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Abstract
The ubiquity of hybrid CPU+GPU architectures has led to renewed
interest in automatic data layout generation owing to the fact that
data layouts have a large impact on performance, and that different
data layouts yield the best performance on CPUs vs. GPUs. Unfor-
tunately, current programming models still fail to provide an effec-
tive solution to the problem of automatic data layout generation for
CPU+GPU processors. Specifically, the interaction among whole-
program data layout optimizations, data movement optimizations,
and mapping of kernels across heterogeneous cores pose a major
challenge to current programming systems. In this paper, we intro-
duce a novel two-level hierarchical formulation of the data layout
and kernel mapping problem for modern heterogeneous architec-
tures. The bottom level formulation deals with the data layout prob-
lem for a parallel code region on a given processor, which is NP-
Hard, and we provide a greedy algorithm that uses an affinity graph
to obtain approximate solutions. The top level formulation targets
data layouts and kernel mapping for the entire program for which
we provide a polynomial-time solution using a graph-based short-
est path algorithm that uses the data layouts for the code regions
(sections) for a given processor computed in the bottom level for-
mulation. We implement this data layout transformation in the new
Heterogeneous Habanero-C (H2C) parallel programming frame-
work and propose performance models to characterize the data lay-
out impact on both the CPU and GPU. Our data layout framework
shows significant performance improvements of up to 2.9× (ge-
ometric mean 1.5×) on a multicore CPU+GPU compared to the
manually specified layouts for a set of parallel programs running
on a heterogeneous platform consisting of an Intel Xeon CPU and
an NVIDIA GPU. Further, our framework also shows performance
improvements of up to 2.7× (geometric mean 1.6×) on just the
multicore CPU, demonstrating the applicability of our approach to
both heterogeneous and homogeneous hardware platforms.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques

Keywords Heterogeneous architectures, data layout, kernel map-
ping

1. Introduction
The end of Dennard scaling has brought about a drastic change in
the processor design landscape over the last decade. Since we can
no longer expect higher clock speeds within a reasonable power
budget, we are entering an era of heterogeneous and specialized
processors: a trend expected to continue in the future. Heteroge-
neous architectures have processors that exhibit wide diversity in
features ranging from the number of processor cores to the mem-
ory hierarchy structure. For example, one of the dominant hetero-
geneous architectures in use today is a CPU+GPU system with the
CPU containing a small number of “fat” cores, and the GPU con-
taining a much larger number of “thin” cores. Furthermore, the
memory hierarchy and cache structures are very different on the
CPU and the GPU. Such diverse characteristics of heterogeneous
architectures not only make the portability a difficult task but also
make performance optimization very challenging.

A key task in the optimization process is determining the layout
of data items in memory for a given application and architecture.
Recent studies [11, 30, 34, 38] have shown that data layouts play
a major role in determining application performance on both the
CPU and GPU, and that different data layouts yield the best per-
formance on CPUs vs. GPUs. For example, CPUs usually perform
well with an Array-Of-Struct (AoS) layout because an AoS layout
can help improve prefetching and cache sharing on CPUs while
avoiding false sharing. On the other hand, GPUs usually perform
well with a Struct-Of-Array (SoA) layout since a SoA layout can
improve the performance on GPUs due to coalescing of memory
accesses. Determining the optimal data layout, however, remains a
challenging task in general, since the performance of a data layout
depends on factors such as (a) number of parallel hardware thread-
s/contexts available; (b) memory hierarchy; (c) data access pattern
in the program; (d) input size of the program.

With the ubiquity of heterogeneous CPU+GPU systems in vari-
ous domains such as mobile and server, many heterogeneous paral-
lel programming models have emerged recently, e.g., OpenCL [19],
CUDA [5], OpenACC [20], C++AMP [1], Lime [7], and Con-
cord [8]. While the above models may differ on their abstraction
level, i.e. low-level such as OpenCL, CUDA or high-level such
as OpenACC, C++AMP, Concord; all of them require that data
layouts be specified by the programmer; which is a major stum-
bling block for programmer productivity, portability, and perfor-
mance tuning. It is, therefore, important that optimizing compilers
targeting heterogeneous CPU+GPU systems should perform data
layout transformations automatically. The inability of current state-
of-the-art techniques to handle data layout generation was recently
summarized by Norm Rubin from NVIDIA in his keynote talk at
PPoPP-2014: “As parallelism goes up, the memory interconnect
gets more complex so layout matters, but it is up to the program-
mer”. In this paper, we propose an approach to address this problem
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by introducing new automatic data layout generation techniques for
heterogeneous architectures.

Another challenge with these heterogeneous systems is to find
the best mapping for a given program onto the underlying hard-
ware. The mapping problem involves (1) identifying the perfor-
mance of code blocks (kernels) on different processors (e.g. CPU,
GPU) and then (2) identifying the optimal mapping for the entire
program while considering data movement costs among the proces-
sors. Since data layout impacts the performance on a given proces-
sor, the data layout and mapping problems are inter-dependent.

The data layout problem was studied earlier in the context
of multi-core CPU execution [12, 17, 18, 22, 23, 30, 31]. These
approaches cannot be easily extended to programs executing on a
heterogeneous CPU+GPU system since the past work focuses on
identifying a single best layout for the entire program on a single
processor type. The mapping problem has been recently studied in
the context of CPU+GPU architectures [14, 24, 28]. However, these
approaches do not consider the data layout of the program.

The best layout for a given program could either be a single lay-
out for the entire program or different layouts for different parts
of the program, with data remapping in between them. Addition-
ally, some data-parallel kernels in a program may be well-suited
for CPU execution while others may execute faster on GPUs. In
these scenarios, the cost of data communication between the CPU
and GPU also plays a major role in deciding the best data layout to
achieve optimal performance. In our work, we address these issues
and introduce a novel scheme that automatically generates the best
data layout and kernel mapping for a program on a heterogeneous
CPU+GPU architecture.

Specifically, our contributions are as follows:

• We introduce a novel two-level hierarchical formulation for the
problem of data layout and kernel mapping for a given program.
This formulation, unlike previous work, allows us to separate
complexity theoretical harder steps from easier steps in data
layout and mapping generation.
• We develop an automatic data layout compiler transformation

that implements the two-level hierarchy formulation described
in the Heterogeneous Habanero-C (H2C) compiler that targets
CPU+GPU processors. First, we build affinity graphs from the
Parallel Intermediate Representation (PIR) of the input pro-
gram. We then use these affinity graphs along with the cost of
remapping from one layout to another to automatically deter-
mine the best data layout for a given program.
• We present an experimental evaluation of our automatic data

layout transformation on a CPU+GPU platform (Intel Xeon
CPU + NVIDIA GPU) using a diverse set of 7 benchmarks. Our
results show that the automatic framework improves the perfor-
mance up to 2.7× (geometric mean 1.6×) on a homogeneous
multicore CPU and up to 2.9× (geometric mean 1.5×) on a
heterogeneous CPU+GPU compared to the manually specified
layouts.

