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14 Lagrange Multipliers

The Method of Lagrange Multipliers is a powerful technique for constrained optimization. While

it has applications far beyond machine learning (it was originally developed to solve physics equa-

tions), it is used for several key derivations in machine learning.

The problem set-up is as follows: we wish to find extrema (i.e., maxima or minima) of a

differentiable objective function

E(x) = E(x1, x2, ...xD) (1)

If we have no constraints on the problem, then the extrema must necessarily satisfy the following

system of equations:

∇E = 0 (2)

which is equivalent to writing dE
dxi

= 0 for all i. This equation says that there is no way to infinites-

imally perturb x to get a different value for E; the objective function is locally flat.

Now, however, our goal will be to find extrema subject to a single constraint:

g(x) = 0 (3)

In other words, we want to find the extrema among the set of points x that satisfy g(x) = 0.

It is sometimes possible to reparameterize the problem in order to eliminate the constraints

(i.e., so that the new parameterization includes all possible solutions to g(x) = 0), however, this

can be awkward in some cases, and impossible in others.

Given the constraint g(x) = 0, we are no longer looking for a point where no perturbation in

any direction changes E. Instead, we need to find a point at which perturbations that satisfy the

constraints do not change E. This can be expressed by the following condition:

∇E + λ∇g = 0 (4)

for some arbitrary scalar value λ. First note that, for points on the contour g(x) = 0, the gradient

∇g is always perpendicular to the contour (this is a great exercise if you don’t remember the proof).

Hence the expression ∇E = −λ∇g says that the gradient of E must be parallel to the gradient of

the contour at a possible solution point. In other words, any perturbation to x that changes E also

makes the constraint become violated. Perturbations that do not change g, and hence still lie on

the contour g(x) = 0 do not change E either. Hence, our goal is to find a point x that satisfies this

condition and also g(x) = 0
In the Method of Lagrange Multipliers, we define a new objective function, called the La-

grangian:

L(x, λ) = E(x) + λg(x) (5)

Now we will instead find the extrema of L with respect to both x and λ. The key fact is that

extrema of the unconstrained objective L are the extrema of the original constrained prob-

lem. So we have eliminated the nasty constraints by changing the objective function and also

introducing new unknowns.
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Figure 1: The set of solutions to g(x) = 0 visualized as a curve. The gradient ∇g is always normal

to the curve. At an extremal point, ∇E points is parallel to ∇g. (Figure from Pattern Recognition and

Machine Learning by Chris Bishop.)

To see why, let’s look at the extrema of L. The extrema to L occur when

dL

dλ
= g(x) = 0 (6)

dL

dx
= ∇E + λ∇g = 0 (7)

which are exactly the conditions given above. In other words, first equation ensures that g(x) is

zero, as desired, and the second equation is our constraint that the gradients of E and g mucst be

parallel. Using the Lagrangian is a convenient way of combining these two constraints into one

unconstrained optimization.

14.1 Examples

Minimizing on a circle. We begin with a simple geometric example. We have the following

constrained optimization problem:

argminx,y x+ y (8)

subject to x2 + y2 = 1 (9)
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Figure 2: Illustration of the maximization on a circle problem. (Image from Wikipedia.)

In other words, we want to find the point on a circle that minimizes x+y; the problem is visualized

in Figure 2. Here, E(x, y) = x+ y and g(x, y) = x2+ y2− 1. The Lagrangian for this problem is:

L(x, y, λ) = x+ y + λ(x2 + y2 − 1) (10)

Setting the gradient to zero gives this system of equations:

dL

dx
= 1 + 2λx = 0 (11)

dL

dy
= 1 + 2λy = 0 (12)

dL

dλ
= x2 + y2 − 1 = 0 (13)

From the first two lines, we can see that x = y. Substituting this into the constraint and solving

gives two solutions x = y = ± 1√
2
. Substituting these two solutions into the objective, we see that

the minimum is at x = y = − 1√
2
.

Estimating a multinomial distribution. In a multinomial distribution, we have an event e with

K possible discrete, disjoint outcomes, where

P (e = k) = pk (14)

For example, coin-flipping is a binomial distribution where N = 2 and e = 1 might indicate that

the coin lands heads.
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Suppose we observe N events; the likelihood of the data is:

K
∏

i=1

P (ei|p) =
∏

k

pNk

k (15)

where Nk is the number of times that e = k, i.e., the number of occurrences of the k-th event. To

estimate this distribution, we can minimize the negative log-likelihood:

arg min −
∑

k Nk ln pk (16)

subject to
∑

k pk = 1, pk ≥ 0, for all k (17)

The constraints are required in order to ensure that the p’s form a valid probability distribution.

