
1

Efficient Optimization for
Sparse Gaussian Process Regression

Yanshuai Cao Marcus A. Brubaker David J. Fleet Aaron Hertzmann

Abstract—We propose an efficient optimization algorithm to
select a subset of training data as the inducing set for sparse
Gaussian process regression. Previous methods either use dif-
ferent objective functions for inducing set and hyperparameter
selection, or else optimize the inducing set by gradient-based
continuous optimization. The former approaches are harder to
interpret and suboptimal, whereas the latter cannot be applied
to discrete input domains or to kernel functions that are not
differentiable with respect to the input. The algorithm proposed
in this work estimates an inducing set and the hyperparameters
using a single objective. It can be used to optimize either the
marginal likelihood or a variational free energy. Space and time
complexity are linear in training set size, and the algorithm can
be applied to large regression problems on discrete or continuous
domains. Empirical evaluation shows state-of-art performance in
discrete cases, competitive prediction results as well as a favorable
trade-off between training and test time in continuous cases.

Index Terms—Gaussian process regression, low rank, matrix
factorization, sparsity.

I. INTRODUCTION

GAUSSIAN PROCESS (GP) learning and inference are
computationally prohibitive for large datasets, having

time complexities O(n3) and O(n2), where n is the number
of training points. Sparsification algorithms exist that scale
linearly in the training set size (see [12] for a review). They
construct a low-rank approximation to the GP covariance
matrix over the full dataset using a small set of inducing
points. Some approaches select inducing points from training
points [9], [10], [14], [15]. But these methods select the
inducing points using ad hoc criteria; i.e., they use different
objective functions to select inducing points and to optimize
GP hyperparameters. More powerful sparsification methods
[16]–[18] use a single objective function and allow inducing
points to be free parameters in the input domain, learned via
gradient descent. This continuous relaxation is not feasible,
however, if the input domain is discrete, or if the kernel
function is not differentiable in the input variables. As a result,
there are problems in myraid domains, like bio-informatics,
linguistics and computer vision where current sparse GP
regression methods are inapplicable or ineffective.

We introduce an efficient sparsification algorithm for GP
regression. The method optimizes a single objective for joint
selection of inducing points and GP hyperparameters. Notably,
it can be used to optimize either the marginal likelihood, or
a variational free energy [17], exploiting the QR factorization
of a partial Cholesky decomposition to efficiently approximate
the covariance matrix. Because it chooses inducing points from
the training data, it is applicable to problems on discrete or
continuous input domains. To our knowledge, it is the first

method for selecting discrete inducing points and hyperpa-
rameters that optimizes a single principled objective, with
linear space and time complexity. It is shown to outperform
other methods on discrete datasets from bio-informatics and
computer vision. On continuous domains it is competitive with
the Pseudo-point GP [16] (a.k.a FITC). On the empirical evalu-
ation framework for approximate GPs introduced by Chalupka
et al. [6], we obtain a favourable trade-off of performance
versus hyperparameter learning time and test time.

A. Previous Work

The computational cost of GP learning and inference can
be improved with fast matrix inversion techniques, such as Bo
and Sminchisescus greedy block coordinate descent [3]. While
this allows for fast computation of the predictive mean, it
entails repeatedly solving large linear systems for hyperparam-
eter optimization and for computing the predictive variance.
Alternatively, efficient state-of-the-art sparsification methods
are O(m2n) in time and O(mn) in space for learning. They
compute the predictive mean and variance in time O(m) and
O(m2). Methods based on continuous relaxation, when ap-
plicable, entail learning O(md) continuous parameters, where
d is the input dimension. In the discrete case, combinatorial
optimization is required to select the inducing points, and
this is, in general, intractable. Existing discrete sparsification
methods therefore use other criteria to greedily select inducing
points [9], [10], [14], [15]. Although their criteria are justified,
each in their own way (e.g., [10], [14] take an information
theoretic perspective), they are greedy and do not use the
same objective to select inducing points and to estimate GP
hyperparameters.

The variational formulation of Titsias [17] treats inducing
points as variational parameters, and gives a unified objective
for discrete and continuous inducing point models. In the
continuous case, it uses gradient-based optimization to find
inducing points and hyperparameters. In the discrete case, our
method optimizes the same variational objective of Titsias
[17], but is a significant improvement over greedy forward
selection using the variational objective as selection criteria, or
some other criteria. In particular, given the cost of evaluating
the variational objective on all training points, Titsias [17]
evaluates the objective function on a small random subset of
candidates at each iteration, and then selects the best element
from the subset. This approximation is often slow to achieve
good results, as we explain and demonstrate below in Section
IV-A. That approach uses greedy forward selection, which
provides no way to refine the inducing set after hyperparameter

2

optimization, except to discard all previous inducing points
and restart selection. Hence, the objective is not guaranteed
to decrease after each restart. By comparison, our formulation
considers all candidates at each step, revisiting previous selec-
tions is efficient, and it is guaranteed to decrease the objective
or terminate.

Our low-rank decomposition is inspired by the Cholesky
with Side Information (CSI) algorithm for kernel machines
[1]. We extend that approach to GP regression. First, we
alter the form of the low-rank matrix factorization in CSI to
be suitable for GP regression with full-rank diagonal noise
term in the covariance. Second, the CSI algorithm selects
inducing points in a single greedy pass using an approximate
objective. We propose an iterative optimization algorithm that
swaps previously selected points with new candidates that are
guaranteed to lower the objective. Finally, we perform induc-
ing set selection jointly with gradient-based hyperparameter
estimation instead of the grid search in CSI. Our algorithm
selects inducing points in a principled fashion, optimizing
the variational free energy or the log likelihood. It does so
with time complexity O(m2n), and in practice provides an
improved quality-speed trade-off over other discrete selection
methods.

II. SPARSE GP REGRESSION

Let y ∈ R be the noisy output of a function, f , on input x.
Let X = {xi}ni=1 denote n training inputs, each belonging to
input space D, which is not necessarily Euclidean. Let y ∈ Rn

be the corresponding vector of training outputs. Under a zero-
mean full GP prior, the covariance between two outputs is

E[yiyj] = κ(xi,xj) + σ21[i = j] , (1)

where κ is the kernel function, 1[·] is the usual indicator
function, and σ2 is the variance of the observation noise. The
predictive distribution over the output f? at a test point x? is
normally distributed. The mean and variance of the predictive
distribution can be expressed as

µ? = κ(x?)
T (
K + σ2In

)−1
y

v2? = κ(x?,x?)− κ(x?)
T (
K + σ2In

)−1
κ(x?)

where In is the n× n identity matrix, K is the kernel matrix
whose ijth element is κ(xi,xj), and κ(x?) is the column
vector whose ith element is κ(x?,xi).