The rest of the paper is organized as follows. In Sec. 2, we ex-
plain the data layout and mapping problem using an example pro-
gram. Sec. 3 introduces a mathematical formulation of the problem.
We discuss the implementation details of our framework in Sec. 4.
The experimental evaluation is described in Sec. 5. In Sec. 6, we
discuss related work. Finally, we conclude in Sec. 7.

2. Motivating Example
In this section, we demonstrate through a motivating example how
the choice of data layout and kernel mapping can lead to signif-
icant performance gains on a heterogeneous CPU+GPU architec-
ture. Furthermore, we illustrate complexity and intricacies in se-

lecting the best data layout for a given architecture. Let us con-
sider a micro-benchmark with two data-parallel loops as illustrated
in Figure 1. We use H2C’s forasync syntax for the data-parallel
loops (details of H2C are given in Section 4.1). The clauses in the
forasync loops are as follows: point specifies the loop’s index vari-
able, range describes the iteration domain (M = 10240×10240 in
this example) and at specifies the target device (“NVIDIA Kepler
K40C” or “Intel Xeon CPU” in our case). The first data-parallel
kernel implements a stencil-like computation involving 5 arrays, x,
y, z, w, e, and the second kernel executes a simple multiply and
add computation involving 4 arrays x, y, z, e.

We execute the program on the NVIDIA GPU and Intel CPU
with two different layouts: AoS with x, y, z, w in a structure and
SoA where each of these fields are individual structures (arrays).
Kernel-1 take 10 msec with AoS, 22 msec with SoA on the GPU
and 62 msec with AoS, 105 msec with SoA on the CPU. Kernel-2
takes 15 msec with AoS, 6 msec with SoA on the GPU and 12 msec
with AoS, 7 msec with SoA on the CPU. Remapping from the AoS
layout to SoA layout takes 4 msec on the GPU and moving data
between CPU and GPU takes around 3 msec per field. If the data
layout and kernel mapping choices are left to the programmer, then
the best performance that can be achieved is 45 msec. The order
would be (1) copy from CPU to GPU(14 msec), (2) kernel-1 with
AoS-GPU(10 msec), (3) kernel-2 AoS-GPU(15 msec), (4) copy
from GPU to CPU (6 msec). However, the optimal order is (1) copy
from CPU to GPU(14 msec), (2) execute the first kernel on the GPU
with AoS layout (10 msec), (3) remap the data from the AoS to the
SoA(4 msec),(4) copy data from GPU to the CPU (3 msec), and (5)
finally execute the second kernel on the CPU with the SoA layout(7
msec). The application now takes the best execution time of 38
msec resulting in a speedup of 1.18. Therefore, a single data layout
and mapping all the kernels to a single processor is not optimal in
this case.

struct ABCD{float x; float y; float z; float w;};
float ∗x, ∗y, ∗z, ∗w, ∗e;
initialize(x, y, z, w, e); // on CPU
// Copy x, y, z, w, e from CPU to GPU: 14 msec
// Kernel−1 AOS(msec) SOA(msec)
// GPU 10 22
// CPU 62 105
finish forasync point(i) range(0:M) at(dev){
if(.....){
e[j] = ((x[j] + y[j] + z[j]) / w[j])

+ ((x[j+1] + y[j+1] + z[j+1]) / w[j+1])
+ ((x[j+2] + y[j+2] + z[j+2]) / w[j+2])
+ ((x[j+3] + y[j+3] + z[j+3]) / w[j+3]);

}
}
// Remap from AoS to SoA: 4 msec
// Copy e from GPU to CPU: 3 msec
remap(xyzw, x, y, z, w);
// Kernel−2 AOS(msec) SOA(msec)
// GPU 15 6
// CPU 12 7
finish forasync point(i) range(0:M) at(dev){

x[j] = (y[j] + e[j] ∗ 1.432);
z[j] = (x[j] + e[j]);
}
// Copy x, z from GPU to CPU: 6 msec

Figure 1: Microbenchmark in H2C. Best execution is when Kernel-
1 executes with AoS layout on the GPU, followed by data remap-
ping from AoS to SoA and then Kernel-2 executes with SoA layout
on the CPU.

It is interesting to observe that while popular practice is to use
a SoA to achieve coalesced memory accesses, we instead discover
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that AoS layout on GPU is more beneficial in certain cases. On
the GPU, the AoS layout is specified using aligned structures such
as float2 and float4 types. When we profiled the above code using
an NVIDIA profiler [27], we observed that the compiler generated
128-bit loads for float4 types, 64-bit loads for float2 types and 32-
bit loads for float types. The benefit from 128-bit loads comes from
the fact that there are fewer instructions to issue (compared to 4
32-bit loads). Therefore, we noticed that as long as the fields are
always accessed together, it is better to arrange them in an AoS
layout, which was also observed in [26].

In summary, the above example shows how the choice of data
layout can lead to significant performance gains. Furthermore,
the approaches based on conventional wisdom might lead to sub-
optimal data layout and kernel mapping choices. In this context, we
propose an automatic data layout generation and kernel mapping
for CPU+GPU architectures.

3. Problem Formulation
In this section, we formalize the optimal data layout and kernel
mapping problem and provide corresponding complexity results.
The objective of our framework is to automatically determine the
best data layout(s) and kernel mapping for a given CPU+GPU ar-
chitecture and generate the corresponding executable. As illustrated
in the previous section, due to the variations in data access patterns
across code regions in a program, a single layout for the entire pro-
gram may not be always optimal. In the following subsections, we
propose a scheme that produces different data layouts for different
parts of the program and automatically infers a mapping.

3.1 Hierarchical Approach
To assign different data layouts at different points in a program, we
need a mechanism to partition the program. To this end, we treat
data parallel kernels as the smallest unit of the program and parti-
tion the program into disjoint sections1 and initially assign a single
data-parallel kernel for each section. For simplicity of exposition,
in our theoretical analysis, we assume all sections lie in a single
control flow path (i.e. there are no branches). The subsequent im-
plementation, however, deals with control flow between sections as
discussed in Sec 4.2.

We propose a novel two-level hierarchical formulation of the
data layout and mapping problem. The bottom level formulation,
Section Data Layout (SDL), deals with the data layout selection for
a section based on interactions within a section. SDL is applied for
each processor type. On the other hand, the top level formulation,
Program Data Layout (PDL), takes in data layouts computed at the
SDL level and computes the data layout and kernel mapping for the
overall program.

We first discuss PDL and prove that PDL can be computed in
polynomial time. Then we move on to the bottom level SDL, which
is NP-hard. To address the intractability of SDL in practice, we pro-
pose a greedy algorithm that is later employed in our experiments.

Let S = {S1, S2, · · ·Sn} be the set of sections for a program
P. We denote the set of fields of P by F such that F ={f1, ...., fr}.
To avoid notational clutter, we use field to refer to the fields in both
AoS and SoA (which are actually arrays). Accordingly, the data
layout D = {d1, d2, · · · dn} and E = {e1, e2, · · · en} represent the
corresponding data layouts of fields and kernel mapping for each
section respectively. We assume that the set of fields in data layout
for section Si is a subset of F i such that F i = f1 ∪ f2 · · · fi.
It is worth noting that our complexity results do not change if
we assume the complement of the above assumption i.e. F i =
fi ∪ fi+1 . . . fn. Let Cf(di, Si, ei) denote the cost of executing

1 We apologize to the reader for overloading the word ”section”. We hence-
forth use ”Sec.” refer to a Section in the paper’s organization structure

section Si with data layout di on processor ei, C(di, di+1) to
denote the cost to obtain data layout di+1 from di.

