12 Monte Carlo Methods

Monte Carlo is an umbrella term referring to a set of numerical techniques for solving one or both of these problems:

- 1. Approximating expected values that cannot be solved in closed-form
- 2. Sampling from distributions for which is a simple sampling algorithm is not available.

Recall that expectation of a function $\phi(\mathbf{x})$ of a continuous variable \mathbf{x} with respect to a distribution $p(\mathbf{x})$ is defined as:

$$E_{p(\mathbf{x})}[\phi(\mathbf{x})] \equiv \int p(\mathbf{x})\phi(\mathbf{x})d\mathbf{x}$$
 (1)

Monte Carlo methods approximate this integral by drawing N samples from $p(\mathbf{x})$

$$\mathbf{x}_i \sim p(\mathbf{x}) \tag{2}$$

and then approximating the integral by the weighted average:

$$E_{p(\mathbf{x})}[\phi(\mathbf{x})] \approx \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_i)$$
 (3)

Estimator properties. This estimate is unbiased:

$$E_{p(\mathbf{x}_{1:N})} \left[\frac{1}{N} \sum_{i} \phi(\mathbf{x}_{i}) \right] = \frac{1}{N} \sum_{i} E_{p(\mathbf{x}_{i})} [\phi(\mathbf{x}_{i})] = \frac{1}{N} N E_{p(\mathbf{x})} [\phi(\mathbf{x})] = E_{p(\mathbf{x})} [\phi(\mathbf{x})]$$
(4)

Furthermore, the variance of this estimate is inversely proportional to the number of samples:

$$\operatorname{var}_{p(\mathbf{x}_{1:N})} \left[\frac{1}{N} \sum_{i} \phi(\mathbf{x}_{i}) \right] = \frac{1}{N^{2}} \sum_{i} \operatorname{var}_{p(\mathbf{x}_{1:N})} [\phi(\mathbf{x}_{i})] = \frac{1}{N^{2}} N \operatorname{var}_{p(\mathbf{x}_{i})} [\phi(x_{i})] = \frac{1}{N} \operatorname{var}_{p(\mathbf{x})} [\phi(\mathbf{x})]$$
(5)

Hence, the more samples we get, the better our estimate will be; in the limit, the estimator will converge to the true value.

Dealing with unnormalized distributions. We often wish to compute the expected value of a distribution for which evaluating the normalization constant is difficult. For example, the posterior distribution over parameters w given data D is:

$$p(\mathbf{w}|D) = \frac{p(D|\mathbf{w})p(\mathbf{w})}{p(D)}$$
(6)

The posterior mean and covariance $(\bar{\mathbf{w}} = E[\mathbf{w}] \text{ and } E[(\mathbf{w} - \bar{\mathbf{w}})(\mathbf{w} - \bar{\mathbf{w}})^T])$ can be useful to understand this posterior, i.e., what we believe the parameter values are "on average," and how much uncertainty there is in the parameters. The numerator of $p(\mathbf{w}|D)$ is typically easy to compute, but p(D) entails an integral which is often intractable, and thus must be handled numerically.

Most generally, we can write the problem as computing the expected value with respect to a distribution $p(\mathbf{x})$ defined as

$$p(\mathbf{x}) \equiv \frac{1}{Z} P^*(\mathbf{x}), \qquad Z = \int P^*(\mathbf{x}) d\mathbf{x}$$
 (7)

Monte Carlo methods will allow us to handle distributions of this form.

12.1 Sampling Gaussians

We begin with algorithms for sampling from a Gaussian distribution.

For the simple 1-dimensional case, $x \sim \mathcal{N}(0,1)$, there is well known algorithm called the Box-Muller Method that is based on an approach called rejection sampling. It is implemented in Matlab in the command randn.

For a general 1D Gaussian, $x \sim \mathcal{N}(\mu, \sigma^2)$, we sample a variable $z \sim \mathcal{N}(0, 1)$, and then set $x = \sigma z + \mu$. You should be able to show that x has the desired mean and variance.

For the multi-dimensional case, $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$, each element is independent and Gaussian: $x_i \sim \mathcal{N}(0, 1)$ and so each element can be sampled with randn.