The hyperparameters of a GP, denoted θ, comprise the pa-
rameters of the kernel function, and the noise variance σ2. One
natural objective for learning θ is the negative marginal log
likelihood (NMLL) of the training data, − log (P (y|X,θ)),
given up to a constant by

Efull(θ) = (y>(K+σ2In
)−1

y+ log |K+σ2In|) / 2 . (2)

The computational bottleneck lies in the O(n2) storage and
O(n3) inversion of the full covariance matrix, K + σ2In. To
lower this cost with a sparse approximation, Csató and Opper
[7] and Seeger et al. [14] proposed the Projected Process
(PP) model, wherein a set of m inducing points are used to
construct a low-rank approximation of the kernel matrix. In
the discrete case, where the inducing points are a subset of the

training data, with indices I ⊂ {1, 2, ..., n}, and an arbitrary
ordering (i1, i2, ..., ik, ..., im) of these indices1, this approach
amounts to replacing the kernel matrix K with the following
Nyström approximation [13]:

K ' K̂ = K[:, I]K[I, I]−1K[I, :] (3)

where K[:, I] denotes the sub-matrix of K comprising
columns indexed by I, and K[I, I] is the sub-matrix of
K comprising rows and columns indexed by I. We assume
the rank of K is m or higher so we can always find such
rank-m approximations. The PP NMLL is then algebraically
equivalent to replacing K in Eq. (2) with K̂, i.e.,

E(θ, I) =
(
ED(θ, I) + EC(θ, I)

)
/2 , (4)

with data term ED(θ, I) = y>(K̂ +σ2In)−1y, and model
complexity EC(θ, I) = log |K̂+σ2In|.

The computational cost reduction from O(n3) to O(m2n)
associated with the new likelihood is achieved by applying
the Woodbury inversion identity to ED(θ, I) and EC(θ, I).
The objective in (4) can be viewed as an approximate log
likelihood for the full GP model, or as the exact log likelihood
for an approximate model, called the Deterministically Trained
Conditional [12].

The same PP model can also be obtained by a variational
argument, as in [17]. That is, the variational free energy
objective can be shown to be Eq. (4) plus one extra term; i.e.,

F (θ, I) =
(
ED(θ, I) + EC(θ, I) + EV(θ, I)

)
/ 2 , (5)

where EV (θ, I) = σ−2 tr(K−K̂) arises from the variational
formulation. It effectively regularizes the trace norm, also
known as the nuclear norm, of the approximation residual of
the covariance matrix. The kernel machine of [1] also uses a
trace norm regularizer of the form λ tr(K−K̂), however λ is
a free parameter that is set manually. Properties of trace norm
regularization have been studied extensively [2].

III. EFFICIENT OPTIMIZATION

We now outline our algorithm for optimizing the variational
free energy (5) to select the inducing set I and the hyper-
parameters θ. (The negative log-likelihood (4) is similarly
minimized by simply discarding the EV term.) The algorithm
is a form of hybrid coordinate descent that alternates be-
tween discrete optimization of inducing points, and continuous
optimization of the hyperparameters. We first describe the
algorithm to select inducing points, then discuss continuous
hyperparameter optimization and termination criteria in Sec.
III-D.

Finding the optimal inducing set is a combinatorial problem;
global optimization is intractable. Instead, the inducing set
is initialized to a random subset of the training data, which
is then refined by a fixed number of swap updates at each
iteration.2 In a single swap update, a randomly chosen induc-
ing point is considered for replacement. If swapping does not
improve the objective, then the original point is retained.

1We will relax the notation to use I to denote both the set and the ordered
sequence.

2The inducing set can be incrementally constructed, as in [1], also shown
in Alg. 2 of Appendix A, however we found no benefit to this.

3

There are n − m potential replacements for each swap
update; the key is to efficiently determine which is likely
to maximally improve the objective. With the techniques de-
scribed below, the computation time required to approximately
evaluate all possible candidates and swap an inducing point
is O(mn). Swapping all inducing points once takes O(m2n)
time.

A. Factored representation

To support efficient evaluation of the objective and swap-
ping, we use a factored representation of the kernel matrix.
Given an inducing set I of k points, for any k ≤ m, the low-
rank Nyström approximation to the kernel matrix (Eq. 3) can
be expressed in terms of a partial Cholesky factorization:

K̂ = K[:, I]K[I, I]−1K[I, :] = L(I)L(I)> , (6)

where L(I) ∈ Rn×k is, up to permutation of rows, a lower
trapezoidal matrix (i.e., has a k×k top lower triangular block,
again up to row permutation). 3 The proof of the identity in
Eq. 6 follows from Proposition 1 in [1], and the fact that,
given the ordered sequence of pivots I, the partial Cholesky
factorization is unique.

Using this factorization and the Woodbury identities (drop-
ping the dependence on θ and I for clarity), the terms of the
negative marginal log-likelihood (4), or the variational free
energy (5), become

ED = σ−2
(
y>y − y>L

(
L>L+ σ2I

)−1
L>y

)
(7)

EC = log
(
(σ2)n−k|L>L+ σ2I|

)
(8)

EV = σ−2(tr(K)− tr(L>L)) (9)

We can further simplify the data term ED and the complexity
term EC by augmenting the factor matrix as L̃ = [L>, σIk]>,
where Ik is the k×k identity matrix, and ỹ = [yT,0T

k]
T

is the
y vector with k zeroes appended:

ED = σ−2
(
y>y − ỹ>L̃ (L̃>L̃)−1 L̃>ỹ

)
(10)

EC = log
(

(σ2)n−k|L̃>L̃|
)

(11)

Now, let L̃ = QR be a QR factorization of L̃, where
Q ∈ R(n+k)×k has orthonormal columns and R ∈ Rk×k is
invertible. The first two terms in the objective simplify further
to

ED = σ−2
(
‖y‖2 − ‖Q>ỹ‖2

)
(12)

EC = (n− k) log(σ2) + 2 log |R| (13)

B. Factorization update

Here we present the mechanics of the swap update algo-
rithm. See the Appendices for pseudo-code. Suppose we wish
to swap inducing point i with candidate point j in Im, the
inducing set of size m. We first modify the factor matrices in
order to remove point i from Im, i.e. to downdate the factors,

3Note that k is a dummy variable used solely to describe that the
factorization shown in this section applies to any rank 1 ≤ k ≤ m. It is
not a parameter of the algorithm.

then update all the key terms using one step of Cholesky and
QR factorization with the new point j.

Downdating to remove inducing point i requires that we
shift the corresponding columns/rows in the factorization to
the right-most columns of L̃, Q, R and to the last row of
R. We can then simply discard these last columns and rows,
and modify related quantities. When permuting the order of
the inducing points, the underlying GP model is invariant, but
the matrices in the factored representation are not. If needed,
any two points in Im, can be permuted, and the Cholesky
or QR factors can be updated in time O(mn). This is done
with the efficient pivot permutation presented in Algorithm 4
of Appendix B, which is based on the permutation algorithm
in the Appendix of [1], with minor modifications to account
for the augmented form of L̃. In this way, downdating and
removing i take O(mn) time, as does the updating with point
j.