3.2 Program Data Layout
The problem of Program Data Layout (PDL) is concerned with
the selecting of data layout and mapping for the entire program
while considering inter-section interactions. PDL takes in the data
layouts returned by SDL for each section per processor type and
returns the data layout and mapping for the entire program. For the
sake of simplicity, we will first describe the PDL framework for
a single processor type. This will handle the data layout for the
entire program on a single processor type. We will then extend the
framework to handle the mapping of the entire program for multiple
processor types.

The control flow among sections allows us to construct a di-
rected acyclic graph with in-degree and out-degree of nodes re-
stricted to at most 1. As discussed above, the data layout for a
section can consist of fields accessed by its predecessors. To facil-
itate this, we introduce an operation combine that takes in optimal
data layouts di, dj for sections Si, Sj such that Sj is successor of
Si and returns the data layout by merging di, dj . In other words,
the combine operation results in a data layout that is best for both
Si and Sj sections collectively. We use cost(combine(di, dj)) to
represent the cost of the combine operation for data layouts di and
dj .

Another possible operation is remap which remaps the data
layout from di to dj . The cost for remap is directly proportional
to the number of fields between data layouts that are remapped. We
use

cost(df1 , d
i
2, d

f
2 ) =

{
cost(combine(df1 , d

i
2)) if df2 = combine(df1 , d

i
2)

cost(remap(df1 , d
f
2 )) otherwise

to denote the cost of transformation of di2 to df2 where df1 is the
data layout of the preceding section. Therefore, using the notation
introduced in Sec. 3.1 we have C(df1 , d

f
2 ) = cost(df1 , d

i
2, d

f
2 ).

Figure 2: PDL configurations with combine and remap edges for a
single processor type

For example: considering a single processor, for n = 4, we
have sections S1, S2, S3, S4 and data layouts returned by SDL is
{di1, di2, di3, di4}, where subscript i is used to denote the input to
to PDL (We use superscript f to denote the “final” data layout
returned by PDL). One possible final configuration is

df1 = di1; df2 = combine(di1, d
i
2); df3 = di3; df4 = combine(di3, d

i
4);

and the cost associated with it is

cost(combine(di1, d
i
2)) + cost(remap(combine(di1, d

i
2), di3))

+ cost(remap(di3, d
i
4)) +

4∑
i=1

Cf(df1 , Si, ei)
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Figure 2 illustrates all the possible configuration for this case. The
four different final layouts possible for section S4 are shown below

df4 = di4

df4 = combine(di3, d
i
4)

df4 = combine(combine(di2, d
i
3), di4)

df4 = combine(combine(combine(di1, d
i
2), di3), di4)

Every possible data layout can be specified by the last remap
operation. For example, in case of di4, the last remap was applied
at the section 3 and for combine(di3, d

i
4), the last remap operation

was applied at the section 2.
When multiple processors are included, there could be an ad-

ditional copy cost involved to copy the data between these proces-
sors. Let copy(ei, ei+1) be the cost to copy data between processor
ei and ei+1. Figure 3 shows the PDL configurations when multiple
processor types are present.

Figure 3: PDL configurations on a CPU+ GPU architecture with
copy edges

We formulate the Program Data Layout (PDL) problem as fol-
lows: a PDL takes in the set of data layouts {di1, di2, · · · din} com-
puted per processor type from SDL and returns a set of data layouts
{df1 , d

f
2 , · · · dfn} such that the computed cost

n−1∑
i=1

C(dfi , d
f
i+1) +

n∑
i=1

Cf(dfi , Si, ei) +

n−1∑
i=1

copy(ei, ei+1)

is minimum.
The following theorem presents the complexity analysis of

PDL.

THEOREM 3.1. PDL is in PTIME.

Proof To prove PDL is in PTIME, we reduce PDL to finding the
shortest path over a graph. To this end, we construct a DAG for
every G = (V,E) where a node represents a possible data lay-
out for a Section. We call this DAG the PDL-DAG. From above
we know that for section Si, there are only i possible data lay-
outs. In our DAG, an edge represents either combine or remap
operation. Let Di,j(i > j) represent the final data layout for
section i obtained such that the last remap operation was at section
j. Also, we obtain Di+1,j and Di+1,i by applying combine and
remap operations respectively. Therefore in our DAG G, V =
{Di,j|0≤j<i<n} ∪Ddest, where n is the total number of sections
and Ddest is an extra node we introduce for technical reasons
explained later. We construct all the combine and remap edges
such that the weight of combine edge (Di,j , Di+1,j) is sum of
the cost of combine edge and Cf(Di+1,j , Si+1, ei) . The edges
from Dn,j|0<j<n to Ddest are added with weight 0. Therefore,

E = {(Di,j , Di+1,j)} ∪ {(Di,j , Di+1,i)} ∪ {(Dn,j , Ddest)} for
0 ≤ j < i < n. With this formulation, the problem PDL reduces to
finding the shortest (weighted) path fromD1,0 toDdest. The short-
est path for this graph can be computed in O(|E|+ |V | log |V |).

We now compute the cardinalities of sets V and E. For section
Si we have i nodes in G. Therefore summing up all the nodes and
adding 1 for Ddest node we have |V | = 1 +

∑n
i=1 i = 1 + n(n+

1)/2. Also, for every node Di,j(i < n), we have 2 outgoing edges
and for nodesDn,j we have one outgoing edges. Thus summing up
all the edges, we have |E| = n+

∑n−1
i=1 (2∗ i) = O(n2). Note that

the number of processor types are constant. Therefore, the shortest
path for G can be computed in O(n2 + n2 logn) ∈ O(n2 logn).
Hence, the problem PDL can be computed in PTIME.

3.3 Section Data Layout
The objective of SDL is to find the data layout for a given section,
considering only Array of Structure (AoS) and Structure of Ar-
ray (SoA) layouts. In any instance of a data layout, there is a
single SoA but multiple AoS possible. Figure 4 shows an in-
stance of the data layout possible for a section which uses 7 fields
{∗a, ∗b, ∗c, ∗d, ∗e, ∗f, ∗g}.

struct SOA{float ∗a; float ∗b;} ab;
struct AOS1{float c; float d;} cd[100];
struct AOS2{float e; float f; float g;} efg[100];

Figure 4: Example data layout instance

Based on the code and the target architecture, affinity values
are associated with every pair of fields. The computation of affinity
values is discussed in detail in Sec 4. The fields and the affinity
values can be represented as a weighted complete graphGcluster =
(V,E), where V = F and (v1, v2) ∈ E for every v1, v2 ∈ V .
Let W (e) ∈ N denote the weight of edge e and W (G = (V,E))
denote sum of weights for all the edges e ∈ E . An optimal
data layout would combine fields into cluster such that the sum
of weights of inter-cluster edges would be minimum, therefore
sum of weights of clusters edges to be maximum. This stems
from the observation that sum of weights of inter-cluster edges is
proportional to cache misses. Due to factors such as pre-fetch size,
the size of every cluster is bounded to a given constant, henceforth
denoted as k. Therefore, optimal data layout problem for a section,
denoted as SDL, can be formulated as follows:

SDL(G, k): Given a weighted complete graph Gcluster =
(V,E) with integer weights, find a partitionOC = {C1, C2, ....Ci}
such that |Ci| < k and

∑
W (Ci) is maximum. The SDL problem

is NP-hard [13, 18].

