
CSC 411 / CSC D11 / CSC C11 Clustering

15 Clustering

Clustering is an unsupervised learning problem in which our goal is to discover “clusters” in the

data. A cluster is a collection of data that are similar in some way.

Clustering is often used for several different problems. For example, a market researcher might

want to identify distinct groups of the population with similar preferences and desires. When

working with documents you might want to find clusters of documents based on the occurrence

frequency of certain words. For example, this might allow one to discover financial documents,

legal documents, or email from friends. Working with image collections you might find clusters

of images which are images of people versus images of buildings. Often when we are given large

amounts of complicated data we want to look for some underlying structure in the data, which

might reflect certain natural kinds within the training data. Clustering can also be used to compress

data, by replacing all of the elements in a cluster with a single representative element.

15.1 K-means Clustering

We begin with a simple method called K-means. Given N input data vectors {yi}
N
i=1, we wish to

label each vector as belonging to one of K clusters. This labeling will be done via a binary matrix

L, the elements of which are given by

Li,j =

{

1 if data point i belongs to cluster j

0 otherwise
(1)

The clustering is mutually exclusive. Each data vector i can only be assigned to only cluster:
∑K

j=1 Li,j = 1. Along the way, we will also be estimating a center cj for each cluster.

The full objective function for K-means clustering is:

E(c,L) =
∑

i,j

Li,j||yi − cj||
2 (2)

This objective function penalizes the distance between each data point and the center of the cluster

to which it is assigned. Hence, to minimize this error, we want to bring the cluster centers close to

the data it has been assigned, and we also want to assign the data to nearby centers.

This objective function cannot be optimized in closed-form, and so an iterative method is re-

quired. It includes discrete variables (the labels L), and so gradient-based methods aren’t directly

applicable. Instead, we use a strategy called coordinate descent, in which we alternate between

closed-form optimization of one set of variables holding the other variables fixed. That is, we first

pick initial values, then we alternate between updating the labels for the current centers, and then

updating the centers for the current labels.

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 92

CSC 411 / CSC D11 / CSC C11 Clustering

Here is the K-means algorithm:

pick initial values for L and c1:K
loop

// Labeling update: set L← argminL E(c,L)
for each data point i do

j ← argminj ||yi − cj||
2

Li,j = 1
Li,a = 0 for all a 6= j

end for

// Centers update: set c← argminc E(c,L)
for each center j do

cj ←
∑

i Li,jyi∑
i Li,j

end for end loop

Each step of the optimization is guaranteed to lower the objective function until the algorithm

converges (you should be able to show that each step is optimal.) However, there is no guarantee

that the algorithm will find the global optimum and indeed it may easily get trapped in a poor local

minima.

Initialization. The algorithm is sensitive to initialization, and poor initialization can sometimes

lead to very poor results. Here are a few strategies that can be used to initialize the algorithm:

1. Random labeling: Initialize the labeling L randomly, and then run the center-update step to

determine the initial centers. This approach is not recommended because the initial centers

will likely end up just being very close to the mean of the data.

2. Random initial centers: We could try to place initial center locations randomly, e.g., by

random sampling in the bounding box of the data. However, it is very likely that some of the

centers will fall into empty regions of the feature space, and will therefore be assigned no

data. Getting a good initialization this way can be difficult.

3. Random data points as centers: This method works much better: use a random subset of

the data as the initial center locations.

4. K-medoids clustering: This will be described below.

5. Multiple restarts. In multiple restarts, we run K-means multiple times, each time with a

different random initialization (using one of the above methods). We then take the best clus-

tering out of all of the runs, based on the value of the objective function above in Equation

(2).

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 93

CSC 411 / CSC D11 / CSC C11 Clustering

6. K-Means++: k-means++ chooses the initial centers to be relatively far from one another.

That is, (1) Choose a center at random. (2) Then compute the distance between each data

point D(x) and the nearest existing center. (3) Then choose the next centre from among

the data points according to probability proportional to D(x)2. And once the new center is

chosen, repeat (2)-(3) until k centers have been chosen. Then optimize k-means as above.

Another key question is how one chooses the number of clusters, i.e., K. A common approach

is to fix K based on some prior knowledge or computational constraints. One can also try different

values of K, adding another term to to the objective function to penalize model complexity.

15.2 K-medoids Clustering

(The material in this section is not required for this course.)

K-medoids clustering is a variant of K-means with the additional constraint that the cluster

centers must be drawn from the data. The following algorithm, called Farthest First Traversal, or

Hochbaum-Shmoys, is simple and effective:

Randomly select a data point yi as the first cluster center: c1 ← yi

for j = 2 to K

Find the data point furthest from all existing centers:

i← argmaxi mink<j ||yi − ck||
2

cj ← yi

end for

Label all remaining data points according to their nearest centers (as in k-means)

This algorithm provides a quality guarantee: it gives a clustering that is no worse than twice

the error of the optimal clustering.