After downdating, we have factors L̃m−1,Qm−1, Rm−1,
and inducing set Im−1. To add j to Im−1, and update the
factors to rank m, one step of Cholesky factorization following
Algorithm 3 of Appendix A is performed with point j,4 for
which, the new column to append to L̃ is formed as

`m =
(K−K̂m−1)[:, j]√
(K−K̂m−1)[j, j]

(14)

where K̂m−1 = Lm−1Lm−1
T. Then, we set L̃m =

[L̃m−1 ˜̀
m], where ˜̀

m is just `m augmented with σem, and
em being the m-th standard basis vector [0, 0, ..., 1]>.

The final updates are Qm = [Qm−1 qm], where qm is given
by Gram-Schmidt orthogonalization step:

qm =
((I −Qm−1Q

>
m−1)˜̀m)

‖(I −Qm−1Q>m−1)˜̀m‖
(15)

and Rm is updated from Rm−1 so that L̃m = QmRm.

C. Evaluating candidates
Next we show how to select candidates for inclusion in the

inducing set. We first derive the exact change in the objective
due to adding an element to Im−1. Later we provide an
approximation to this objective change that can be computed
efficiently.

Given an inducing set Im−1, and matrices L̃m−1, Qm−1,
and Rm−1, we wish to evaluate the change in Eq. 5 for
Im = Im−1 ∪ j. That is, ∆F ≡ F (θ, Im−1)−F (θ, Im) =
(∆ED + ∆EC + ∆EV)/2, where, based on the mechanics of
the incremental updates above, one can show that

∆ED =
σ−2(ỹ>

(
I −Qm−1Q

>
m−1

)
˜̀
m)2

‖
(
I −Qm−1Q>m−1

)
˜̀
m‖2

(16)

∆EC = log
(
σ2
)
− log ‖(I −Qm−1Q

>
m−1)˜̀m‖2 (17)

∆EV = σ−2‖`m‖2 (18)

This gives the exact decrease in the objective function after
adding point j. For a single point this evaluation is O(mn),
so to evaluate all n−m points would be O(mn2).

4In Algorithm 3, j is related to the permuation by j = p[t], where p is
the vector used in actual implementation to track the permutation.

4

1) Fast approximate cost reduction: While O(mn2) is pro-
hibitive, computing the exact change is not required. Rather,
we only need a ranking of the best few candidates. Thus,
instead of evaluating the change in the objective exactly, we
use an efficient approximation based on a small number, z, of
training points which provide information about the residual
between the current low-rank covariance matrix (based on
inducing points) and the full covariance matrix. After this ap-
proximation proposes a candidate, we use the actual objective
to decide whether to include it. The techniques below reduce
the complexity of evaluating all n−m candidates to O(zn).

To compute the change in objective for one candidate, we
need the new column of the updated Cholesky factorization,
`m. In Eq. (14) this vector is a (normalized) column of
the residual K− K̂m−1 between the full kernel matrix and
the Nyström approximation. Now consider the full Cholesky
decomposition of K = L∗L∗> where L∗ = [Lm−1, L(Jm−1)]
is constructed with Im−1 as the first pivots and Jm−1 =
{1, ..., n}\Im−1 as the remaining pivots, so the residual be-
comes

K−K̂m−1 = L(Jm−1)L(Jm−1)>. (19)

We approximate L(Jm−1) with a rank z�n matrix, Lz , by
taking z points from Jm−1 and performing a partial Cholesky
factorization of K− K̂m−1 using these pivots. The residual
approximation becomes:

K−K̂m−1 ≈ LzL
>
z (20)

yielding an approximation to the exact in Eq. (14) by

`m ≈
(LzL

>
z)[:, j]√

(LzL>z)[j, j]
(21)

The pivots used to construct Lz are called information pivots.
Their selection is discussed in Sec. III-C2.

The approximations to ∆ED
k , ∆EC

k and ∆EV
k , Eqs. (16)-

(18), for all candidate points, involve the following terms:
diag(LzL

>
z LzL

>
z), y>LzL

>
z , and (Qk−1[1 : n, :])

>
LzL

>
z .

The first term can be computed in time O(z2n), and the other
two in O(zmn) with careful ordering of matrix multiplica-
tions.5 Computing Lz costs O(z2n), but can be avoided since
information pivots change by at most one when an information
pivot is added to the inducing set and needs to be replaced.
The techniques in Sec. III-B bring the associated update cost
to O(zn) by updating Lz rather than recomputing it. These
z information pivots are equivalent to the “look-ahead” steps
of Bach and Jordan’s CSI algorithm [1], but as described in
Sec. III-C2, there is a more effective way to select them.

2) Ensuring a good approximation: Selection of the infor-
mation pivots determines the approximate objective, and hence
the candidate proposal. To make the optimization less likely
to be stuck in bad local minima due to the bias in a particular
fixed approximation, we randomly select the z pivots, and
resample after a random number of swapping iteration (on
average once per five swaps).

This is different from the CSI algorithm [1], which greed-
ily selects points to find an approximation of the residual

5Both can be further reduced to O(zn) by appropriate caching during the
updates of Q,R and L̃, and Lz

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

exact total reduction

a
p
p
ro

x
 t
o
ta

l
re

d
u
c
ti
o
n

0 50 100 150
0

50

100

150

ranking exact total reduction

ra
n

k
in

g
 a

p
p

ro
x
 t

o
ta

l
re

d
u

c
ti
o

n

Fig. 1. Exact vs approximate costs, based on the 1D example of Sec. IV,
with z=10, n=200.

K−K̂m−1 in Eq. (14) that is optimal in terms of a bound of
the trace norm. The goal, however, is to approximate Eqs. (16)-
(18) . By analyzing the role of the residual matrix, we see that
the information pivots provide a low-rank approximation to
the orthogonal complement of the space spanned by current
inducing set. With a fixed set of information pivots, parts
of that subspace may never be captured. This suggests that
we might occasionally update the entire set of information
pivots. Although information pivots are changed when one is
moved into the inducing set, we find empirically that this is
insufficient. Instead, our proposed randomization works better
than optimizing the information pivots as in [1].

From a theoretical perspective, to ensure a good approxi-
mation of the residual K− K̂m−1, the number of information
pivots z has a subtle dependency on the difficulty of the prob-
lem. In general, this approximation is good if, in the kernel
feature space, the projection of the points Jm−1 (including
the z information pivots and the other unselected points) onto
the orthogonal complement of the subspace spanned by the
Im−1 inducing points are “close”. This depends both on the
properties of the reproducing kernel Hilbert space (RKHS)
defined by the kernel and the points themselves. In the case
of the square exponential kernel, the characteristic length scale
is the property that matters, since a long length scale implies
points are generally closer to each other. For other kernels,
such as a periodic kernel, this intuition does not necessarily
translate to “smoothness” of functions drawn from the RKHS.

