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6 Probability Density Functions (PDFs)

In many cases, we wish to handle data that can be represented as a real-valued random variable,

or a real-valued vector x = [x1, x2, ..., xn]
T . Most of the intuitions from discrete variables transfer

directly to the continuous case, although there are some subtleties.

We describe the probabilities of a real-valued scalar variable x with a Probability Density

Function (PDF), written p(x). Any real-valued function p(x) that satisfies:

p(x) ≥ 0 for all x (1)
∫ ∞

−∞

p(x)dx = 1 (2)

is a valid PDF. I will use the convention of upper-case P for discrete probabilities, and lower-case

p for PDFs.

With the PDF we can specify the probability that the random variable x falls within a given

range:

P (x0 ≤ x ≤ x1) =

∫ x1

x0

p(x)dx (3)

This can be visualized by plotting the curve p(x). Then, to determine the probability that x falls

within a range, we compute the area under the curve for that range.

The PDF can be thought of as the infinite limit of a discrete distribution, i.e., a discrete dis-

tribution with an infinite number of possible outcomes. Specifically, suppose we create a discrete

distribution with N possible outcomes, each corresponding to a range on the real number line.

Then, suppose we increase N towards infinity, so that each outcome shrinks to a single real num-

ber; a PDF is defined as the limiting case of this discrete distribution.

There is an important subtlety here: a probability density is not a probability per se. For

one thing, there is no requirement that p(x) ≤ 1. Moreover, the probability that x attains any

one specific value out of the infinite set of possible values is always zero, e.g. P (x = 5) =
∫ 5

5
p(x)dx = 0 for any PDF p(x). People (myself included) are sometimes sloppy in referring

to p(x) as a probability, but it is not a probability — rather, it is a function that can be used in

computing probabilities.

Joint distributions are defined in a natural way. For two variables x and y, the joint PDF p(x, y)
defines the probability that (x, y) lies in a given domain D:

P ((x, y) ∈ D) =

∫

(x,y)∈D

p(x, y)dxdy (4)

For example, the probability that a 2D coordinate (x, y) lies in the domain (0 ≤ x ≤ 1, 0 ≤ y ≤ 1)
is

∫

0≤x≤1

∫

0≤y≤1
p(x, y)dxdy. The PDF over a vector may also be written as a joint PDF of its

variables. For example, for a 2D-vector a = [x, y]T , the PDF p(a) is equivalent to the PDF p(x, y).
Conditional distributions are defined as well: p(x|A) is the PDF over x, if the statement A is

true. This statement may be an expression on a continuous value, e.g. “y = 5.” As a short-hand,

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 27



CSC 411 / CSC D11 / CSC C11 Probability Density Functions (PDFs)

we can write p(x|y), which provides a PDF for x for every value of y. (It must be the case that
∫

p(x|y)dx = 1, since p(x|y) is a PDF over values of x.)

In general, for all of the rules for manipulating discrete distributions there are analogous rules

for continuous distributions:

Probability rules for PDFs:

• p(x) ≥ 0, for all x
•
∫∞

−∞
p(x)dx = 1

• P (x0 ≤ x ≤ x1) =
∫ x1

x0

p(x)dx

• Sum rule:
∫∞

−∞
p(x)dx = 1

• Product rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x).
• Marginalization: p(y) =

∫∞

−∞
p(x, y)dx

• We can also add conditional information, e.g. p(y|z) =
∫∞

−∞
p(x, y|z)dx

• Independence: Variables x and y are independent if: p(x, y) = p(x)p(y).

6.1 Mathematical expectation, mean, and variance

Some very brief definitions of ways to describe a PDF:

Given a function f(x) of an unknown variable x, the expected value of the function with repect

to a PDF p(x) is defined as:

Ep(x)[f(x)] ≡
∫

f(x)p(x)dx (5)

Intuitively, this is the value that we roughly “expect” x to have.

The mean µ of a distribution p(x) is the expected value of x:

µ = Ep(x)[x] =

∫

xp(x)dx (6)

The variance of a scalar variable x is the expected squared deviation from the mean:

Ep(x)[(x− µ)2] =

∫

(x− µ)2p(x)dx (7)

The variance of a distribution tells us how uncertain, or “spread-out” the distribution is. For a very

narrow distribution Ep(x)[(x− µ)2] will be small.

The covariance of a vector x is a matrix:

Σ = cov(x) = Ep(x)[(x− µ)(x− µ)T ] =

∫

(x− µ)(x− µ)Tp(x)dx (8)

By inspection, we can see that the diagonal entries of the covariance matrix are the variances of

the individual entries of the vector:

Σii = var(xii) = Ep(x)[(xi − µi)
2] (9)
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The off-diagonal terms are covariances:

Σij = cov(xi, xj) = Ep(x)[(xi − µi)(xj − µj)] (10)

between variables xi and xj . If the covariance is a large positive number, then we expect xi to be

larger than µi when xj is larger than µj . If the covariance is zero and we know no other information,

then knowing xi > µi does not tell us whether or not it is likely that xj > µj .