3.4 Greedy Strategy
While the NP-hardness of SDL motivates us to ask if approxima-
tion to SDL is easier, the complexity analysis of approximation to
SDL is beyond the scope of this paper and requires a further study.
We instead propose an algorithm, SGML, based on greedy-heuristic
strategies. On a high-level, the algorithm sorts the edges according
to their weights and has flavor of the union-find algorithm. The
pseudo-code for the algorithm is presented in Algorithm 1. SGML
takes in two parameters as input: an affinity graph G = (V,E) and
an integer k, which bounds the maximum size of a cluster. SGML
assumes access to three subroutines: (1) CreateNewCluster takes
as input a pair of two nodes (u, v) and returns a new cluster that
contains u and v, (2) AddToCluster takes as inputs a cluster cu
and a node v and adds node v to the cluster cu, (3) MergeClusters
takes as inputs two clusters cu and cv , and merges cluster cv into
cu. SGML chooses the edges in decreasing order of their weights.
For every edge (u, v) chosen, there are five possibilities: (1) u and
v do not belong to any of the clusters: in this case, a new cluster
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Algorithm 1 SGML (G = (V, E), k)

1: E′ ←WeightSorted(E)
2: C = {}
3: for edge e = (u, v) in E′ do
4: cu = FindCluster(u); cv = FindCluster(v)
5: if (cu == NULL && cv == NULL ) then
6: c = CreateNewCluster(u, v); C = C ∪ c
7: else if (cv == NULL && |cu| < k − 1) then
8: AddToCluster(cu, v))
9: else if (cu == NULL && |cv| < k − 1) then

10: AddToCluster(cv, u)
11: else if (cu! = cv && |cu|+ |cv| < k) then
12: MergeClusters(cu, cv)

13: return C

with the vertices u and v is created, (2) u does not belong to any
cluster and the size of cluster for v(cv) is less than k − 1: in this
case, we add u to cv , (3) v does not belong to any cluster and the
size of the cluster for u(cu) is less than k − 1: in this case, we add
u to cv , (4) u and v belong to different clusters (cu and cv respec-
tively) such that |cu| + |cv| < k, in this case we merge clusters
cu and cv and (5) for cases not covered above, we ignore the edge
and proceed to the next edge. We run the SGML algorithm for both
CPU and the GPU. A complexity-theoretical analysis of SGML is
beyond the scope of this paper and left for future work.

4. Automatic Data Layout Framework in H2C
In this section, we discuss the implementation details of our au-
tomatic data layout framework in the heterogeneous Habanero-C
(H2C) programming system. We first briefly describe the H2C pro-
gramming model that is an extension of the Habanero-C program-
ming model [2]. We then describe our overall data layout and map-
ping framework that consists of a set of analysis passes followed
by the data layout transformation pass. Finally, we describe the de-
tails of how affinity graphs are constructed including how remap
and combine costs are computed for a H2C program.

4.1 H2C Programming Model
H2C is a high-level programming language that targets both multi-
core CPU and GPU architectures. The high-level parallel constructs
in H2C are:

• async copyin〈args〉 copyout〈args〉 at〈device〉: Asynchronously
copy data specified by the arguments to and from the device.
No code body is required.
• forasync point〈args〉 range〈args〉 at〈device〉{Body}: Multi-

dimensional data parallel loop. The loop indices are specified
by the point clause. The loop bounds are specified by the range
clause and the optional at clause is used to specify the mapping
of the kernel to the devices. There is no implicit barrier at the
end of the forasync construct. The programmer is responsible
for ensuring that the loop iterations are logically independent
and can be executed in parallel. (no ordering is assumed evenin
the presence of floating-point computations).
• finish 〈Body〉: Ensures that async and forasync tasks spawned

inside Body are completed.

Since data layout impacts only data-parallel kernels that target
both CPUs and GPUs, we only consider forasync and finish con-
structs in this work. The H2C compilation framework consists of
a static compiler based on the ROSE [29] infrastructure and an
OpenCL-based runtime. The static compiler automatically gener-
ates host-side binary with embedded OpenCL code (for the bod-

ies forasyncs) from high-level C code. The OpenCL code is then
JIT-ed during runtime using the vendor specific OpenCL SDK and
subsequently executed on the GPU. We implement our framework
in the static compiler.

4.2 Data Layout Framework

Other HC Passes 

SDL Analysis 
 
 
 

H2C Program 
(ROSE-IR) 

C Program + OpenCL 
 + Host Program 

PIR Generation 

Parallel Intermediate 
Representation 

PIR Analysis & 
Transformation 

PDL Analysis 
 
 
 
 

Build Affinity Graph 

Partition Affinity Graph 

Transform Program 

Combine Costs 
Remap Costs 

Compute Shortest Path 

Figure 5: Compiler framework for automatic data layout

Figure 5 shows a diagrammatic description of our data layout
transformation framework. From ROSE IR, we generate the par-
allel intermediate representation (PIR) [39]. Once the PIR is con-
structed, we perform data layout analysis for each data-parallel sec-
tion (SDL). During SDL analysis, we build an affinity graph for
each section and then employ the algorithm SGML described in
Sec. 3.3 to partition the affinity graph. We find the best data layout
for both the CPU and GPU processors. Subsequently, we perform
data layout analysis for the entire program. During this phase, we
compute the remap and combine costs for kernels. We find the ker-
nel performance on each processor type by profiling. One can also
include other kernel performance estimation techniques described
in [24, 28]. We then apply the shortest path algorithm described in
Section 3.2 to obtain the best data layout and kernel mapping for
each section. The remap costs between two different processors
will also include the data copy cost. The H2C compiler uses def-
use analysis to determine modified data that requires copying. We
use the superblock technique [36] to handle the case where there
is control-flow between parallel sections of a program 2. Finally,
the program is transformed to use the above-determined layout and
mapping. The placement of the remap operations are done carefully
using code motion techniques described in [21]. We now discuss
the construction of PIR, affinity graph, and computation of remap/-
combine costs in more detail.

4.3 PIR
The PIR is a common intermediate language for explicitly parallel
programs such as H2C. For every function in a program, the PIR for
that method consists of three key data structures: 1) a Region Struc-
ture Tree (RST), 2) a set of Region Control Flow Graphs (RCFG),
and 3) a set of Region Dictionaries (RD). The RST represents the
region nesting structure of the method being compiled, analogous
to the Loop Structure Tree (LST) introduced in [32]. Each region in
the RST has an associated control flow graph (RCFG) that encap-
sulates control flow for the immediate children of the region. Addi-
tionally, each region stores summary information, such as upwards-

2 Although we implement this feature in our compiler, we found that none of
the benchmarks used in our evaluation exhibit any conditional control-flow
patterns between parallel sections.
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exposed uses and downwards-exposed defs, in an associated dictio-
nary (RD).