In practice however, z as small as 16 works well on many
problems, mainly because the overall swapping routine only
needs a good ranking of the candidates. In fact, as long as
the ordering of the top few candidates are the same under
the approximate and exact change in objective, the iterative
swapping algorithm always picks the optimal replacement
candidate. In this case, the approximation will give the same
inducing set as the exact case; while slight differences in
ranking will generally give a replacement candidate that is still
good enough to decrease the objective (albeit “smaller steps”).
Figure 1 illustrates this reasoning by comparing the exact and
approximate cost reduction for candidate inducing points (left),
and their respective rankings (right). The approximation is
shown to work well.

When candidates that do not decrease the objective are
proposed based on the approximation, they will be rejected
after evaluating the change in the true objective function. This
mechanism makes the overall algorithm even more robust

5

to the quality and number of information pivots, as well as
the frequency of updates. We find that rejection rates are
typically low during early iterations (< 20%), but increase as
optimization nears convergence (to 30% or 40%). Rejection
rates also increase for sparser models, where each inducing
point plays a more critical role and is harder to replace.

D. Hybrid optimization

The overall hybrid optimization procedure performs block
coordinate descent in the inducing points and the continuous
hyperparameters as summarized in Alg. 1.

The discussion so far has focused on the discrete phase
of the algorithm, as the continuous phase is mostly straight-
forward. The Nyström expression for K̂ in Eq. (6) allows us to
compute the gradient with respect to the hyperparameters ana-
lytically. After the continuous steps, the hyperparameters have
changed, so all factorization matrices have to be recomputed.
This batch re-computation can be done efficiently by first com-
puting Lm = K[:, Im]M−>m , where MmM

>
m = K[Im, Im]

is the full Cholesky factorization of the m-by-m submatrix
of the kernel covariance matrix indexed by Im; then L̃m

follows from its definition in Sec. III-A, while Qm, Rm can
be computed using batch QR factorization given L̃m.

In practice, because we alternate the discrete and continuous
phases for many training epochs, attempting to swap every
inducing point in each epoch is unnecessary, just as there is no
need to run hyperparameter optimization until convergence at
every epoch. As long as all inducing set points are eventually
considered we find that optimized models can achieve similar
performance with shorter learning times.

E. Variants

There are alternative ways of selecting information pivots,
which give slight variants to the main algorithm described
above. Here, we define two such variants, and later explore
them experimentally in Sec. IV-A, and in particular in Fig.
3(f) and 3(c).

The first variant, OI, uses optimized information pivots as
in the CSI algorithm instead of randomly chosen ones. More
specifically, each time a new information pivot needs to be
selected, we take the one that has the maximum d values,
where d (defined in Appendix A), is the amount of prior
variance at that point which is not yet explained by the existing
factorization. This variant of our algorithm has an interesting
connection to the Informative Vector Machine (IVM) [10]. If
the likelihood model is isotropic Gaussian, then the maximum
reduction in entropy criteria of IVM is equivalent to selection
based on argmax{d}. Therefore, this variant actually selects
information pivots using the IVM criteria, except that the
information pivots are not part of the sparse representation
as in IVM.

The second variant actively adapts the size of information
pivot set, and is referred to as AA. Initialized to a small
size, and given an upper bound z, this variant exponentially
grows the information pivot set size whenever a proposed
candidate is rejected, and shrinks it linearly whenever one is
accepted. The idea behind the AA variant is the following:

as in most optimizations, large progress should be easier to
achieve at the beginning comparing to later when closer to
convergence, hence less computation is needed to construct a
useful approximation at early stages.

IV. EXPERIMENTS AND ANALYSIS

For the experiments that follow we jointly learn inducing
points and hyperparameters, a more challenging task than
learning inducing points with known hyperparameters [14],
[16]. For all but the 1D example, the number of inducing
points swapped per epoch is min(60,m). The maximum
number of function evaluations per epoch in conjugate gradient
hyperparameter optimization is min(20,max(15, 2d)), where
d is the number of continuous hyperparameters. Empirically
we find the algorithm is robust to changes in these limits. We
use two performance measures, (a) standardized mean square
error (SMSE), 1

N ΣN
t=1(ŷt − yt)2/σ̂2

∗, where σ̂2
∗ is the sample

variance of test outputs {yt}, and (b) standardized negative
log probability (SNLP) defined in [13] as

SNLP =
1

2N
ΣN

t=1

(
log(2πσ̂2

t) + (ŷt − yt)2/σ̂2
t

)
−CST (22)

where σ̂2
t is the point-wise predictive variance (in-

cluding the observation noise variance), and CST =
1

2N ΣN
t=1

(
log(2πσ̂2) + (ȳ − yt)2/σ̂2

)
is the negative log prob-

ability under a Gaussian N (ȳ, σ̂2) whose mean and variance
are sample estimates from training y.

A. Discrete input domain

Methods compared: We first show results on two discrete
datasets with kernels that are not differentiable in the input
variable x. Because continuous relaxation methods are not
applicable, we compare to discrete selection methods, namely,
random selection as baseline (Random), greedy subset-optimal
selection of Titsias [17] with either 16 or 512 candidates
(Titsias-16 and Titsias-512), and Informative Vector Machine
[10] (IVM). For learning continuous hyperparameters, each
method optimizes the same objective using non-linear CG.

For our algorithm we use z = 16 information pivots with
random selection (CholQR-z16). Later, we show how variants
of our algorithm trade-off speed and performance. Addition-
ally, we also compare to least-square kernel regression using
CSI (in Fig. 3(c)).

Implementation of compared methods: To ensure fair com-
parison, all sparse GP methods used in the discrete domain
experiments (CholQR, Random, Titsias’, and IVM) use the
same code for computing the variational free energy objective
function and its gradient. For the discrete inducing point
selection part of IVM, we use Lawrence’s IVM toolbox6. Fur-
thermore, care is taken to ensure consistent initialization and
termination criteria. For each random seed, all methods start
with exactly the same initial hyperparameters and inducing
points. All methods except IVM have the same termination
criteria: i.e., when they fail to decrease the objective function
by a threshold amount, or when they exceed the computational
budget. For IVM, because of the inconsistent objectives issue,

6From dcs.shef.ac.uk/people/N.Lawrence/ivm

6

Algorithm 1 Hybrid optimization of inducing points and hyperparameters

procedure HYBRID OPT(Im, θ, L̃m, Qm, Rm)
while improvement > threshold & time budget > 0 do

Randomly sample S ⊆ Im of predefined size to consider for swapping; . Begin discrete steps

for all i ∈ S do
Save a copy of the factorization matrices L̃m, Qm, Rm, as well as the objective value as F old

m ;
Down-date the factorization matrices as described in Sec. III-B to remove i;
Compute the true objective value Fm−1 over the down-dated model with Im\{i}, using (12), (13) and (9);
Select a replacement candidate using the fast approximate cost change from Sec. III-C1;
Evaluate the exact objective change ∆F , using (16), (17), and (18);
Get the objective value with the new candidate: Fnew

m = Fm−1 + ∆F ;

if Fnew
m < F old

m then
Include the candidate replacing i in I and update the matrices as in Sec. III-B, set F old

m = Fnew
m ;

else
Reject the swap proposal and revert to the factorization with i;

end if
Update the information pivots if needed as in Secs. III-C1 and III-C2.

end for
. Begin continuous steps

With Im fixed, run a fixed number of nonlinear conjugate gradients (CG) steps to optimize the objective in Eq. (5)
with respect to θ.