One way to optimize this problem is to reparameterize: set pK = 1−
∑K−1

k=1
pk, substitute in, and

then optimize the unconstrained problem in closed-form. While this method does work in this case,

it breaks the natural symmetry of the problem, resulting in some messy calculations. Moreover,

this method often cannot be generalized to other problems.

The Lagrangian for this problem is:

L(p, λ) = −
∑

k

Nk ln pk + λ

(

∑

k

pk − 1

)

(18)

Here we omit the constraint that pk ≥ 0 and hope that this constraint will be satisfied by the

solution (it will). Setting the gradient to zero gives:

dL

dpk
= −

Nk

pk
+ λ = 0 for all k (19)

dL

dλ
=

∑

k

pk − 1 = 0 (20)

Multiplying dL/dpk = 0 by pk and summing over k gives:

0 = −
K
∑

k=1

Nk + λ
∑

k

pk = −N + λ (21)

since
∑

k Nk = N and
∑

k pk = 1. Hence, the optimal λ = N . Substituting this into dL/dpk and

solving gives:

pk =
Nk

N
(22)

which is the familiar maximum-likelihood estimator for a multinomial distribution.
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Maximum variance PCA. In the original formulation of PCA, the goal is to find a low-dimensional

projection of N data points y

x = wT (y − b) (23)

such that the variance of the x′
is is maximized, subject to the constraint that wTw = 1. The

Lagrangian is:

L(w,b, λ) =
1

N

∑

i

(

xi −
1

N

∑

i

xi

)

2

+ λ(wTw − 1) (24)

=
1

N

∑

i

(

wT (yi − b)−
1

N

∑

i

wT (yi − b)

)

2

+ λ(wTw − 1) (25)

=
1

N

∑

i

(

wT

(

(yi − b)−
1

N

∑

i

(yi − b)

))

2

+ λ(wTw − 1) (26)

=
1

N

∑

i

(

wT (yi − ȳ)
)2

+ λ(wTw − 1) (27)

=
1

N

∑

i

wT (yi − ȳ)(yi − ȳ)Tw + λ(wTw − 1) (28)

= wT

(

1

N

∑

i

(yi − ȳ)(yi − ȳ)T

)

w + λ(wTw − 1) (29)

where ȳ =
∑

i yi/N . Solving dL/dw = 0 gives:

(

1

N

∑

i

(yi − ȳ)(yi − ȳ)T

)

w = λw (30)

This is just the eigenvector equation: in other words, w must be an eigenvector of the sample

covariance of the y′s, and λ must be the corresponding eigenvalue. In order to determine which

one, we can substitute this equality into the Lagrangian to get:

L = wTλw + λ(wTw − 1) (31)

= λ (32)

since wTw = 1. Since our goal is to maximize the variance, we choose the eigenvector w which

has the largest eigenvalue λ.

We have not yet selected b, but it is clear that the value of the objective function does not

depend on b, so we might as well set it to be the mean of the data b =
∑

i yi/N , which results in

the x′s having zero mean:
∑

i xi/N = 0.
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14.2 Least-Squares PCA in one-dimension

We now derive PCA for the case of a one-dimensional projection, in terms of minimizing squared

error. Specifically, we are given a collection of data vectors y1:N , and wish to find a bias b, a single

unit vector w, and one-dimensional coordinates x1:N , to minimize:

arg min
w,x1:N ,b

∑

i

||yi − (wxi + b)||2 (33)

subject to wTw = 1 (34)

The vector w is called the first principal component. The Lagrangian is:

L(w, x1:N ,b, λ) =
∑

i

||yi − (wxi + b)||2 + λ(||w||2 − 1) (35)

There are several sets of unknowns, and we derive their optimal values each in turn.