K-medoids clustering can also be improved by coordinate descent. The labeling step is the

same as in K-means. However, the cluster updates must be done by brute-force search for each

candidate cluster center update.

15.3 Mixtures of Gaussians

The Mixtures-of-Gaussians (MoG) model is a generalization of K-means clustering. Whereas K-

means clustering works for clusters that are more or less spherical, the MoG model can handle

oblong clusters and overlapping clusters. The K-means algorithm does an excellent job when

clusters are well separated, but not when the clusters overlap. MoG algorithms compute a “soft,”

probabilistic clustering which allows the algorithm to better handle overlapping clusters. Finally,

the MoG model is probabilistic, and so it can be used to learn probability distributions from data.

The MoG model consists of K Gaussian distributions, each with their own means and covari-

ances {(µj,Kj)}. Each Gaussian also has an associated (prior) probability aj , such that
∑

j aj = 1.

That is, the probabilities aj will represent the fraction of the data that are assigned to (or generated

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 94

CSC 411 / CSC D11 / CSC C11 Clustering

−10 0 10 20 30 40

−5

0

5

10

15

20

25

30

35

40

45

Figure 1: K-means applied to a dataset sampled from three Gaussian distributions. Each data

assigned to each cluster are drawn as circles with distinct colours. The cluster centers are shown

as red stars.

by) the different Gaussian components. As a shorthand, we will write all the model parameters

with a single variable, i.e., θ = {a1:K , µ1:K ,K1:K}. When used for clustering, the idea is that each

Gaussian component in the mixture should correspond to a single cluster.

The complete probabilistic model comprises the prior probabilities of each Gaussian compo-

nent, and Gaussian likelihood over the data (or feature) space for each component:

P (L = j|θ) = aj (3)

p(y|θ, L = j) = G(y; µj,Kj) (4)

To sample a single data point from this (generative) model, we first randomly select a Gaussian

component according to their prior probabilities {aj}, and then we randomly sample from the

corresponding Gaussian component. The likelihood of a single data point can be derived by the

product rule and the sum rule as follows:

p(y|θ) =
K
∑

j=1

p(y, L = j|θ) (5)

=
K
∑

j=1

p(y|L = j, θ)P (L = j|θ) (6)

=
K
∑

j=1

aj
1

√

(2π)D|Kj|
e−

1

2
(y−µj)

TK
−1

j
(y−µj) (7)

where D is the dimension of data vectors. This model can be interpreted as a linear combination

(or blend) of Gaussians: we get a multimodal distribution by adding together unimodal Gaussians.

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 95

CSC 411 / CSC D11 / CSC C11 Clustering

20 40 60 80 100 120 140 160 180 200

0.5

1

1.5

2

2.5

3

3.5
−10 −5 0 5 10 15 20 25 30 35 40

−5

0

5

10

15

20

25

30

35

40

45

Figure 2: Mixture of Gaussians model applied to a dataset generated from three Gaussians. The

resulting γ is visualized on the right. The data points are shown as colored circles. The color

is determined by the cluster with the highest posterior assignment probability γij . One standard

deviation ellipses are shown for each Gaussian. Note that the blue points are well isolated and there

is little ambiguity in their assignments. The other two distributions overlap, and one can see how

the orientation and eccentricity of the covariance structure (the ellipses) influence the assignment

probabilities.

Interestingly, the MoG model is similar to the Gaussian Class-Conditional model that we used for

classification; the difference is that the class labels will no longer be included in the training set.

In general, the approach of building models by mixtures is quite general and can be used for

many other types of distributions as well, for example, we could build a mixture of Student-t

distributions, or a mixture of a Gaussian and a uniform, and so on.

15.3.1 Learning

Given a data set y1:N , where each data point is assumed to be drawn independently from the model,

we learn the model parameters, θ, by minimizing the negative log-likelihood of the data:

L(θ) = − ln p(y1:N |θ) (8)

= −
∑

i

ln p(yi|θ) (9)

Note that this is a constrained optimization, since we require aj ≥ 0 and
∑

j aj = 1. Furthermore,

Kj must be symmetric, positive-definite matrix to be a covariance matrix. Unfortunately, this

optimization cannot be performed in closed-form.