With the new hyperparameters, batch recompute the factorization matrices L̃m, Qm, Rm, as described in Sec. III-D.
end while
return Im, θ, L̃m, Qm, Rm

end procedure

the variational (or marginal likelihood) objective values highly
fluctuate when alternating between the discrete and continuous
phases, as demonstrated in Fig. 3(d) and 3(e). Therefore in or-
der to terminate learning at reasonable time for IVM, we make
it stop either when there is insufficient change in parameters
(no change in inducing points and change in hyperparameters
below a predefined threshold), or if the training epoch is larger
than 10, and the average relative change in objective function
value for the past 10 epochs is below a predefined threshold.

BindingDB dataset and graph kernels: The first discrete
dataset, from bindingdb.org, concerns the prediction of binding
affinity for a target (Thrombin), from the 2D chemical struc-
ture of small molecules (represented as graphs). We do 50-
fold random splits to 3660 training points and 192 test points
for repeated runs. We use a compound kernel, comprising
14 different labeled and unlabeled graph kernels [18]–[25]7.
Each graph kernel has its own data variance hyperparameter
determining its relevance, learned from data during continuous
hyperparameter optimization.

HoG dataset and histogram intersection kernels: The sec-
ond discrete domain problem comes from the Twin Gaussian
Processes work by Bo and Sminchisescu [4], where the task
is to predict 3D human joint position from histograms of
HoG image features [8]. Training and test sets have 4819 and
4811 data points. Because our goal is the general purpose
sparsification method for GP regression, we make no attempt
at the more difficult problem of modelling the multivariate

7Code from mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/Graphkernels

output structure in the regression as in [4]. Instead, we predict
the vertical position of joints independently, using a histogram
intersection kernel [11], having four hyperparameters: one
noise variance, and three data variances corresponding to the
kernel evaluated over the HoG from each of three cameras. We
select and show results on the representative left wrist here.

The results in Fig. 2 and 3 show that CholQR-z16 outper-
forms the baseline methods in terms of test-time predictive
power with significantly lower training time. Titsias-16 and
Titsias-512 shows similar test performance, but they are two
to four orders of magnitude slower than CholQR-z16 (see Figs.
3(d) and 3(e)). Indeed, Fig. 3(a) shows that the training time
for CholQR-z16 is comparable to IVM and Random selection,
but with much better performance. The poor performance of
Random selection highlights the importance of selecting good
inducing points, as no amount of hyperparameter optimization
can correct for poor inducing points. Fig. 3(a) also shows
IVM to be somewhat slower due to the increased number of
iterations needed, even though per epoch, IVM is faster than
CholQR. When stopped earlier, IVM test performance further
degrades.

Finally, Fig. 3(c) and 3(f) show the trade-off between the test
SMSE and training time for variants of CholQR, with baselines
and CSI kernel regression [1]. For CholQR we consider
different numbers of information pivots (denoted z8, z16, z64
and z128), and different strategies for their selection including
random selection, optimized information pivots (denote OI)
and adaptively growing the information pivot set (denoted

7

16 32 64 128 256 512

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

number of inducing points (m)

T
e

s
ti
n

g
 S

N
L

P

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

16 32 64 128 256 512

0.3

0.4

0.5

0.6

0.7

number of inducing points (m)

T
e
s
ti
n
g
 S

M
S

E
16 32 64 128 256 512

−1.2

−1

−0.8

−0.6

−0.4

number of inducing points (m)

T
e

s
ti
n

g
 S

N
L

P

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

16 32 64 128 256 512

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of inducing points (m)
T

e
s
ti
n
g
 S

M
S

E

Fig. 2. Test performance on discrete datasets. (top row) BindingDB, values at each marker is the average of 150 runs (50-fold random train/test splits times
3 random initialization); (bottom row) HoG dataset, each marker is the average of 10 randomly initialized runs.

AA). See Sec.III-E for details about the later two strategies.
These variants of CholQR trade-off speed and performance
(3(f)), all significantly outperform the other methods (3(c));
CSI, which uses grid search to select hyper-parameters, is slow
and exhibits higher SMSE. Interestingly, the variational sparse
GP formulation with random inducing points is on par with
CSI in terms of accuracy; while with the same sparse GP
framework, our hybrid optimization makes CholQR methods
significantly better. This suggests that the hybrid optimization
is the main source of accuracy improvement over CSI.

Redundant kernels for avoiding local minimum: In the
BindingDB problem, because we try to automatically select
relevant kernels from many choices as well as inducing points,
the optimization is prone to be trapped in bad local minimum.
In particular, bad initialization could lead to local minima
where good kernels are dropped while bad ones are kept; this
in turn renders selecting good inducing points impossible.

In order to fix this problem when learning relevance from
many kernels for sparse GP, we include two kernels that
are redundant but useful to facilitate the automatic relevance
learning for all the methods. The first redundant kernel is
simply the sum of all graph kernels mentioned above; the
second one is a constant identity, which is redundant because
GP has a diagonal noise term.

The two extra redundant kernels allow us to handle this
problem without any modification to the learning algorithms
or putting explicit prior over hyper-parameters. The sum kernel
forces all individual kernels to be active at the beginning until
the data variance (relevance) on this sum kernel is reduced
to zero. In a way, it acts as a temporary parameter sharing
that is automatically turned off by the optimization once
the truly relevant kernels are found. The second constant

diagonal kernel reduces the problem of bad local minima
where optimization quickly drives all data variance hyper-
parameters to zero, and use very large data noise to explain the
observations. This is often the case where bad initial hyper-
parameters and/or inducing points give a GP model that cannot
interpret the data at all.

Most importantly, with the variational energy objective,
hyperparameter optimization for all methods learned to reduce
the data variance (relevance) on these two redundant kernels to
zero after a few training epochs; while without this technique,
we obtain good solutions in most cases, but it produces
degeneracy with some initializations.

B. Continuous input domain

Although CholQR was developed for discrete input do-
mains, it can be competitive on continuous domains. To
that end, we compare to FITC [16] and IVM [10], using
RBF kernels with one length-scale parameter per input di-
mension; κ(xi,xj) = c exp(−0.5

∑d
t=1 bt(x

(t)
i − x

(t)
j)2). We

show results from both the PP log likelihood and variational
objectives, suffixed by MLE and VAR.