For H2C, the single-entry regions considered in this work in-
clude FINISH, FORASYNC, and loop regions. Two special empty re-
gions START and END are added to designate the start and end of
a function. The other IR nodes considered in the RCFG are array
load ALOAD, array store ASTORE, object field load FLOAD, and object
field store FSTORE.

4.4 Affinity Graph Construction
The affinity graph construction is an important component of our
framework that captures how close a group of data items are ac-
cessed together in the program. We build the affinity graph for each
section. The affinity graph is a weighted undirected graph where
the nodes represent individual data items (a statement of the form
ALOAD, ASTORE, FLOAD, FSTORE) and edges represent the co-access
pattern of two data items. The weight on an edge reflects the fre-
quency of accessing them together and also the amount of mem-
ory accessed in between them. Following past approaches for static
cost estimation, the frequency of array access inside a loop-nest is
estimated as 10d, where d denotes loop depth.

To reduce the size of the resulting affinity graph, the body of a
section is heavily optimized before the construction of the affinity
graph. In particular, scalar replacement is performed aggressively
to eliminate accesses to a[i − 1] where a prior iteration loads a[i]
with no killing dependency in between them in a loop region.
Similarly, variable renaming is performed in such a way that loops
iterating over the same iteration space (exactly same lower and
upper bounds) are assigned the same index variable name.

For sections consisting of accesses to both arrays and object
fields, we build two separate affinity graphs: one focusing on arrays
and another focusing on object fields. Note that the affinity graph
for arrays must capture information about the amount of memory
needed by the object fields accessed in between and vice versa.
This information is conservatively computed. For the rest of the
discussion, we will only focus on building the affinity graph for
array accesses.

We now describe a flow-insensitive algorithm to build affinity
graph as shown in Algorithm 2. We start by scanning a basic
block from top to bottom. If we visit an ALOAD a[i] or ASTORE
a[i] instruction, we create a node for a[i], if it is not there already
in the affinity graph. We count the number of memory accesses,
mem usage(a[i], b[i]), from the previous ALOAD b[i] or ASTORE b[i]
instruction (takes into account object field accesses). We add an
edge between a[i] to b[i] with the edge weight w(e(a[i], b[i])) as:

w(e(a[i], b[i])) =

{
0, if mem(a[i], b[i]) > cache size
freq(B) ∗ 1

log2mem(a[i],b[i])
, otherwise

(1)
where freq(B) denotes the frequency of basic block B. If the
memory usage,mem(a[i], b[i]), is greater than the cache size, then
we assign 0 as weight indicating there is no point combining them.
Otherwise, the weight is computed as the product of the basic block
frequency and the inverse of the logarithm of the memory usage. It
is important to emphasize the freq(B) component since frequently
executed blocks will contribute significantly to the over all data
layout. If the edge already exists, we accumulate the edge weights
to account for aggregated frequency counts.

4.5 Remap Cost Estimation
The remap cost estimation not only depends on the amount of data
being remapped but also depends on the type of remapping used.
Different types of remapping operations are:

• Local Data Remapping (LDR): remaps the data in blocks.

Algorithm 2 Affinity graph of a parallel section

1: procedure AFFINITYGRAPH(PIR: PIR for the parallel section)
2: V := {};E := {};
3: for each loop region L in PIR do
4: for each basic block B in the RCFG(L) do
5: mem := 0;
6: prev I := {};
7: for each instruction I in B do
8: if I is an FLOAD a.f or FSTORE a.f then
9: mem += sizeof(a.f);

10: if I is an ALOAD a[i] or ASTORE a[i] then
11: Create a node for a[i], if not already in V ;
12: if prev I is ALOAD b[i] or ASTORE b[i] then
13: if edge between a[i] and b[i] is absent then
14: Add an edge e between nodes a[i] and b[i]
15: Assign/Update edge weight, w(e) using Eq. 1;
16: prev I := I;
17: mem := 0;
18: return
19: end procedure

a[0]b[0]c[0]d[0]a[1]b[1]c[1]d[1]−> a[0]a[1]a[2]a[3]b[0]b[1]b[2]b[3]
a[2]b[2]c[2]d[2]a[3]b[3]c[3]d[3] c[0]c[1]c[2]c[3]d[0]d[1]d[2]d[3]

a[0]b[0]c[0]d[0]a[1]b[1]c[1]d[1]−> a[0]a[1]b[0]b[1]c[0]c[1]d[0]d[1]
a[2]b[2]c[2]d[2]a[3]b[3]c[3]d[3] a[2]a[3]b[2]b[3]c[2]c[3]d[2]d[3]

Figure 6: (Top) Global data remapping, (Bottom) Local data
remapping

• Out-of-place Global Data Remapping (OGDR): remaps the en-
tire data from one data layout to another but uses an additional
buffer.
• In-place Global Data Remapping (IGDR): remaps the entire

data from one data layout to another without any additional
buffer.

Although IGDR saves space, it is computationally inefficient as
it requires several synchronization operations when performed in
parallel. In contrast, OGDR does not require any synchronization.
We focus on OGDR and LDR remappings for the rest of the
discussion. OGDR transforms the entire data from AoS to SoA.
LDR on the other hand regroups the data to a local SoA data
layout in blocks. Figure 6 demonstrates how LDR and OGDR are
constructed with the help of four arrays, a[0 : 3], b[0 : 3], c[0 : 3],
and d[0 : 3]. The data layout on the left-hand side is in AoS.
The top-right shows the GDR version of SoA whereas the bottom-
right shows the LDR version of SoA (uses a block size of 2): two
elements of arrays a, b, c, d are mapped to SoA layout followed by
the remaining two elements of each array.

A remap operation can be parallelized to reduce its impact on
execution time. We empirically determine the remap cost for LDR
and OGDR with the help of micro-benchmarks on a given hardware
platform (this operation is performed once per platform and stored
in a table). Figure 7 depicts the data remapping costs on a Tesla
M1050 GPU (to the left) and an Intel Xeon CPU (to the right).
On the X-axis, we use the amount of data being remapped. The
charts show that it is always beneficial to perform remapping on
the GPU as opposed to the CPU. Additionally, LDR is always faster
than OGDR on both the CPU and the GPU. This is because LDR
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Figure 7: Remap cost model on an NVIDIA Tesla GPU and an
Intel Xeon CPU
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Figure 8: Combine cost model on an NVIDIA Tesla GPU and an
Intel Xeon CPU for a memory-bound kernel with varying AoS size

Algorithm 3 Estimate remap cost

1: procedure REMAPSECTIONS(S1, S2: parallel sections)
2: fieldsize← 0
3: for f ε S1.Fields do
4: //for each field or array
5: if f.getLayout(S2)==NULL then
6: //if f is accessed in one but not in another
7: continue;
8: if f.getLayout(S1) neq f.getLayout(S2) then
9: // the layouts are different

10: // combine the frequency of the basic block
11: // containing the field or array
12: fieldsize+ = f.size ∗ freq(basicblock(f));
13: return remap model(fieldsize) + copy cost(fieldsize);
14: end procedure

benefits from data locality on the CPU whereas, on the GPU, it
performs remapping by taking advantage of scratchpad memory
and local barrier. On the other hand, LDR is feasible only when
the same partition of data items are remapped across multiple
kernels. In our evaluation, by default we use LDR to remap the
data except for the case where two consecutive kernels remap data
from different partitions (as computed using SGML algorithm), at
which point we switch to OGDR.

