loop (lines
6–11 of the pseudocode) with 1 ≤ |RF,h,α| ≤ pivot , given |RF | > pivot . Since
the choice of h and α in each iteration of the loop are independent of those
in previous iterations, the conditional probability that ApproxMCCore(F, pivot)
returns non-⊥ with i ≤ log2 |RF | − 2 = m + l − 2, given |RF | > pivot , is
pl + (1 − pl)pl+1 + · · · + (1 − pl)(1 − pl+1) · · · (1 − pm+l−3)pm+l−2. Let us de-
note this sum by P . Furthermore, let qi denote the probability BoundedSAT
in line 10 of ApproxMC returns |S| with i being the value of the loop counter

in ApproxMCCore such that 2i−l|S| < |RF |
1+ε or 2i−l|S| > |RF |(1 + ε). T Then,

Pr
[
i ≤ log2 |RF | and (1 + ε)−1 · |RF | ≤ c ≤ (1 + ε) · |RF |

]
≥ 1 − P − qm+l−1 −

(1 − P − qm+l−1)qm+l ≥ (1 − P − qm+l−1)(1 − qm+l) From Lemma 1, we
have P ≤ e−3/2/2 and qm+l−1 ≤ e−3/2/2. Therefore, Pr [i ≤ log2 |RF | and
(1 + ε)−1 · |RF | ≤ c ≤ (1 + ε) · |RF |

]
≥ (1− e−3/2)2.

We now turn to proving that the confidence can be raised to at least 1 − δ
for δ ∈ (0, 1] by invoking ApproxMCCore O(log2(1/δ)) times, and by using the
median of the non-⊥ counts thus returned. For convenience of exposition, we
use η(t,m, p) in the following discussion to denote the probability of at least
m heads in t independent tosses of a biased coin with Pr [heads] = p. Clearly,
η(t,m, p) =

∑t
k=m

(
t
k

)
pk(1− p)t−k.

Theorem 2. Given a propositional formula F and parameters ε (0 < ε ≤ 1) and

δ (0 < δ ≤ 1), suppose ApproxMC(F, ε, δ) returns c. Then Pr
[
(1 + ε)

−1 · |RF | ≤ c
≤ (1 + ε) · |RF |] ≥ 1− δ.

Proof. Throughout this proof, we assume that ApproxMCCore is invoked t times
from ApproxMC, where t = d35 log2(3/δ)e (see pseudocode for ComputeIterCount
in Section 4). Referring to the pseudocode of ApproxMC, the final count re-
turned by ApproxMC is the median of non-⊥ counts obtained from the t in-
vocations of ApproxMCCore. Let Err denote the event that the median is not
in
[
(1 + ε)−1 · |RF |, (1 + ε) · |RF |

]
. Let “#non⊥ = q” denote the event that

q (out of t) values returned by ApproxMCCore are non-⊥. Then, Pr [Err] =∑t
q=0 Pr [Err | #non⊥ = q] · Pr [#non⊥ = q].
In order to obtain Pr [Err | #non⊥ = q], we define a 0-1 random variable

Zi, for 1 ≤ i ≤ t, as follows. If the ith invocation of ApproxMCCore returns c,
and if c is either ⊥ or a non-⊥ value that does not lie in the interval [(1 +
ε)−1 · |RF |, (1 + ε) · |RF |], we set Zi to 1; otherwise, we set it to 0. From The-
orem 1, Pr [Zi = 1] = p < 0.4. If Z denotes

∑t
i=1 Zi, a necessary (but not suf-

ficient) condition for event Err to occur, given that q non-⊥s were returned by
ApproxMCCore, is Z ≥ (t−q+dq/2e). To see why this is so, note that t−q invoca-
tions of ApproxMCCore must return⊥. In addition, at least dq/2e of the remaining
q invocations must return values outside the desired interval. To simplify the ex-
position, let q be an even integer. A more careful analysis removes this restriction
and results in an additional constant scaling factor for Pr [Err]. With our simpli-
fying assumption, Pr [Err | #non⊥ = q] ≤ Pr[Z ≥ (t−q+q/2)] = η(t, t−q/2, p).
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Since η(t,m, p) is a decreasing function of m and since q/2 ≤ t − q/2 ≤ t,
we have Pr [Err | #non⊥ = q] ≤ η(t, t/2, p). If p < 1/2, it is easy to verify
that η(t, t/2, p) is an increasing function of p. In our case, p < 0.4; hence,
Pr [Err | #non⊥ = q] ≤ η(t, t/2, 0.4).

It follows from above that Pr [Err] =
∑t
q=0 Pr [Err | #non⊥ = q] ·Pr [#non⊥ = q]

≤ η(t, t/2, 0.4)·
∑t
q=0 Pr [#non⊥ = q] = η(t, t/2, 0.4). Since

(
t
t/2

)
≥
(
t
k

)
for all

t/2 ≤ k ≤ t, and since
(
t
t/2

)
≤ 2t, we have η(t, t/2, 0.4) =

∑t
k=t/2

(
t
k

)
(0.4)k(0.6)t−k

≤
(
t
t/2

)∑t
k=t/2(0.4)k(0.6)t−k ≤ 2t

∑t
k=t/2(0.6)t(0.4/0.6)k≤ 2t · 3 · (0.6× 0.4)t/2

≤ 3 · (0.98)t. Since t = d35 log2(3/δ)e, it follows that Pr [Err] ≤ δ.