We use the 1D toy dataset of [16] to show how the PP
likelihood with gradient-based optimization of inducing points
is easily trapped in local minima. Fig. 4(a) and 4(d) show
that for this dataset our algorithm does not get trapped when
initialization is poor (as in Fig. 1c of [16]). To simulate
the sparsity of data in high-dimensional problems we also
down-sample the dataset to 20 points (every 10th point). Here
CholQR out-performs FITC (see Fig. 4(b), 4(e), and 4(c)).
By comparison, Fig. 4(f) shows FITC learned with a more
uniform initial distribution of inducing points avoids this local

8

16 32 64 128 256 512

10
2

10
3

10
4

number of inducing points (m)

T
o

ta
l
tr

a
in

in
g

 t
im

e
 (

s
e

c
s
)

(a)

16 32 64 128 256 512
0

500

1000

number of inducing points (m)

T
ra

in
in

g
 V

A
R

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

(b)

10
1

10
2

10
3

10
4

0.1

0.2

0.3

T
e
s
ti
n
g
 S

M
S

E

Time in secs (log scaled)

CholQR−z8
CholQR−z16

CholQR−OI−z16
CholQR−z64
CholQR−OI−z64
CholQR−AA−z128
IVM
Random
Titsias−16

Titsias−512
CSI

(c)

10
0

10
1

10
2

10
3

10
4

−0.3

−0.2

−0.1

0

Cumulative training time in secs (log scale)

T
e
s
ti
n
g
 S

N
L
P

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

(d)

10
0

10
1

10
2

10
3

10
4

0.55

0.6

0.65

0.7

0.75

Cumulative training time in secs (log scale)

T
e

s
ti
n

g
 S

M
S

E

CholQR−z16

IVM

Random
Titsias−16

Titsias−512

(e)

10
1

10
2

0.138

0.14

0.142

0.144

T
e

s
ti
n

g
 S

M
S

E

Time in secs (log scaled)

(f)

Fig. 3. Training time versus test performance on discrete datasets. (a) the average BindingDB training time; (b) the average BindingDB objective function
value at convergence; (d) and (e) show test scores versus training time with m = 32 for a single run; (c) shows the trade-off between training time and testing
SMSE on the HoG dataset with m = 32, for various methods including multiple variants of CholQR and CSI; (f) a zoomed-in version of (c) comparing the
variants of CholQR.

optima and achieves a better negative log likelihood of 11.34
compared to 14.54 in Fig. 4(c).

Finally, we compare CholQR to FITC [16] and IVM [10] on
a large dataset. KIN40K concerns nonlinear forward kinematic
prediction. It has 8D real-valued inputs and scalar outputs,
with 10K training and 30K test points. We perform linear de-
trending and re-scaling as pre-processing. For FITC we use
the implementation of [16]. Fig. 5 shows that CholQR-VAR
outperforms IVM in terms of SMSE and SNLP. Both CholQR-
VAR and CholQR-MLE outperform FITC in terms of SMSE
on KIN40K with large m, but FITC exhibits better SNLP. This
disparity between the SMSE and SNLP measures for CholQR-
MLE is consistent with findings about the PP likelihood in
[17]. CholQR methods use z = 128 for this experiment.

C. Large scale time and prediction benchmark

Recently, Chalupka et al. [6] introduced an empirical eval-
uation framework for approximate GP methods, and showed
that subset of data (SoD) often compares favorably to more
sophisticated sparse GP methods. Using this framework, we
benchmarked CholQR against SoD, FITC, and a heuristic
approach called Hybrid by Chalupka et al. [6], which learns
hyperparameters using SoD likelihood but uses FITC for
prediction with these learned hyperparameters. We use all
four large scale datasets from the framework, including two
synthetic sets, SYNTH2 and SYNTH8, of 30, 543 training
points of 2 and 8 dimensional inputs respectively, as well as
a 15 dimensional CHEM dataset of 31, 535 training points,

and the 21 dimensional SARCOS dataset of 44, 484 training
points. As shown in Fig. 6 and Fig. 7, our experiments show
that CholQR outperforms FITC in speed and predictive scores.
Compared to SoD and Hybrid, CholQR finds a much sparser
model. It is slower during training, but, because the model is
sparser, it is faster during testing.

V. CONCLUSION

We describe an algorithm for selecting inducing points
for Gaussian Process sparsification. It optimizes principled
objective functions, and is applicable to discrete domains and
non-differentiable kernels. On such problems it is shown to be
as good as or better than competing methods and, for methods
whose predictive behavior is similar, our method is several
orders of magnitude faster. On continuous domains the method
is competitive with state-of-art methods.

Acknowledgements
Financial support for this work was provided by NSERC

Canada, and the Canadian Institute for Advanced Research
(CIFAR). We thank TaeHyung Kim for the advice on data
collection for the BindingDB dataset.

APPENDIX A
INCREMENTAL CHOLESKY QR FACTORIZATION

Although not directly used in our swap-update algorithm,
the m-step incremental partial Cholesky and QR factorization
algorithm to be presented in this section lays the ground for

9

(a) CholQR-MLE (b) CholQR-MLE (c) SPGP

(d) CholQR-VAR (e) CholQR-VAR (f) SPGP

Fig. 4. Snelson’s 1D example: prediction mean (red curves); one standard deviation in prediction uncertainty (green curves); inducing point initialization
(black points at top of each figure); learned inducing point locations (the cyan points at the bottom, also overlaid on data for CholQR).

128 256 512 1024 2048

0.05

0.1

0.15

0.2

0.25

te
s
ti
n

g
 S

M
S

E

CholQR−MLE

CholQR−VAR

FITC
IVM−MLE

IVM−VAR

128 256 512 1024 2048
−2.5

−2

−1.5

−1

−0.5

te
s
ti
n
g
 S

N
L
P

Fig. 5. Test scores on KIN40K as function of number of inducing points: for each number of inducing points the value plotted is averaged over 10 runs from
10 different (shared) initializations.

later on presenting all the details of the one-step updating,
downdating and permuting algorithms used in swap-update
algorithm.

For all the algorithms that follow, we frequently refer to
columns or rows of K, but K never needs to be precomputed
(taking up O(n2) time and storage). Instead it just needs
to return its diagonal and specific column when queried (a
function handle for example).

Both Alg. 2 and 3 work with or without the augmentation
trick introduced in Sec. III-A. If σ is supplied, they work
on the augmented factors, in which case the matrix L in the
algorithms is the augmented version L̃ of Sec. III-A; and
L[1 : n, :] is the non-augmented portion. Q,R are the QR
factorization of L. The procedures also returns two vectors,
p and d. p is a permutation of (1, 2, . . . , n), and d stores
the diagonal values of the residual matrix between the full K
and current partial Cholesky factorization. In our application
to kernel covariance matrix, d is also the point-wise variance
that is not yet explained by (the factorization using) existing
inducing points. See post-conditions after the algorithm for
formal relationships among various quantities.

For ease of description, explicit row pivoting is not per-
formed (consistent with the description in Sec. III-A). Instead,
the ordering of rows of L[1 :n, :] always stays in the original
order of data points (1, 2, . . . , n), and we use p to keep track
of the permutation, and index into the rows of L[1 : n, :].

The columns are pivoted explicitly during the algorithm.
In practical implementation however, we find the equivalent
version with explicit row pivoting is slightly faster due to better
memory/cache locality.