One goal of statistics is to infer properties of distributions. In the simplest case, the sample

mean of a collection of N data points x1:N is just their average: x̄ = 1
N

∑

i xi. The sample

covariance of a set of data points is: 1
N

∑

i(xi − x̄)(xi − x̄)T . The covariance of the data points

tells us how “spread-out” the data points are.

6.2 Uniform distributions

The simplest PDF is the uniform distribution. Intuitively, this distribution states that all values

within a given range [x0, x1] are equally likely. Formally, the uniform distribution on the interval

[x0, x1] is:

p(x) =

{

1
x1−x0

if x0 ≤ x ≤ x1

0 otherwise
(11)

It is easy to see that this is a valid PDF (because p(x) > 0 and
∫

p(x)dx = 1).

We can also write this distribution with this alternative notation:

x|x0, x1 ∼ U(x0, x1) (12)

Equations 11 and 12 are equivalent. The latter simply says: x is distributed uniformly in the range

x0 and x1, and it is impossible that x lies outside of that range.

The mean of a uniform distribution U(x0, x1) is (x1 + x0)/2. The variance is (x1 − x0)
2/12.

6.3 Gaussian distributions

Arguably the single most important PDF is the Normal (a.k.a., Gaussian) probability distribution

function (PDF). Among the reasons for its popularity are that it is theoretically elegant, and arises

naturally in a number of situations. It is the distribution that maximizes entropy, and it is also tied

to the Central Limit Theorem: the distribution of a random variable which is the sum of a number

of random variables approaches the Gaussian distribution as that number tends to infinity (Figure

1).

Perhaps most importantly, it is the analytical properties of the Gaussian that make it so ubiqui-

tous. Gaussians are easy to manipulate, and their form so well understood, that we often assume

quantities are Gaussian distributed, even though they are not, in order to turn an intractable model,

or problem, into something that is easier to work with.

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 29



CSC 411 / CSC D11 / CSC C11 Probability Density Functions (PDFs)

N = 1

0 0.5 1
0

1

2

3
N = 2

0 0.5 1
0

1

2

3
N = 10

0 0.5 1
0

1

2

3

Figure 1: Histogram plots of the mean of N uniformly distributed numbers for various values of

N . The effect of the Central Limit Theorem is seen: as N increases, the distribution becomes more

Gaussian. (Figure from Pattern Recognition and Machine Learning by Chris Bishop.)

The simplest case is a Gaussian PDF over a scalar value x, in which case the PDF is:

p(x|µ, σ2) =
1√
2πσ2

exp

(

− 1

2σ2
(x− µ)2

)

(13)

(The notation exp(a) is the same as ea). The Gaussian has two parameters, the mean µ, and

the variance σ2. The mean specifies the center of the distribution, and the variance tells us how

“spread-out” the PDF is.

The PDF for D-dimensional vector x, the elements of which are jointly distributed with a the

Gaussian denity function, is given by

p(x|µ,Σ) =
1

√

(2π)D|Σ|
exp

(

−(x− µ)TΣ−1(x− µ)/2
)

(14)

where µ is the mean vector, and Σ is the D×D covariance matrix, and |A| denotes the determinant

of matrix A. An important special case is when the Gaussian is isotropic (rotationally invariant).

In this case the covariance matrix can be written as Σ = σ2I where I is the identity matrix. This is

called a spherical or isotropic covariance matrix. In this case, the PDF reduces to:

p(x|µ, σ2) =
1

√

(2π)Dσ2D
exp

(

− 1

2σ2
||x− µ||2

)

. (15)

The Gaussian distribution is used frequently enough that it is useful to denote its PDF in a

simple way. We will define a function G to be the Gaussian density function, i.e.,

G(x;µ,Σ) ≡ 1
√

(2π)D|Σ|
exp

(

−(x− µ)TΣ−1(x− µ)/2
)

(16)

When formulating problems and manipulating PDFs this functional notation will be useful. When

we want to specify that a random vector has a Gaussian PDF, it is common to use the notation:

x|µ,Σ ∼ N (µ,Σ) (17)
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Equations 14 and 17 essentially say the same thing. Equation 17 says that x is Gaussian, and

Equation 14 specifies (evaluates) the density for an input x. The covariance matrix Σ of a Gaussian

must be symmetric and positive definite

6.3.1 Diagonalization

A useful way to understand a Gaussian is to diagonalize the exponent. The exponent of the Gaus-

sian is quadratic, and so its shape is essentially elliptical. Through diagonalization we find the

major axes of the ellipse, and the variance of the distribution along those axes. Seeing the Gaus-

sian this way often makes it easier to interpret the distribution.

As a reminder, the eigendecomposition of a real-valued symmetric matrix Σ yields a set of

orthonormal vectors vi and scalars λi such that

Σui = λiui (18)

Equivalently, if we combine the eigenvalues and eigenvectors into matrices U = [u1, ...,uN ] and

Λ = diag(λ1, ...λN ), then we have

ΣU = UΛ (19)

Since U is orthonormal:

Σ = UΛUT (20)

The inverse of Σ is straightforward, since U is orthonormal, and hence U−1 = UT :

Σ−1 =
(

UΛUT
)−1

= UΛ−1UT (21)

(If any of these steps are not familiar to you, you should refresh your memory of them.)