Algorithm 3 presents the remap cost estimation. It takes two
parallel sections as input and outputs the estimated cost of remap-
ping. The algorithm iterates over the fields (both object fields and
array accesses) in both sections, checks if a field appears in only
one of the section’s data layout (and not in both) and accordingly
updates the counter fieldsize, which counts the amount of data that
needs to be remapped. This value is passed to the remap model (as

shown in Figure 7) which then returns the cost of remapping. A
copy cost based on the fieldsize value also gets added to the fi-
nal cost of the remap edge if the sections under consideration are
mapped to different processors. Note that the SDL phase gives us
best data layouts per section on each processor.

4.6 Combine Cost Estimation
The combine cost is estimated as the loss in performance by assign-
ing the same data layout for two sections instead of the previously
assigned individual data layouts. If the layouts of both the sections
are the same, then the combine cost is 0. If the layouts are differ-
ent, then an intermediate layout DL12 is obtained by combining
the two sections, S1 and S2, and running the SGML algorithm on
the combined affinity graph S12.

The combine cost is the predicted performance loss and is the
sum of the difference between running the sections with the origi-
nal layouts DL1, DL2 compared to running them using the new
layout DL12. The pseudo-code for the procedure CombineSec-
tions is presented in Algorithm 4.

Algorithm 4 Compute combine cost

1: procedure COMBINESECTIONS(S1, S2: parallel sections)
2: // merge affinity graphs for S1 and S2
3: // perform partitioning using SGML algorithm
4: DL12 = SGML(merge(S1.affinity graph,S2.affinity graph))
5: // cost of executing S1 using the combined layout DL12
6: cost1 = PERF MODEL(S1,DL12)
7: // cost of executing S2 using the combined layout DL12
8: cost2 = PERF MODEL(S2,DL12)
9: // return the sum of the costs

10: return (cost1 + cost2);
11: end procedure

1: procedure PERF MODEL(S1, DL12)
2: // classify S1 to memory bound or compute-bound
3: T = classify kernel(S1);
4: combinecost← 0
5: // for all field accesses and arrays
6: for f← S1.Fields do
7: // find the current layout of f in S1
8: D1 = f.getLayout(S1);
9: // find the current layout of f in DL12

10: D2 = DL12.getLayout(f);
11: if D1 neq D2 then
12: combinecost+=combine model(S1.size, D1, D2, T);
13: return combinecost
14: end procedure

In Algorithm 4, we build a Perf model function that takes
a section S1 and a combined data layout DL12. It then uses the
combine model to return the estimated cost. The combine model
is determined using a set of micro-benchmarks mimicking dif-
ferent kernel characteristics. We classify a kernel into either
compute-bound or memory-bound. A kernel is classified statically
as compute-bound if the ratio of the compute instruction to the total
number of instructions is greater than a threshold (0.6 used in our
evaluation), otherwise, it is memory-bound. The combine model
takes two layouts, the data size (computed similar to Algorithm 3),
the memory-bound of the kernel, and returns the performance loss.
It is possible that the two affinity graphs cannot be combined due a
conflicting affinity value between two fields. In such a case, we use
the default layout specified by the programmer.

We wrote a memory-bound micro-benchmark that randomly
updates memory locations in a loop inside a kernel. We run this
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Table 1: Hardware architectures

Name Freq Cores L1$ L2$
Intel X5660 CPU 2.8GHz 12 (HT) 192KB 1.5MB
NVIDIA M2050 GPU 575 MHz 8 16KB 768KB

micro-benchmark for varying amount of data and different partition
sizes. Figure 8 shows the effect of the data layout on a GPU for this
memory bound kernel. The x-axis represents the total amount of
data being accessed inside the kernel and the y-axis represents the
execution time in milliseconds. Each curve represents the execution
time for different partition sizes varying from 1 to 12 in this graph.
The effect of data layout on a CPU or GPU becomes prominent
when the amount of data being accessed increases. We use this
curve to determine the combinecost in Algorithm 4. In the above
formulation, we see that the combine operation happens between
sections executed only on the same processor type.

Finally, the formulation requires copy costs which are machine
specific. We run micro-benchmarks to determine the cost of moving
data from the CPU to the GPU. On integrated CPU+GPU devices,
this cost is zero.

5. Experimental Evaluation
We now present experimental results of our implementation of the
H2C automatic data layout framework.

5.1 Setup
Table 1 lists the specification of the platform used in our exper-
iments. It consists of an Intel Xeon X5660 CPU with 12 cores
running at 2.8GHz and an NVIDIA Tesla with 8 cores running at
575MHz. We used GCC version 4.4.6 with -O2 optimization level
to compile our programs.

Table 2 summarizes the benchmarks we use in the evalua-
tion including their compile-time characteristics. Column 1 reports
the sources for each benchmark. All benchmarks were originally
written in OpenMP and were converted by us to Heterogeneous
Habanero-C (H2C) with minimal effort. Typically, all that was re-
quired was to change parallel loops to use forasync and finish
constructs. The original layouts for all the benchmarks were SoA.
Column 4 reports the number of data-parallel kernels. The Medi-
cal Image Registration benchmark consists of 7 compute-intensive
data-parallel kernels. The K-Means benchmark has two kernels and
the second kernel is executed sequentially in the original OpenMP
version of the benchmark as it performs a reduction. Since our cur-
rent OpenCL code generation does not support reduction, we also
implemented this loop as a sequential loop by employing the seq
clause in the forasync construct. Column 5 reports the number
of distinct array or field references accessed in the kernels. Finally,
column 6 reports the input data sizes.

For each benchmark, we execute the OpenCL code with the
original data layout specified by the programmer and compare it
with the automatically generated data layout from our SDL and
PDL approaches on the CPU and GPU. We first report results for
the SDL approach described in Section 3.3. We denote the SDL
results for a benchmark executing only on the CPU as “CPU SDL”
and executing only on the GPU as “GPU SDL”. We then report
results for the PDL approach described in Section 3.2 for only
CPU execution(denoted as “CPU PDL”) and the combined CPU
and GPU execution (denoted as “CPU+GPU PDL”).

5.2 SDL Evaluation
We report SDL results for all the data-parallel kernels in our bench-
marks. Figure 9 shows the speedups obtained for CPU SDL, GPU

SDL for our benchmarks. The CPU SDL is compared with the CPU
execution of the same benchmark using the default layout specified
by the programmer. Similarly, the GPU SDL is compared with the
GPU execution of the same benchmark using the default layout.
Table 2 shows the default layouts. We observe performance ben-
efits of up to 2.9× with a geometric mean improvement of 1.4×
on the CPU. With the GPU SDL, we found performance improve-
ments of up to 2.2× with a geometric mean benefit of 1.3×. 13
out of the total 16 kernels show speedup using our SGML greedy
heuristic (Algorithm 1) compared to the baseline layout. It is not
surprising to see that many data-parallel kernels show performance
improvement from data layout optimization since it results in better
cache utilization. The benefits on the GPU can be attributed to the
decreased instruction pressure due to the generation of better loads
by the NVIDIA backend compiler.