Assuming that the inducing set Im = [i1, .., ik, .., im] is
known, Alg.2 CholQR mStep builds the factors incrementally.

After the CholQR mStep completes, the following post
conditions hold true:

1) p[1 :m] has the same set of elements as Im;
2) L[p, 1:m] is lower trapezoidal, and it is the rank - m

partial Cholesky factor of K[p,p];
3) L[p[1 :m], 1:m] is lower triangular, and it is the (com-

plete) Cholesky factor of K[p[1 :m],p[1 :m]];
4) d[p[1 :m]] = 0 and

d = diag
(
K−L[1 :n, 1:m]L[1 :n, 1:m]

>
)

5) if the augmentation trick is required by supplying σ, then
L[1 :m, 1:m] = σIm×m, where Im×m is the rank m
identity matrix;

6) with or without the augmentation,
L[:, 1:k] = Q[:, 1:k]R[1 :k, 1:k] ∀k ∈ {1, . . . ,m}.

APPENDIX B
EFFICIENT PIVOT PERMUTATION AND REMOVAL

Given k < m, Alg. 4 permutes pivot at position k to the
right most column of L, Q, and R. Afterward, this pivot

10

10
−2

10
0

10
2

10
4

10
6

10
−6

10
−4

10
−2

10
0

Hyperparameter training time [s]

S
M

S
E

(a) SYNTH2

10
−6

10
−5

10
−4

10
−3

10
−6

10
−4

10
−2

10
0

Test time per datapoint [s]

S
M

S
E

(b) SYNTH2

10
−2

10
0

10
2

10
4

10
6

10
−0.4

10
−0.2

10
0

Hyperparameter training time [s]

S
M

S
E

(c) SYNTH8

10
−6

10
−5

10
−4

10
−3

10
−0.4

10
−0.2

10
0

Test time per datapoint [s]

S
M

S
E

(d) SYNTH8

10
−2

10
0

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

Hyperparameter training time [s]

S
M

S
E

(e) CHEM

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Test time per datapoint [s]

S
M

S
E

(f) CHEM

10
−2

10
0

10
2

10
4

10
6

10
−2

10
−1

10
0

Hyperparameter training time [s]

S
M

S
E

(g) SARCOS

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Test time per datapoint [s]

S
M

S
E

SoD
FITC
Hybrid
CholQR−z128−EpochMax10
CholQR−z64−EpochMax5

(h) SARCOS

Fig. 6. Comparison of SMSE on the four benchmark datasets: (left column) SMSE as a function of hyperparameter learning time; (right column) SMSE as
a function of testing time. Both axes are log-scaled in all figures.

11

10
−2

10
0

10
2

10
4

10
6

−7

−6

−5

−4

−3

−2

−1

0

Hyperparameter training time [s]

M
S

L
L

(a) SYNTH2

10
−6

10
−5

10
−4

10
−3

−7

−6

−5

−4

−3

−2

−1

0

Test time per datapoint [s]

M
S

L
L

(b) SYNTH2

10
−2

10
0

10
2

10
4

10
6

−1

0

1

2

3

4

Hyperparameter training time [s]

M
S

L
L

(c) SYNTH8

10
−6

10
−5

10
−4

10
−3

−1

0

1

2

3

4

Test time per datapoint [s]

M
S

L
L

(d) SYNTH8

10
−2

10
0

10
2

10
4

10
6

−3

−2

−1

0

1

2

3

4

Hyperparameter training time [s]

M
S

L
L

(e) CHEM

10
−6

10
−5

10
−4

10
−3

−3

−2

−1

0

1

2

3

4

Test time per datapoint [s]

M
S

L
L

(f) CHEM

10
−2

10
0

10
2

10
4

10
6

−3

−2

−1

0

1

2

3

4

5

Hyperparameter training time [s]

M
S

L
L

(g) SARCOS

10
−6

10
−5

10
−4

10
−3

−3

−2

−1

0

1

2

3

4

5

Test time per datapoint [s]

M
S

L
L

SoD
FITC
Hybrid
CholQR−z128−EpochMax10
CholQR−z64−EpochMax5

(h) SARCOS

Fig. 7. Comparison of SNLP on the four benchmark datasets: (left column) SNLP as a function of hyperparameter learning time; (right column) SNLP as a
function of testing time. Horizontal (time) axes are log-scaled in all figures.

12

Algorithm 3 one step of incremental Cholesky and QR factorizations:
procedure CHOLQR 1(t, k, n, K, p, L, Q, R, d, σ)

p[t],p[k]← p[k],p[t] . pivot the indices
L[p[k], k]←

√
d[p[k]]

lnew ← K[p[(k+1):n],p[k]]

L [p [(k+1):n] , k]← 1
L[p[k],k] ∗

(
lnew−L [p [(k+1):n] , 1:(k−1)]∗L[p[k], 1:(k−1)]

>
)

d[p[k :n]]← d[p[k :n]]−(L[p[k :n], k]).ˆ2

. end of partial Cholesky part
if σ is given then . Need to do the augmentation

L[n+k, k]← σ
end if

. start of QR part
R[1 : (k−1) , k]← Q[:, 1:(k−1)]

>∗L[:, k]
Q[:, k]← L[:, k]−Q[:, 1:(k−1)]∗R[1 : (k−1) , k]
R[k, k]← ‖Q[:, k]‖
Q[:, k]← Q[:, k]/R[k, k]
return p, L, Q, R, d

end procedure

Algorithm 2 m steps of incremental Cholesky and QR factor-
izations:

procedure CHOLQR MSTEP(Im, n, K, σ)
p← [1, 2, . . . , n]
d← diag(K)
if σ is given then . Need to do the augmentation

L← zeros(n+m,m)
Q← zeros(n+m,m)

else
L← zeros(n,m)
Q← zeros(n,m)

end if
R← zeros(m,m)
for k = 1→ m do

t← position of Im[k] in p
p, L,Q,R,d← CholQR 1(t, k, n,K,p, L,Q,R,d, σ)

end for
return p, L, Q, R, d

end procedure

at the right most column would be removed by Alg. 5.
If (1) - (6) of the previous section hold as pre-conditions
for CholQR PermuteToRight, then they also hold as post-
conditions. The subroutine qr22 used by Alg. 4 simply com-
putes the QR factorization of a 2 by 2 matrix.

Algorithm 5 Remove pivot at the last position from the factors
procedure CHOLQR REMOVELAST(m, n, p, L, Q, R, d)

d[p[m :n]]← d[p[m :n]]+(L[p[m :n],m]).ˆ2

L[:,m]← 0
Q[:,m]← 0
R[1 :m,m]← 0
R[m, 1:m]← 0
return L, Q, R, d

end procedure

REFERENCES

[1] F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for
kernel methods. ICML, pp. 33–40, 2005.

[2] F. R. Bach. Consistency of Trace Norm Minimization.x JMLR, 9, 1019–
1048, June 2008.

[3] L. Bo and C. Sminchisescu. Greedy block coordinate descent for large
scale Gaussian process regression. UAI, pp. 43–52, 2008.