Projections (xi). We first derive the projections:

dL

dxi

= −2wT (yi − (wxi + b)) = 0 (36)

Using wTw = 1 and solving for xi gives:

xi = wT (yi − b) (37)

Bias (b). We begin by differentiating:

dL

db
= −2

∑

i

(yi − (wxi + b)) (38)

Substituting in Equation 37 gives

dL

db
= −2

∑

i

(yi − (wwT (yi − b) + b)) (39)

= −2
∑

i

yi + 2wwT
∑

i

yi − 2NwwTb+ 2Nb (40)

= −2(I−wwT )
∑

i

yi + 2(I−wwT )Nb = 0 (41)

Dividing both sides by 2(I−wwT )N and rearranging terms gives:

b =
1

N

∑

i

yi (42)

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 88



CSC 411 / CSC D11 / CSC C11 Lagrange Multipliers

Basis vector (w). To make things simpler, we will define ỹi = (yi − b) as the mean-subtracted

data points, and the reconstructions are then xi = wT ỹi, and the objective function is:

L =
∑

i

||ỹi −wxi||
2 + λ(wTw − 1) (43)

=
∑

i

||ỹi −wwT ỹi||
2 + λ(wTw − 1) (44)

=
∑

i

(ỹi −wwT ỹi)
T (ỹi −wwT ỹi) + λ(wTw − 1) (45)

=
∑

i

(ỹT
i ỹi − 2ỹT

i wwT ỹi + ỹT
i wwTwwT ỹi) + λ(wTw − 1) (46)

=
∑

i

ỹT
i ỹi −

∑

i

(ỹT
i w)2 + λ(wTw − 1) (47)

where we have used wTw = 1. We then differentiate and simplify:

dL

dw
= −2

∑

i

ỹiỹ
T
i w + 2λw = 0 (48)

We can rearrange this to get:
(

∑

i

ỹiỹ
T
i

)

w = λw (49)

This is exactly the eigenvector equation, meaning that extrema for L occur when w is an eigenvec-

tor of the matrix
∑

i ỹiỹ
T
i , and λ is the corresponding eigenvalue. Multiplying both sides by 1/N ,

we see this matrix has the same eigenvectors as the data covariance:
(

1

N

∑

i

(yi − b)(yi − b)T

)

w =
λ

N
w (50)

Now we must determine which eigenvector to use. We rewrite Equation 47 as:

L =
∑

i

ỹT
i ỹi −

∑

i

wT ỹiỹ
T
i w + λ(wTw − 1) (51)

=
∑

i

ỹT
i ỹi −wT

(

∑

i

ỹiỹ
T
i

)

w + λ(wTw − 1) (52)

(53)

and substitute in Equation 49:

L =
∑

i

ỹT
i ỹi − λwTw + λ(wTw − 1) (54)

=
∑

i

ỹT
i ỹi − λ (55)
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again using wTw = 1. We must pick the eigenvalue λ that gives the smallest value of L. Hence,

we pick the largest eigenvalue, and set w to be the corresponding eigenvector.

14.3 Multiple constraints

When we wish to optimize with respect to multiple constraints {gk(x)}, i.e.,

argminx E(x) (56)

subject to gk(x) = 0 for k = 1...K (57)

Extrema occur when:

∇E +
∑

k

λk∇gk = 0 (58)

where we have introduced K Lagrange multipliers λk. The constraints can be combined into a

single Lagrangian:

L(x, λ1:K) = E(x) +
∑

k

λkgk(x) (59)

14.4 Inequality constraints

The method can be extended to inequality constraints of the form g(x) ≥ 0. For a solution to be

valid and maximal, there two possible cases:

• The optimal solution is inside the constraint region, and, hence ∇E = 0 and g(x) > 0. In

this region, the constraint is “inactive,” meaning that λ can be set to zero.

• The optimal solution lies on the boundary g(x) = 0. In this case, the gradient ∇E must point

in the opposite direction of the gradient of g; otherwise, following the gradient of E would

cause g to become positive while also modifying E. Hence, we must have ∇E = −λ∇g for

λ ≥ 0.

Note that, in both cases, we have λg(x) = 0. Hence, we can enforce that one of these cases is

found with the following optimization problem:

max
w,λ

E(x) + λg(x) (60)

such that g(x) ≥ 0 (61)

λ ≥ 0 (62)

λg(x) = 0 (63)

These are called the Karush-Kuhn-Tucker (KKT) conditions, which generalize the Method of La-

grange Multipliers.

When minimizing, we want ∇E to point in the same direction as ∇g when on the boundary,

and so we minimize E − λg instead of E + λg.
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Figure 3: Illustration of the condition for inequality constraints: the solution may lie on the bound-

ary of the constraint region, or in the interior. (Figure from Pattern Recognition and Machine Learning

by Chris Bishop.)
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