Theorem 3. Given an oracle for SAT, ApproxMC(F, ε, δ) runs in time polyno-
mial in log2(1/δ), |F | and 1/ε relative to the oracle.

Proof. Referring to the pseudocode for ApproxMC, lines 1–3 take time no more
than a polynomial in log2(1/δ) and 1/ε. The repeat-until loop in lines 4–9 is
repeated t = d35 log2(3/δ)e times. The time taken for each iteration is dominated
by the time taken by ApproxMCCore. Finally, computing the median in line
10 takes time linear in t. The proof is therefore completed by showing that
ApproxMCCore takes time polynomial in |F | and 1/ε relative to the SAT oracle.

Referring to the pseudocode for ApproxMCCore, we find that BoundedSAT is
called O(|F |) times. Each such call can be implemented by at most pivot + 1
calls to a SAT oracle, and takes time polynomial in |F | and pivot + 1 relative
to the oracle. Since pivot + 1 is in O(1/ε2), the number of calls to the SAT
oracle, and the total time taken by all calls to BoundedSAT in each invocation of
ApproxMCCore is a polynomial in |F | and 1/ε relative to the oracle. The random
choices in lines 8 and 9 of ApproxMCCore can be implemented in time polynomial
in n (hence, in |F |) if we have access to a source of random bits. Constructing
F ∧ h(z1, . . . zn) = α in line 10 can also be done in time polynomial in |F |.

6 Experimental Methodology

To evaluate the performance and quality of results of ApproxMC, we built a
prototype implementation and conducted an extensive set of experiments. The
suite of benchmarks represent problems from practical domains as well as prob-
lems of theoretical interest. In particular, we considered a wide range of model
counting benchmarks from different domains including grid networks, plan recog-
nition, DQMR networks, Langford sequences, circuit synthesis, random k-CNF
and logistics problems [27,20]. The suite consisted of benchmarks ranging from
32 variables to 229100 variables in CNF representation. The complete set of
benchmarks (numbering above 200) is available at http://www.cs.rice.edu/

CS/Verification/Projects/ApproxMC/.
All our experiments were conducted on a high-performance computing clus-

ter. Each individual experiment was run on a single node of the cluster; the clus-
ter allowed multiple experiments to run in parallel. Every node in the cluster had
two quad-core Intel Xeon processors with 4GB of main memory. We used 2500

http://www.cs.rice.edu/CS/Verification/Projects/ApproxMC/
http://www.cs.rice.edu/CS/Verification/Projects/ApproxMC/
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seconds as the timeout for each invocation of BoundedSAT in ApproxMCCore,
and 20 hours as the timeout for ApproxMC. If an invocation of BoundedSAT in
line 10 of the pseudo-code of ApproxMCCore timed out, we repeated the iter-
ation (lines 6-11 of the pseudocode of ApproxMCCore) without incrementing i.
The parameters ε (tolerance) and δ (confidence being 1 − δ) were set to 0.75
and 0.1 respectively. With these parameters, ApproxMC successfully computed
counts for benchmarks with upto 33, 000 variables.

We implemented leap-frogging, as described in [7], to estimate initial values
of i from which to start iterating the repeat-until loop of lines 6–11 of the pseu-
docode of ApproxMCCore. To further optimize the running time, we obtained
tighter estimates of the iteration count t used in algorithm ApproxMC, com-
pared to those given by algorithm ComputeIterCount. A closer examination of
the proof of Theorem 2 shows that it suffices to have η(t, t/2, 0.4) ≤ δ. We there-
fore pre-computed a table that gave the smallest t as a function of δ such that
η(t, t/2, 0.4) ≤ δ. This sufficed for all our experiments and gave smaller values
of t (we used t=41 for δ=0.1) compared to those given by ComputeIterCount.

For purposes of comparison, we also implemented and conducted experiments
with the exact counter Cachet [26] by setting a timeout of 20 hours on the same
computing platform. We compared the running time of ApproxMC with that
of Cachet for several benchmarks, ranging from benchmarks on which Cachet
ran very efficiently to those on which Cachet timed out. We also measured the
quality of approximation produced by ApproxMC as follows. For each bench-
mark on which Cachet did not time out, we obtained the approximate count
from ApproxMC with parameters ε = 0.75 and δ = 0.1, and checked if the ap-
proximate count was indeed within a factor of 1.75 from the exact count. Since
the theoretical guarantees provided by our analysis are conservative, we also
measured the relative error of the counts reported by ApproxCount using the L1

norm, for all benchmarks on which Cachet did not time out. For an input formula
Fi, let AFi

(resp., CFi
) be the count returned by ApproxCount (resp., Cachet).

We computed the L1 norm of the relative error as
∑

i |AFi
−CFi

|∑
i CFi

.