[4] L. Bo and C. Sminchisescu. Twin gaussian processes for structured
prediction. IJCV, 87:28–52, 2010.

[5] A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for
machine learning. ICML, pp. 911–918 , 2000.

[6] K. Chalupka, C. K. I. Williams, and I. Murray. A framework for eval-
uating approximation methods for gaussian process regression. JMLR,
14(1):333–350, February 2013.

[7] L. Csató and M. Opper. Sparse on-line gaussian processes. Neural
Comput., 14:641–668, 2002.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. IEEE CVPR, pp. 886–893, 2005.

[9] S. S. Keerthi and W. Chu. A matching pursuit approach to sparse
gaussian process regression. NIPS 18, pp. 643–650. 2006.

[10] N. D. Lawrence, M. Seeger, and R. Herbrich, Fast sparse gaussian
process methods: The informative vector machine. NIPS 15, pp. 609–
616. 2003.

[11] J. J. Lee. Libpmk: A pyramid match toolkit. TR: MIT-CSAIL-TR-2008-
17, MIT CSAIL, 2008. URL http://hdl.handle.net/1721.1/41070.

[12] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse
approximate gaussian process regression. JMLR, 6:1939–1959, 2005.

[13] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press, 2006.

[14] M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward selection
to speed up sparse gaussian process regression. AI & Stats. 9, 2003.

[15] A. J. Smola and P. Bartlett. Sparse greedy gaussian process regression.
In NIPS 13, pp. 619–625. 2001.

[16] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-
inputs. NIPS 18, pp. 1257–1264. 2006.

[17] M. K. Titsias. Variational learning of inducing variables in sparse
gaussian processes. JMLR, 5:567–574, 2009.

[18] C. Walder, K. I. Kwang, and B. Schölkopf. Sparse multiscale gaussian
process regression. ICML, pp. 1112–1119, 2008.

[19] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs.
In Proceedings of the International Conference on Data Mining, pages
74-81, 2005.

[20] T. Gaertner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness
results and efficient alternatives. In Proceedings of the 16th Annual Con-
ference on Computational Learning Theory and 7th Kernel Workshop,
pages 129-143. ISBN 3-540-40720-0.

[21] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between
labeled graphs. In Proceedings of the 20th International Conference on
Machine Learning, Washington, DC, United States, 2003.

13

Algorithm 4 Fast permuting a pivot to the right most position
procedure CHOLQR PERMUTETORIGHT(k, m, n, p, L, Q, R, d, is augmented)

for s = k → (m−1) do
p[s],p[s+1]← p[s+1],p[s] . pivot the indices
Q1, R1← qr22(L[p[s : (s+1)], s : (s+1)]

>
)

L[p[s :n], s : (s+1)]← L[p[s :n], s : (s+1)]∗Q1
L[p[s], s+1]← 0
R[1 :m, s : (s+1)] = R[1 :m, s : (s+1)]∗Q1
Q2, R2← qr22(R[s : (s+1) , s : (s+1)])
R[s : (s+1) , 1:m]← Q2>∗R[s : (s+1) , 1:m]
Q[:, s : (s+1)]← Q[:, s : (s+1)]∗Q2
R[s+1, s]← 0
if is augmented then

Q[n+(s : (s+1)) , 1:m]← Q1>∗Q[n+(s : (s+1)) , 1:m]
end if

end for
return p, L, Q, R, d

end procedure

[22] J. Ramon and T. Gaertner. Expressivity versus efficiency of graph
kernels. In First International Workshop on Mining Graphs, Trees and
Sequences (held with ECML/PKDD’03), 2003.

[23] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, 12:2539-2561, 2011.

[24] N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and K.
M. Borgwardt. Efficient graphlet kernels for large graph comparison.
In Proceedings of the International Conference on Artificial Intelligence
and Statistics, 2009.

[25] S. V. N. Vishwanathan, N. N. Schraudolph, I. R. Kondor, and K. M.
Borgwardt. Graph kernels. Journal of Machine Learning Research,
11:1201-1242, 2010.

Yanshuai Cao received the B.S. degree in Computer
Science and Mathematics & Statistics from the Uni-
versity of Toronto in 2010. He is currently pursuing
the Ph.D. degree in the Department of Computer Sci-
ence at the University of Toronto, under supervision
of David Fleet and Aaron Hertzmann. His research
interests include computer vision, machine learning
and statistics.

Marcus A. Brubaker received his Ph.D. in Com-
puter Science from the University of Toronto in 2011
and from 2011 to 2014 he was a postdoctoral fellow
at TTI-Chicago. He is currently a postdoctoral fellow
at the University of Toronto and consults with Cadre
Research Labs. His research interests span statistics,
machine learning and computer vision and includes
applications in computational biology and forensics.

David J. Fleet David J Fleet received the PhD in
Computer Science from the University of Toronto
in 1991. He was on faculty at Queen’s University in
Kingston from 1991 to 1998, and then Area Manager
and Research Scientist at the Palo Alto Research
Center (PARC) from 1999 to 2003. In 2004 he joined
the University of Toronto as Professor of Computer
Science.

His research interests include computer vision,
image processing, visual perception, and visual neu-
roscience. He has published research articles, book

chapters and one book on various topics including the estimation of optical
flow and stereoscopic disparity, probabilistic methods in motion analysis,
modeling appearance in image sequences, motion perception and human stere-
opsis, hand tracking, human pose tracking, latent variable models, physics-
based models for human motion analysis, and large-scale image retrieval.

He was awarded an Alfred P. Sloan Research Fellowship in 1996. He has
won paper awards at ICCV 1999, CVPR 2001, UIST 2003, BMVC 2009.
In 2010 he was awarded the Koenderink Prize for his work with Michael
Black and Hedvig Sidenbladh on human pose tracking. He has served as Area
Chair for numerous computer vision and machine learning conference. He was
Program Co-chair for CVPR 2003 and for ECCV 2014. He has been Associate
Editor, and Associate Editor-in-Chief for IEEE TPAMI, and currently serves
on the TPAMI Advisory Board. He is a Senior Fellow of the Canadian Institute
for Advanced Research.

Aaron Hertzmann is a Senior Research Scientist
at Adobe Systems. He received a BA in Computer
Science and Art/Art History from Rice University
in 1996, and a PhD in Computer Science from New
York University in 2001, respectively. He was a
Professor at University of Toronto for ten years,
and has also worked at Pixar Animation Studios,
University of Washington, Microsoft Research, Mit-
subishi Electric Research Lab, Interval Research
Corporation and NEC Research. He is a fellow of
the Canadian Institute for Advanced Research, and

an associate editor for ACM Transactions on Graphics. His awards include
the MIT TR100 (2004), an Ontario Early Researcher Award (2005), a Sloan
Foundation Fellowship (2006), a Microsoft New Faculty Fellowship (2006),
the CACS/AIC Outstanding Young CS Researcher Award (2010), and the
Steacie Prize for Natural Sciences (2010).