To sample from a Gaussian with general mean vector $\boldsymbol{\mu}$ and variance matrix $\boldsymbol{\Sigma}$ we first sample $\mathbf{z} \sim \mathcal{N}(0,\mathbf{I})$, and then set $\mathbf{x} = \mathbf{L}\mathbf{z} + \boldsymbol{\mu}$, where $\boldsymbol{\Sigma} = \mathbf{L}\mathbf{L}^T$. We can compute \mathbf{L} from $\boldsymbol{\Sigma}$ by the Cholesky Factorization of $\boldsymbol{\Sigma}$, which must be positive definite. Then we have

$$E[\mathbf{x}] = E[\mathbf{L}\mathbf{z} + \boldsymbol{\mu}] = \mathbf{L}E[\mathbf{z}] + \boldsymbol{\mu} = \boldsymbol{\mu}$$
(8)

and

$$E[(\mathbf{z} - \boldsymbol{\mu})(\mathbf{z} - \boldsymbol{\mu})^T] = E[\mathbf{L}\mathbf{z}(\mathbf{L}\mathbf{z})^T] = \mathbf{L}E[\mathbf{z}\mathbf{z}^T]\mathbf{L}^T = \mathbf{L}\mathbf{L}^T = \boldsymbol{\Sigma}$$
(9)

12.2 Importance Sampling

In some situations, it may be difficult to sample from the desired distribution $p(\mathbf{x})$; however, we can sample from a similar distribution $q(\mathbf{x})$. Importance sampling is a technique that allows one to approximate expectation with respect to $p(\mathbf{x})$ by sampling from $q(\mathbf{x})$. The only requirement on q is that it have the same support as p, i.e., q is nonzero everywhere that p is nonzero.

Importance sampling is based on the following equality:

$$E_{q(\mathbf{x})} \left[\frac{p(\mathbf{x})}{q(\mathbf{x})} \phi(\mathbf{x}) \right] = \int \frac{p(\mathbf{x})}{q(\mathbf{x})} \phi(\mathbf{x}) q(\mathbf{x}) d\mathbf{x}$$
 (10)

$$= \int \phi(\mathbf{x})p(\mathbf{x})dx \tag{11}$$

$$= E_{p(\mathbf{x})} \left[\phi(\mathbf{x}) \right] \tag{12}$$

In other words, we can compute the desired expectation by sampling values \mathbf{x}_i from $q(\mathbf{x})$, and then computing

$$E_q \left[\frac{p(\mathbf{x})}{q(\mathbf{x})} \phi(\mathbf{x}) \right] \approx \frac{1}{N} \sum_i \frac{p(\mathbf{x}_i)}{q(\mathbf{x}_i)} \phi(\mathbf{x}_i)$$
 (13)

It often happens that p and/or q are known only up to multiplicative constants. That is,

$$p(\mathbf{x}) \equiv \frac{1}{Z_p} P^*(\mathbf{x}) \tag{14}$$

$$q(\mathbf{x}) \equiv \frac{1}{Z_a} Q^*(\mathbf{x}) \tag{15}$$

where P^* and Q^* are easy to evaluate but the constants \mathbb{Z}_p and \mathbb{Z}_q are not.

Then we have:

$$E_{p(\mathbf{x})}[\phi(\mathbf{x})] = \int \frac{\frac{1}{Z_p} P^*(\mathbf{x})}{\frac{1}{Z_q} Q^*(\mathbf{x})} \phi(\mathbf{x}) q(\mathbf{x}) dx = \frac{Z_q}{Z_p} E_{q(\mathbf{x})} \left[\frac{P^*(\mathbf{x})}{Q^*(\mathbf{x})} \phi(\mathbf{x}) \right]$$
(16)

and so it remains to approximate $\frac{Z_q}{Z_p}$. If we substitute $\phi(\mathbf{x}) = 1$, the above formula states that

$$\frac{Z_q}{Z_p} E_{q(x)} \left[\frac{P^*(x)}{Q^*(x)} \right] = 1 \tag{17}$$

and so $\frac{Z_p}{Z_q}=E_{q(\mathbf{x})}[\frac{P^*(\mathbf{x})}{Q^*(\mathbf{x})}].$ Thus we have:

$$E_{p(\mathbf{x})}[\phi(\mathbf{x})] = \frac{E_{q(\mathbf{x})} \left[\frac{P^*(\mathbf{x})}{Q^*(\mathbf{x})} \phi(\mathbf{x}) \right]}{E_{q(\mathbf{x})} \left[\frac{P^*(\mathbf{x})}{Q^*(\mathbf{x})} \right]}$$
(18)

Hence, the importance sampling algorithm is:

- 1. Sample N values $\mathbf{x}_i \sim q(\mathbf{x}_i)$
- 2. Compute

$$w_i = \frac{P^*(\mathbf{x}_i)}{Q^*(\mathbf{x}_i)} \tag{19}$$

3. Estimate the expected value

$$E[\phi(\mathbf{x})] \approx \frac{\sum_{i} w_{i} \phi(\mathbf{x}_{i})}{\sum_{i} w_{i}}$$
 (20)

The importance sampling algorithm will only work well when $q(\mathbf{x})$ is sufficiently similar to the function $p(\mathbf{x})|\phi(\mathbf{x})|$. Put more concretely, the variance of the estimator grows as the dissimilarity between $q(\mathbf{x})$ and $p(\mathbf{x})|\phi(\mathbf{x})|$ grows (and is minimized when they are equal). An alternative is to use the MCMC algorithm to draw samples directly from $p(\mathbf{x})$, as described below.