Since Cachet timed out on most large benchmarks, we compared ApproxMC
with state-of-the-art bounding counters as well. As discussed in Section 1, bound-
ing counters do not provide any tolerance guarantees. Hence their guarantees
are significantly weaker than those provided by ApproxMC, and a direct com-
parison of performance is not meaningful. Therefore, we compared the sizes of
the intervals (i.e., difference between upper and lower bounds) obtained from
existing state-of-the-art bounding counters with those obtained from ApproxMC.
To obtain intervals from ApproxMC, note that Theorem 2 guarantees that if
ApproxMC(F, ε, δ) returns c, then Pr[ c

1+ε ≤ |RF | ≤ (1+ε) · c] ≥ 1− δ. Therefore,
ApproxMC can be viewed as computing the interval [ c

1+ε , (1+ε) ·c] for the model
count, with confidence δ. We considered state-of-the-art lower bounding coun-
ters, viz. MBound [12], Hybrid-MBound [12], SampleCount [14] and BPCount [20],
to compute a lower bound of the model count, and used MiniCount [20] to obtain
an upper bound. We observed that SampleCount consistently produced better
(i.e. larger) lower bounds than BPCount for our benchmarks. Furthermore, the
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authors of [12] advocate using Hybrid-MBound instead of MBound. Therefore,
the lower bound for each benchmark was obtained by taking the maximum of
the bounds reported by Hybrid-MBound and SampleCount.

We set the confidence value for MiniCount to 0.99 and SampleCount and
Hybrid-MBound to 0.91. For a detailed justification of these choices, we refer the
reader to the full version of our paper. Our implementation of Hybrid-MBound
used the “conservative” approach described in [12], since this provides the best
lower bounds with the required confidence among all the approaches discussed
in [12]. Finally, to ensure fair comparison, we allowed all bounding counters to
run for 20 hours on the same computing platform on which ApproxMC was run.

7 Results

The results on only a subset of our benchmarks are presented here for lack of
space. Figure 1 shows how the running times of ApproxMC and Cachet com-
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Fig. 1. Performance comparison between ApproxMC and Cachet. The benchmarks are
arranged in increasing order of running time of ApproxMC.

pared on this subset of our benchmarks. The y-axis in the figure represents time
in seconds, while the x-axis represents benchmarks arranged in ascending or-
der of running time of ApproxMC. The comparison shows that although Cachet
performed better than ApproxMC initially, it timed out as the “difficulty” of
problems increased. ApproxMC, however, continued to return bounds with the
specified tolerance and confidence, for many more difficult and larger problems.
Eventually, however, even ApproxMC timed out for very large problem instances.
Our experiments clearly demonstrate that there is a large class of practical prob-
lems that lie beyond the reach of exact counters, but for which we can still obtain
counts with (ε, δ)-style guarantees in reasonable time. This suggests that given
a model counting problem, it is advisable to run Cachet initially with a small
timeout. If Cachet times out, ApproxMC should be run with a larger timeout.
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Finally, if ApproxMC also times out, counters with much weaker guarantees but
shorter running times, such as bounding counters, should be used.
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Fig. 2. Quality of counts computed by ApproxMC. The benchmarks are arranged in
increasing order of model counts.
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Fig. 3. Comparison of interval sizes from ApproxMC and those from bounding counters.
The benchmarks are arranged in increasing order of model counts.

Figure 2 compares the model count computed by ApproxMC with the bounds
obtained by scaling the exact count obtained from Cachet by the tolerance factor
(1.75) on a subset of our benchmarks. The y-axis in this figure represents the
model count on a log-scale, while the x-axis represents the benchmarks arranged
in ascending order of the model count. The figure shows that in all cases, the
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count reported by ApproxMC lies within the specified tolerance of the exact
count. Although we have presented results for only a subset of our benchmarks
(37 in total) in Figure 2 for reasons of clarity, the counts reported by ApproxMC
were found to be within the specified tolerance of the exact counts for all 95
benchmarks for which Cachet reported exact counts. We also found that the
L1 norm of the relative error, considering all 95 benchmarks for which Cachet
returned exact counts, was 0.033. Thus, ApproxMC has approximately 4% error
in practice – much smaller than the theoretical guarantee of 75% with ε = 0.75.

Figure 3 compares the sizes of intervals computed using ApproxMC and us-
ing state-of-the-art bounding counters (as described in Section 6) on a subset
of our benchmarks. The comparison clearly shows that the sizes of intervals
computed using ApproxMC are consistently smaller than the sizes of the cor-
responding intervals obtained from existing bounding counters. Since smaller
intervals with comparable confidence represent better approximations, we con-
clude that ApproxMC computes better approximations than a combination of
existing bounding counters. In all cases, ApproxMC improved the upper bounds
from MiniCount significantly; it also improved lower bounds from SampleCount
and MBound to a lesser extent. For details, please refer to the full version.

8 Conclusion and Future Work

We presented ApproxMC, the first (ε, δ) approximate counter for CNF formu-
lae that scales in practice to tens of thousands of variables. We showed that
ApproxMC reports bounds with small tolerance in theory, and with much smaller
error in practice, with high confidence. Extending the ideas in this paper to
probabilistic inference and to count models of SMT constraints is an interesting
direction of future research.
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