Now, consider the negative log of the Gaussian (i.e., the exponent); i.e., let

f(x) =
1

2
(x− µ)TΣ−1(x− µ) . (22)

Substituting in the diagonalization gives:

f(x) =
1

2
(x− µ)TUΛ−1UT (x− µ) (23)

=
1

2
zTz (24)

where

z = diag(λ
− 1

2

1 , ..., λ
− 1

2

N )UT (x− µ) (25)

This new function f(z) = zTz/2 =
∑

i z
2
i /2 is a quadratic, with new variables zi. Given variables

x, we can convert them to the z representation by applying Eq. 25, and, if all eigenvalues are
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Figure 2: The red curve shows the elliptical surface of constant probability density for a Gaussian

in a two-dimensional space on which the density is exp(−1/2) of its value at x = µ. The major

axes of the ellipse are defined by the eigenvectors ui of the covariance matrix, with corresponding

eigenvalues λi. (Figure from Pattern Recognition and Machine Learning by Chris Bishop.)(Note y1 and

y2 in the figure should read z1 and z2.)

nonzero, we can convert back by inverting Eq. 25. Hence, we can write our Gaussian in this new

coordinate system as1:

1
√

(2π)N
exp

(

−1

2
||z||2

)

=
∏

i

1√
2π

exp

(

−1

2
z2i

)

(26)

It is easy to see that for the quadratic form of f(z), its level sets (i.e., the surfaces f(z) = c for

constant c) are hyperspheres. Equivalently, it is clear from 26 that z is a Gaussian random vector

with an isotropic covariance, so the different elements of z are uncorrelated. In other words, the

value of this transformation is that we have decomposed the original N -D quadratic with many

interactions between the variables into a much simpler Gaussian, composed of d independent vari-

ables. This convenient geometrical form can be seen in Figure 2. For example, if we consider an

individual zi variable in isolation (i.e., consider a slice of the function f(z)), that slice will look

like a 1D bowl.

We can also understand the local curvature of f with a slightly different diagonalization.

Specifically, let v = UT (x− µ). Then,

f(u) =
1

2
vTΛ−1v =

1

2

∑

i

v2i
λi

(27)

If we plot a cross-section of this function, then we have a 1D bowl shape with variance given by

λi. In other words, the eigenvalues tell us variance of the Gaussian in different dimensions.

1The normalizing |Σ| disappears due to the nature of change-of-variables in PDFs, which we won’t discuss here.
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Figure 3: Left: The contours of a Gaussian distribution p(xa, xb) over two variables. Right: The

marginal distribution p(xa) (blue curve) and the conditional distribution p(xa|xb) for xb = 0.7 (red

curve). (Figure from Pattern Recognition and Machine Learning by Chris Bishop.)

6.3.2 Conditional Gaussian distribution

In the case of the multivariate Gaussian where the random variables have been partitioned into two

sets xa and xb, the conditional distribution of one set conditioned on the other is Gaussian. The

marginal distribution of either set is also Gaussian. When manipulating these expressions, it is

easier to express the covariance matrix in inverse form, as a ”precision” matrix, Λ ≡ Σ−1. Given

that x is a Gaussian random vector, with mean µ and covariance Σ, we can express x, µ, Σ and Λ
all in block matrix form:

x =

(

xa

xb

)

, µ =

(

µa

µb

)

, Σ =

(

Σaa Σab

Σba Σbb

)

, Λ =

(

Λaa Λab

Λba Λbb

)

, (28)

Then one can show straightforwardly that the marginal PDFs for the components xa and xb are

also Gaussian, i.e.,

xa ∼ N (µa,Σaa) , xb ∼ N (µb,Σbb). (29)

With a little more work one can also show that the conditional distributions are Gaussian. For

example, the conditional distribution of xa given xb satisfies

xa|xb ∼ N (µa|b,Λ
−1
aa ) (30)

where µa|b = µa−Λ−1
aaΛab(xb−µb). Note that Λ−1

aa is not simply Σaa. Figure 3 shows the marginal

and conditional distributions applied to a two-dimensional Gaussian.

Finally, another important property of Gaussian functions is that the product of two Gaussian

functions is another Gaussian function (although no longer normalized to be a proper density func-

tion):

G(x; µ1,Σ2)G(x; µ2,Σ2) ∝ G(x; µ,Σ), (31)
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where

µ = Σ
(

Σ−1
1 µ1 + Σ−1

2 µ2

)

, (32)

Σ = (Σ−1
1 + Σ−1

2 )−1. (33)

Note that the linear transformation of a Gaussian random variable is also Gaussian. For exam-

ple, if we apply a transformation such that y = Ax where x ∼ N (x|µ,Σ), we have y ∼
N (y|Aµ, AΣAT ).
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