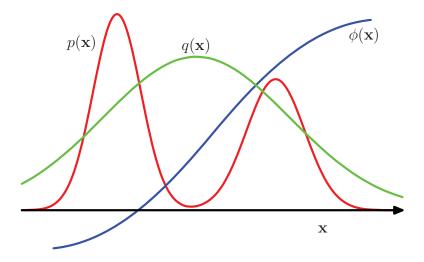


Figure 1: Importance sampling may be used to sample relatively complicated distributions like this bimodal $p(\mathbf{x})$ by instead sampling simpler distributions like this unimodal $q(\mathbf{x})$. Note that in this example, sampling from $q(\mathbf{x})$ will produce many samples that will be given a very low weight since $q(\mathbf{x})$ has a lot of mass where $p(\mathbf{x})$ is near zero (in the center of the plot). On the other hand, $q(\mathbf{x})$ has ample mass around the two modes of $p(\mathbf{x})$ and so it is a relatively good choice. If $q(\mathbf{x})$ had very little mass around one of the modes of $p(\mathbf{x})$, the estimate given by importance sampling would have a very high variance (unless $|\phi(\mathbf{x})|$ was small enough there to compensate for the difference). (Figure from *Pattern Recognition and Machine Learning* by Chris Bishop.)

12.3 Markov Chain Monte Carlo (MCMC)

MCMC is a very general algorithm for sampling from any distribution. For example, there is no simple method for sampling models w from the posterior distribution except in specialized cases (e.g., when the posterior is Gaussian).

MCMC is an iterative algorithm that, given a sample $\mathbf{x}_t \sim p(\mathbf{x})$, modifies that sample to produce a new sample $\mathbf{x}_{t+1} \sim p(\mathbf{x})$. This modification is done using a proposal distribution $q(\mathbf{x}'|\mathbf{x})$, that, given a \mathbf{x} , randomly selects a "mutation" to \mathbf{x} . This proposal distribution may be almost anything, and it is up to the user of the algorithm to choose this distribution; a common choice would be simply a Gaussian centered at \mathbf{x} : $q(\mathbf{x}'|\mathbf{x}) = \mathcal{N}(\mathbf{x}'|\mathbf{x}, \sigma^2\mathbf{I})$.

The entire algorithm is:

```
select initial point \mathbf{x}_1
t \leftarrow 1
loop

Sample \mathbf{x}' \sim q(\mathbf{x}'|\mathbf{x}_t)
\alpha \leftarrow \frac{P^*(\mathbf{x}')}{P^*(\mathbf{x}_t)} \frac{q(\mathbf{x}_t|\mathbf{x}')}{q(\mathbf{x}'|\mathbf{x}_t)}
Sample u \sim \text{Uniform}[0, 1]
if u \leq \alpha then
\mathbf{x}_{t+1} \leftarrow \mathbf{x}'
else
\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t
end if
t \leftarrow t+1
end loop
```

Amazingly, it can be shown that, if \mathbf{x}_1 is a sample from $p(\mathbf{x})$, then every subsequent \mathbf{x}_t is also a sample from $p(\mathbf{x})$, if they are considered in isolation. The samples are correlated to each other via the Markov Chain, but the marginal distribution of any individual sample is $p(\mathbf{x})$.

So far we assumed that \mathbf{x}_1 is a sample from the target distribution, but, of course, obtaining this first sample is itself difficult. Instead, we must perform a process called **burn-in**: we initialize with any \mathbf{x}_1 , and then discard the first T samples obtained by the algorithm; if we pick a large enough value of T, we are guaranteed that the remaining samples are valid samples from the target distribution. However, there is no exact method for determining a sufficient T, and so heuristics and/or experimentation must be used.

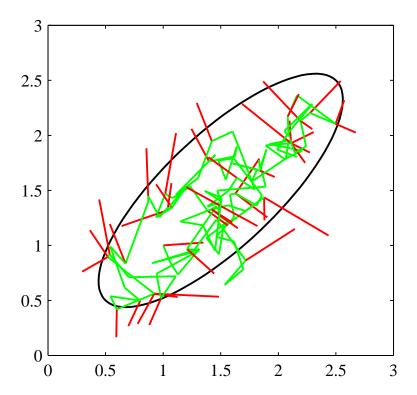


Figure 2: MCMC applied to a 2D elliptical Gaussian with a proposal distribution consisting of a circular Gaussian centered on the previous sample. Green lines indicate accepted proposals while red lines indicate rejected ones. (Figure from *Pattern Recognition and Machine Learning* by Chris Bishop.)