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1. Overview
This document includes supplementary material to Lost! Leveraging the Crowd for Probabilistic Visual Self-

Localization. Included are detailed versions of the algorithms and other results.

2. Additional Results
Included in this document are additional results which could not fit in the main paper. See Figure 1 for frames from

the remaining training sequences and Figures 2 and 3 for frames from the test sequences where ground truth data is
not availble.

3. GMM Simplification
As described in the appendix of the main paper, given a Gaussian mixture model f(x) =

∑
a πaN (x|µa,Σa) we

seek g(x) =
∑
b ωbN (x|µb,Σb) with the least number of components such that D(f‖g) < ε where D(f‖g) is the KL

divergence. We begin with g(x) = f(x) and successively remove the lowest weight component of g(x) and update
the remaining components to better fit f(x) so long as the KL divergence (or its upper bound) is below the threshold
ε. As explained in the paper, experimentation found an optimal value of this parameter to be ε = 10−2nats for our
problem.

The upper bound [1] used is

D̂(φ, ψ, f, g) =
∑
a,b

φa,b

(
log

φa,b
ψa,b

+D(fa‖gb)
)

(1)

where φa,b and ψa,b are variational parameters and

D(fa‖gb) =
1

2

[
log |Σb| − log |Σa|+ Tr(Σ−1

b Σa)− d+ (µa − µb)TΣ−1
b (µa − µb)

]
(2)

is the KL divergence between the Gaussian mixture components fa and gb. To minimize this objective (and improve
the fit of a given approximation) we note that the global optima can be found for each set of parameters individually.
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Figure 1. Selected Frames: Inference results for the remaining training sequences. The left most column shows the full map
region for each sequence, followed by zoomed in sections of the map showing the posterior distribution over time. The black line
is the GPS trajectory and the concentric circles indicate the current GPS position. Grid lines are every 500m.

That is, by setting the derivatives of (1) equal to zero and solving, one can find

µb =

(∑
a

φa,b

)−1∑
a

φa,bµa

Σb =

(∑
a

φa,b

)−1∑
a

φa,b
(
Σa + (µa − µb)(µa − µb)T

)
ωb =

∑
a

φa,b

ψa,b = ωb
φa,b∑
a′ φa′,b

φa,b = πa
ψa,b exp (−D(fa‖gb))∑
b′ ψa,b′ exp (−D(fa‖gb′))

Note that it is necessary to enforce the constraints
∑
b ωb = 1,

∑
b φa,b = πa and

∑
a ψa,b = ωb through the use of

Lagrange multipliers. This procedure is summarized in Algorithm 1.



Algorithm 1 GMM Simplification
Input: f(x) =

∑
a πaN (x|µa,Σa)

Initialize g = f , φ← diag(π), ψ ← diag(π)
loop

Select a component to remove b̂ = arg minb′ωb′

for b 6= b̂ do
Remove b̂ from the variational parameters
ω′b ← ωb +

ωb̂

|g|−1

µ′b ← µb
Σ′b ← Σb

∀a: φ′a,b ← φa,b +
φa,b′

|g|−1

∀a: ψ′a,b ← ω′b
φ′a,b∑
a′ φ
′
a′|b

end for
while D̂(φ′, ψ′, f, g′) ≥ ε and not converged do

Minimize D̂(φ′, ψ′, f, g′) w.r.t. φ′, ψ′, ω′, µ′, Σ′.
∀b 6= b̂: ω′b ←

∑
a φ
′
a,b

∀a, b 6= b̂: ψ′a,b ← ω′b
φ′a,b∑
a′ φa′,b

∀a, b 6= b̂: φ′a,b ← πa
ψ′a,b exp(−D(fa‖g′b))∑
b′ ψa,b′ exp(−D(fa‖g′b′ ))