One approach is to use gradient descent to optimization by gradient descent. There are a few

issues associated with doing so. First, some care is required to avoid numerical issues, as discussed

below. Second, this learning is a constrained optimization, due to constraints on the values of the

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 96

CSC 411 / CSC D11 / CSC C11 Clustering

a’s. One solution is to project onto the constraints during optimization: at each gradient descent

step (and inside the line search loop), we clamp all negative a values to zero and renormalize the

a’s so that they sum to one. Another option is to reparameterize the problem to be unconstrained.

Specifically, we define new variables βj , and define the a’s as functions of the βs, e.g.,

aj(β) =
eβj

∑K

j=1 e
βj

(10)

This definition ensures that, for any choice of the βs, the as will satisfy the constraints. We sub-

stitute this expression into the model definition and then optimize for the βs instead of the as with

gradient descent. Similarly, we can enforce the constraints on the covariance matrix by reparame-

terization; this is normally done using a upper-triangular matrix U such that K = UTU.

An alternative to gradient descent is the Expectation-Maximization algorithm, or EM. EM

is a quite general algorithm for “hidden variable” problems; in this case, the labels L are “hid-

den” (or “unobserved”). In EM, we define a probabilistic labeling variable γi,j . The variable

γi,j corresponds to the probability that data point i came from cluster j: γi,j is meant to estimate

P (L = j|yi). In EM, we optimize both θ and γ together. The algorithm alternates between the

“E-step” which updates the γs, and the “M-step” which updates the model parameters θ.

pick initial values for γ and θ

loop

E-step:

for each data point i do

γi,j ← P (L = j|yi, θ)
end for

M-step:

for each cluster j do

aj ←
∑

i γi,j
N

µj ←
∑

i γi,jyi
∑

i γi,j

Kj ←
∑

i γi,j(yi−µj)(yi−µj)
T

∑

i γi,j

end for

end loop

Note that the E-step is the same as classification in the Gaussian Class-Conditional model.

The EM algorithm is a local optimization algorithm, and so the results will depend on initial-

ization. Initialization strategies similar to those used for K-means above can be used.

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 97

CSC 411 / CSC D11 / CSC C11 Clustering

15.3.2 Numerical issues

Exponentiating very small negative numbers can often lead to underflow when implemented in

floating-point arithmetic, e.g., e−A will give zero for large A, and ln e−A will give an error (or

-Inf) whereas it should return −A. These issues will often cause machine learning algorithms to

fail; MoG has several steps which are susceptible. Fortunately, there are some simple tricks that

can be used.

1. Many computations can be performed directly in the log domain. For example, it may be

more stable to compute

aeb (11)

as

eln a+b (12)

This avoids issues where b is so small that eb evaluates to zero in floating point, but aeb is

much greater than zero.

2. When computing an expression of the form:

e−βj

∑

j e
−βj

(13)

large values of β could lead to the above expression being zero for all j, even though the

expression must sum to one. This may arise, for example, when computing the γ updates,

which have the above form. The solution is to make use of the identity:

e−βj

∑

j e
−βj

=
e−βj+C

∑

j e
−βj+C

(14)

for any value of C. We can choose C to prevent underflow; a suitable choice is C = minj βj .

3. Underflow can also occur when evaluating

ln
∑

i

e−βj (15)

which can be fixed by using the identity

ln
∑

i

e−βj =

(

ln
∑

i

e−βj+C

)

− C (16)

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 98

CSC 411 / CSC D11 / CSC C11 Clustering

15.3.3 The Free Energy

Amazingly, EM optimizes the log-likelihood, which doesn’t even have a γ parameter. In order to

understand the EM algorithm and why it works, it is helpful to introduce a quantity called the Free

Energy:

F(θ, γ) = −
∑

i,j

γi,j ln p(yi, L = j|θ) +
∑

i,j

γi,j ln γi,j (17)

=
1

2

∑

i,j

γi,j(yi − µj)
TK−1

j (yi − µj) (18)

+
1

2

∑

i,j

γi,j ln(2π)
D|Kj| −

∑

i,j

γi,j ln aj (19)

+
∑

i,j

γi,j ln γi,j (20)

The EM algorithm is a coordinate descent algorithm for optimizing the free energy, subject

to the constraint that
∑

j γi,j = 1 and the constraints on a. In other words, EM can be written

compactly as:

pick initial values for γ and θ

loop

E-step:

γ ← argminγ F(θ, γ)
M-step:

θ ← argminθ F(θ, γ)
end loop

However, the free energy is different from the negative log-likelihood L(θ) that we initially set

out to minimize. Fortunately, the free energy has the following important properties:

• When the value of γ is optimal, the Free Energy is equal to the negative log-likelihood:

L(θ) = min
γ
F(θ, γ) (21)

We can use this fact to evaluate the negative log-likelihood simply by running an E-step and

then computing the free energy. In fact, this is often more efficient than directly computing

the negative log-likelihood. The proof is given in the next section.