We now discuss the results for each data-parallel kernel: The
first seven kernels (Medical-1 to Medical-7) in Figure 9 are from
the Medical imaging registration benchmark. Kernels numbered
1, 2, 3, and 7 access V 1, V 2, V 3 fields and are grouped together
by our SDL algorithm and is named as AoSV layout. Kernels
numbered 4, and 5 access fields U1, U2, U3 and V 1, V 2, V 3 as
two groups, but have complementary access patterns (Read, Write).
These two groups are kept independently and is named as AoSUV
layout. Finally, Kernel 6 accesses the U1, U2, U3 fields together
and are grouped with the name AoSU layout. We obtain speedup
ranging from 1× to 2.4× for all the kernels by using CPU SDL
and GPU SDL.

The bars for LBM-1 and LBM-2 in Figure 9 show the speedups
obtained for the two kernels in the LBM benchmark. This bench-
mark has 19 fields for each lattice point in a 3-D space. The first
kernel access all the 19 fields for each lattice point while the sec-
ond kernel access the lattice points for each field. We observe that
both kernels require complementary data layouts. The SDL pass
combines all the 19 fields in an AoS layout for the first kernel and
gives SoA layout for the second kernel. The first kernel gives a
speedup of 1.2× on the CPU and 1.7× on the GPU. The second
kernel does not benefit from our layout transformation since it uses
original baseline SoA layout.

The bars for NBody-1 and NBody-2 in Figure 9 show the
speedups obtained for the NBody benchmark. The position and ac-
celeration fields occur together in the first kernel but with different
access frequencies. The position, acceleration and velocity fields
occur together in the second kernel. The SDL pass groups them
into individual groups as AoS layout. This application spends 99%
of its execution time in the first kernel. We observe a speedup of
1.4× on the CPU and 1.2× on the GPU for the first kernel.

The bars for KMeans-1 and KMeans-2 in Figure 9 show the
speedups obtained for the KMeans benchmark. The first kernel
finds the cluster index for each of the input. Hence the SDL pass
groups all the clustering features in an AoS layout. We limit the
AoS size to 16 which is based on the cache line size. The second
kernel is a reduction kernel which is not supported by our current
GPU implementation. The first kernel results in a speedup of 2.4×
on the CPU and 1.5× on the GPU. The second kernel achieves a
speedup of 2.9× on the CPU.

SYR2K kernel reads from the arrays a, and b, and writes to
array c. Some accesses to the arrays a, and b are strided. Hence
AoS layout benefits from improved cache utilization compared to
SoA. We get a speedup of 1.4× on the CPU and 2.2× on the GPU.

GEMVER kernel reads from the fields u1, u2, v1, and v2.
However the sizes of these fields are very small. Hence the AoS
layout performs similar to SoA layout as observed in our combine
cost model.

GESUMMV reads from the fields a, b, and x, and writes to
fields tmp, y. However the sizes of x and y differ from that of a,
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Table 2: Compile-time statistics for the benchmarks used in the evaluation.

Name Description Original Layout Num of Kernels Num of Fields Input
Medical [9] Medical Image Registration SOA 7 6 256×256×256
LBM [3, 33] Computational Fluid Dynamics Simulation SOA 2 19 300×300×300
NBody [16] Molecular Dynamics SOA 2 10 10000
K-Means [10] Clustering Algorithm SOA 2 16 8388608
GESUMMV [4] Linear Algebra Kernel SOA 1 5 10000
GEMVER [4] Linear Algebra Kernel SOA 1 9 10240
SYR2K [4] Linear Algebra Kernel SOA 1 4 2048×2048

Figure 9: Speedup for all data-parallel kernels on the CPU and GPU by using our SDL algorithm compared to the programmer specified
default layout

Figure 10: PDL Speedup of the benchmarks

Figure 11: Speedup for multi-kernel benchmarks on the CPU and
CPU+GPU by using our PDL algorithm compared to the program-
mer specified default layout

and b, and hence only a and b are combined by SDL. We observe a
speedup of 1.2× on the GPU and 1.1× on the CPU.

5.3 PDL Evaluation
We now report results for our multi-kernel benchmarks: Medical
Imaging, LBM, K-Means, and NBody using the PDL. None of the
benchmarks have any control flow between the individual data-
parallel kernels. We use the combine costs and remap costs as
shown in Figure 8 and Figure 7. We can observe from these graphs
that the combine cost is ∼ 1000 msec between 8-AoS and SoA
configurations for the CPU for 1024 MB of data. This means that
if a kernel has 8-AoS layout and is combined to an intermediate
SoA layout, we estimate the performance loss as ∼ 1000 msec.
This combine cost is less than the remap cost of ∼ 2000 msec (via

LDR) on the CPU. On the other hand, the remap cost of∼ 90 msec
for LDR is less than the combine cost of ∼ 800 msec for 8-AoS
and SoA on the GPU for 1024 MB. The copy cost between the CPU
and GPU is ∼ 2000 msec for 1024 MB. We evaluate the relative
performance of PDL on (1) homogeneous multicore CPU and (2)
heterogeneous CPU+GPU. Note that the CPU+GPU configuration
uses either the CPU or the GPU for a kernel execution, i.e. there
is no hybrid execution at the kernel level. However, in a given
program, few kernels can run on the CPU and the rest on the
GPU. The CPU PDL results are normalized with the multicore
CPU execution with the default layout. The CPU+GPU results are
normalized with respect to GPU execution using the default layout.

The first three kernels of the medical imaging benchmark have
the same layout AoSV as shown in Figure 9. Kernels 4 and 5
have a different layout AoSUV. Now we either have to combine
or remap these two layouts. The combine cost between AoSU
and AoSUV is 0 because they do not have any common fields.
Hence we combine these sections. Similarly, AoSUV and AoSU
do not have any common fields and hence we combine kernels 5
and kernel 6. Finally, AoSU and AoSV layouts do not have any
common fields and hence kernel 6 and kernel 7 are combined. The
overall layout from the PDL pass is AoSUV and a speedup of 1.5×
on the CPU and 1.4× on the CPU+GPU. In this case, all the kernels
are mapped on the GPU.

LBM is interesting for PDL because both of its kernels prefer
complementary layouts as explained in the SDL results. PDL has to
decide if it is beneficial to use combine or remap. This benchmark
uses a total grid size of approximately 1024 MB. PDL computes
the corresponding costs from the combine and remap models de-
scribed in Sections 4.5 & 4.6. As explained earlier, it is more ben-
eficial to perform combine on the CPU and also to perform remap
on the GPU. The combine model for the CPU uses the programmer
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specified SoA layout because the two kernels cannot be combined.
Hence the speedup compared to the baseline layout is 1×. On the
CPU+GPU, the two kernels are remapped using LDR and we ob-
served a speedup of 1.2×. Both the kernels are mapped to the GPU
by PDL.