• The minima of the free energy are also minima of the negative log-likelihood:

min
θ
L(θ) = min

θ,γ
F(θ, γ) (22)

This follows from the previous property. Hence, optimizing the free energy is the same as

optimizing the negative log-likelihood.

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 99

CSC 411 / CSC D11 / CSC C11 Clustering

• The Free Energy is an upper-bound on the negative log-likelihood:

F(θ, γ) ≥ L(θ) (23)

for all values of γ. This observation gives a sanity check for debugging the free energy

computation.

The Free Energy also provides a very helpful tool for debugging: any step of an implementation

that increases the free energy must be incorrect. The term Free Energy arises from its original

definition in statistical physics.

15.3.4 Proofs

This content of this section is not required material for this course and you may skip it. Here we

outline proofs for the key features of the free energy.

EM updates. The steps of the EM algorithm may be derived by solving argminγ F(θ, γ) and

argminθ F(θ, γ). In most cases, the derivations generalize familiar ones, e.g., weighted least-

squares. The a and γ parameters are multinomial distributions, and optimization of them requires

Lagrange multipliers or reparameterization. One may ignore the positivity constraint, as it turns

out to be automatically satisfied. The details will be skipped here.

Equality after the E-step. The E-step computes the optimal value for γ:

γ∗ ← argmin
γ
F(θ, γ) (24)

which is given by:

γ∗

i,j = P (L = j|yi) (25)

Substituting this into the Free Energy gives:

F(θ, γ∗) = −
∑

i,j

P (L = j|yi) ln
p(yi, L = j)

P (L = j|yi)
(26)

= −
∑

i,j

P (L = j|yi) ln p(yi) (27)

= −
∑

i

(

ln p(yi)
∑

j

P (L = j|yi)

)

(28)

= −
∑

i

ln p(yi) (29)

= L(θ) (30)

Hence,

L(θ) = min
γ
F(θ, γ) (31)

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 100

CSC 411 / CSC D11 / CSC C11 Clustering

Bound. An important building block in proving that F(θ, γ) ≥ L(θ) is Jensen’s Inequality,

which applies since ln is a “concave” function and
∑

j bj = 1, bj ≥ 0.

ln
∑

j

bjxj ≥
∑

j

bj ln xj, or (32)

− ln
∑

j

bjxj ≤ −
∑

j

bj ln xj (33)

We will not prove this here.

We can then derive the bound as follows, dropping the dependence on θ for brevity:

L(θ) = −
∑

i

ln
∑

j

p(yi, L = j) (34)

= −
∑

i

ln
∑

j

γi,j

γi,j
p(yi, L = j) (35)

≤ −
∑

i,j

γi,j ln
p(yi, L = j)

γi,j
(36)

= F(θ, γ) (37)

15.3.5 Relation to K-means

It should be clear that the K-means algorithm is very closely related to EM. In fact, EM reduces

to K-means if we make the following restrictions on the model:

• The class probabilities are equal: aj =
1
K

.

• The Gaussians are spherical with identical variances: Kj = σ2I for all j.

• The Gaussian variances are infinitesimal, i.e., we consider the algorithm in the limit as

σ2 → 0. This causes the optimal values for γ to be binary, since, if j is the nearest class,

limσ2
→0 P (L = j|yi) = 1.

With these modifications, the Free Energy becomes equivalent to the K-means objective function,

up to constant values, and the EM algorithm becomes identical to K-means.

15.3.6 Degeneracy

There is a degeneracy in the MoG objective function. Suppose we center one Gaussian at one of

the data points, so that cj = yi. The error for this data point will be zero, and by reducing the

variance of this Gaussian, we can always increase the likelihood of the data. In the limit as this

Gaussian’s variance goes to zero, the data likelihood goes to infinity. Hence, some effort may be

required to avoid this situation. This degeneracy can also be avoided by using a more Bayesian

form of the algorithm, e.g., marginalizing out the cluster centers rather than estimating them.

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 101

CSC 411 / CSC D11 / CSC C11 Clustering

15.4 Determining the number of clusters

Determining the value of K is a model selection problem: we want to determine the most-likely

value of K given the data. Cross validation is not appropriate here, since we do not have any super-

vision (e.g., correct labels from a subset of the data). Bayesian model selection can be employed,

e.g., by maximizing

K∗ = argmax
K

P (K|y1:N) = argmax
K

∫

p(K, θ|y1:N)dθ (38)

where θ are the model parameters. This evaluation is somewhat mathematically-involved. A very

coarse approximation to this computation is Bayesian Information Criterion (BIC).

Copyright c© 2015 Aaron Hertzmann, David J. Fleet and Marcus Brubaker 102