Both kernels in K-Means have been written with a default layout
of SoA to enable coalescing on the GPU. That is, all the features
of the input data are independent arrays. Both the kernels can take
advantage of AoS layout since each kernel is iterating on all the
features for every data item. The SDL pass assigned an AoS layout
for each of the kernels. As mentioned on the SDL results, the
second kernel is executed sequentially on the CPU. In the PDL
pass, both kernels will keep the layout as AoS. We observed a
speedup of 2.7× on the CPU and 2.9× on the CPU+GPU. The
overall speedups obtained are dominated by the speedup from the
second kernel which gets executed on the CPU with AoS layout
(shown in Figure 9).

The combine cost of the NBody kernels is 0. This is because
their corresponding layouts are independent. Hence the PDL out-
put is the same AoS layout. Since the first kernel dominates the
majority execution time, the speedup is similar to SDL, which is
1.4× on the CPU and 1.2× on the CPU+GPU.

5.4 Summary
In conclusion, we demonstrate that:

• An automatic SDL transformation that targets a single data-
parallel kernel can result in significant performance improve-
ments. On the CPU, we achieve performance benefits of up to
2.9× with a geometric mean improvement of 1.4×. On the
GPU, we achieve performance improvements of up to 2.2×
with a geometric mean benefit of 1.3×.
• An automatic PDL transformation that targets multi-kernel pro-

grams and kernel mapping can also result in significant perfor-
mance improvements. On a CPU system, we achieve perfor-
mance benefits up to 2.7×with a geometric mean improvement
of 1.6×. On a CPU+GPU system, we achieve performance im-
provements up to 2.9× with a geometric mean benefit of 1.5×.
• Some benchmarks such as LBM do not benefit from PDL

transformation on the CPU as its kernels use complementary
data layouts.

6. Related Work
Many parallel programming models have emerged that target
GPGPU processors, including OpenCL [19], CUDA [5], Ope-
nACC [20], C++AMP [1], Lime [7], Concord [8], etc. To the best
of our knowledge, all these past programming systems for GPUs
require that data layout be specified by the programmer. Below, we
discuss some of the closely related references to this paper.

6.1 Data Layout for CPUs
Ulrich and Kennedy [17, 18, 22, 31] worked extensively on an au-
tomatic data alignment and distribution framework for High Perfor-
mance Fortran. The data layout in their work composed of aligning
each dimension of a multidimensional array so as to reduce the
cost of communication across different processors. This alignment
depends on the access patterns of the array dimensions. They di-
vide a program into phases. Each phase consists of a loop nest that
covers all the induction variables occurring inside the loop body.
They showed that finding the optimal data alignment is an NP-
Complete [22] problem in the absence of control flow. Anderson et
al. proved that the problem of dynamic remapping in the presence
of control flow is NP-hard [6]. Zhong et al. [12] provide a theo-
retical model for affinity to measure co-accessed data. They also

propose a hierarchical reference affinity analysis using k-distance
that is used for structure splitting and array regrouping. Our work
differs from this past work due to our focus on the data layout and
kernel mapping problem for heterogeneous processors.

6.2 Data Layout for Heterogeneous Architectures
Sung et al. [34] use data layout transformation to enable memory
level parallelism on structured grid applications for GPUs. Their
framework increases the memory level parallelism by distributing
the data access by a thread to different banks. Wu et al. [37] pro-
pose data reorganization techniques such as data repositioning, du-
plication, and padding to eliminate non-coalesced access on the
GPU. They prove that the problem of data repositioning is NP-
hard. DL [15] uses in-place transposition to remap data via cyclic
copying. Dymaxion [11] provides an API which is a set of remap-
ping functions from one layout to another. maprow2col, mapdiag-
onal, mapindirect are some of the mapping functions provided by
the API. The remapping of the data is done along with the PCI-E
transfer of data. The runtime chunks the data and launches a trans-
formation kernel for each chunk. This allows overlap of remapping
and transfer of data. The authors evaluate the performance of hy-
brid CPU-GPU execution of the k-means application. They use one
layout for the CPU and another layout for the GPU with the help
of their API. Dymaxion uses a runtime approach which the authors
show could be prohibitive. Our automatic data layout framework
uses compile-time techniques to change the data layout and lever-
ages the asynchronous features in H2C to reduce the overhead of
data remapping. Zhang et al. [38] use a polyhedral framework to
determine the optimal data layout for the entire program. Sung et
al. [35] design a 3 phase approach to efficiently transpose a matrix
in-place on the GPU. The meta-data layout framework [25] in H2C
automatically generates a program with the layout specified in a
schema file. However, it generates only a single global layout for
the entire program based on the meta data specification.

6.3 Kernel Mapping for Heterogeneous Architectures
Qilin [24] provides wrappers for heterogeneous computing and
uses adaptive mapping to schedule the work between CPU and
GPU. Boyle et al. [28] use machine learning techniques to statically
partition the work between CPU and GPU. They execute a suite
of benchmarks to build a code feature vector. This feature vector
is built using raw kernel features like the number of compute
operations, accesses to global memory, accesses to local memory,
coalesced memory accesses, average number of data transfers and
work-items per kernel. They further derive some combined code
features like communication to computation ratio, % coalesced
memory accesses, the ratio of local to global memory accesses ×
avg. # work-items per kernel, computation-memory ratio.

Compared to past work, our paper provides a two-level formu-
lation to the automatic data layout and kernel mapping problem for
CPU+GPU architectures. At the top-level (targeting the entire pro-
gram), we show that if local data layout for a given kernel is known,
the problem is tractable (PTIME) and provide a shortest-path algo-
rithm to compute the best data layout for each data-parallel kernel
in the program. We incorporate the cost of copying, remapping and
combining data across data-parallel kernels in this formulation. At
the bottom-level formulation, we propose a greedy heuristic based
on affinity graphs.

7. Conclusion and Future Work
An automatic data layout framework for heterogeneous architec-
tures can dramatically improve programmer productivity and porta-
bility in light of current hardware trends. In this work, we propose
and implement a two-level hierarchical data layout framework for
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heterogeneous CPU+GPU architectures. We show that this formu-
lation helps separate kernels running on a CPU and GPU, and it
uses an optimal PTIME algorithm to determine the overall data
layout given the data layouts for each kernel computed by a greedy
search. We provide a reference implementation of the formulation
in the Heterogenous Habanero-C compiler framework. The frame-
work uses a parallel intermediate representation to build the affin-
ity graph and a model to estimate the combine and remap costs
which are used in determining the overall data layout of the pro-
gram. Our experimental evaluation shows significant performance
benefits of up to 2.7× on a CPU and up to 2.9× on an Intel Xeon
CPU+NVIDIA GPU system, which demonstrates the applicability
of our approach to both heterogeneous and homogeneous hardware
platforms.

In the future, we plan to extend our automatic data layout
framework to support dynamic and hybrid scheduling where the
data and computation within a single kernel can be split between
the CPU and GPU.
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