∀b 6= b̂: µ′b ←
(∑

a φ
′
a,b

)−1∑
a φ
′
a,bµa

∀b 6= b̂: Σ′b ←
(∑

a φ
′
a,b

)−1∑
a φ
′
a,b

(
Σa + (µa − µ′b)(µa − µ′b)T

)
end while
if D̂(φ′, ψ′, f, g′) ≥ ε then

Return: g
else

g ← g′

end if
end loop

4. Filtering Algorithm
Due to space constraints, the equations necessary to implement the filtering algorithm could not be included. In-

stead, they are presented here in Algorithm 2.
The function used to determine whether to use a Monte Carlo approximation or an analytic approximation is:

g(µ,Σ) =

∫
p(ut|ut−1, st−1)N (st−1|µ,Σ)dst−1 (3)

In the model we have that

p(ut|ut−1, st−1) = ξut,ut−1

∫ `ut−1
+`u

`ut−1

N (x|aTd st−1,a
T
d Σx

ut−1
ad)dx (4)



where ξut,ut−1 is a constant. Substituting this in we have

g(µ,Σ) = ξut,ut−1

∫ ∫ `ut−1
+`u

`ut−1

N (x|aTd st−1,a
T
d Σx

ut−1
ad)N (st−1|µ,Σ)dxdst−1

= ξut,ut−1

∫ `ut−1
+`u

`ut−1

∫
N (x|aTd st−1,a

T
d Σx

ut−1
ad)N (st−1|µ,Σ)dst−1dx

= ξut,ut−1

∫ `ut−1
+`u

`ut−1

N (x|aTd µ,aTd (Σx
ut−1

+ Σ)ad)dx

= ξut,ut−1

(
Φ(`ut−1

+ `u|m, s2)− Φ(`ut−1
|m, s2)

)
where m = aTd µ, s2 = aTd (Σx

ut−1
+ Σ)ad and Φ(x|m, s2) is the CDF of a univariate normal distribution with mean

m and variance s2 evaluated at x.

References
[1] J. Hershey and P. Olsen. Approximating the Kullback-Leibler Divergence Between Gaussian Mixture Models. In ICASSP,

volume 4, pages 317–320, 2007. 1



Algorithm 2 Filter
Input: Posterior at t− 1, {P t−1

u ,Mt−1
u }, and observation at t, yt

Initialize mixtures,Mt
u ← ∅, for all u

for all streets ut−1 do
for all streets ut reachable from ut−1 do
M′ ← ∅
for all (ω, µ,Σ) ∈Mt−1

ut−1
do

if ‖ ddµg(µ,Σ)‖ < η then
Analytically approximate cpredN (µpred,Σpred)
cpred ← p(ut|ut−1, st−1 = µ)
µpred ← Aut,ut−1

µ+ but,ut−1

Σpred ← Σx
ut

+ Aut,ut−1ΣAT
ut,ut−1

else
Sample to compute cpredN (µpred,Σpred)
for j = 1, . . . ,M do

s
(j)
t−1 ∼ N (µ,Σ)

s
(j)
t ← Aut,ut−1s

(j)
t−1 + but,ut−1

end for
cpred ←M−1

∑M
j=1 p(ut|ut−1, s

(j)
t−1)

µpred ← (Mcpred)
−1
∑M
j=1 p(ut|ut−1, s

(j)
t−1)s

(j)
t

Σpred ← Σx
ut

+
∑M
j=1

p(ut|ut−1,s
(j)
t−1)

Mcpred
(s

(j)
t − µpred)(s

(j)
t − µpred)T

end if
Incorporate yt to compute cupdN (µupd,Σupd)

Σupd ←
(
MT

ut
Σy
ut

−1Mut
+ Σ−1

pred

)−1

µupd ← Σupd

(
MT

ut
Σy
ut

−1
yt + Σ−1

predµpred

)
cupd ← ωcpred|Σupd|0.5

|Σpred|0.5|Σy
ut |0.5

exp
(
− 1

2‖yt −Mutµpred‖2Σy
ut+MutΣpredMT

ut

)
if ut 6= ut−1 then

Add (cupd, µupd,Σupd) toM′
else

Add (cupd, µupd,Σupd) toMt
ut

end if
end for
Compute (c, µ,Σ) to approximate components ofM′ and add toMt

ut

end for
end for
for all streets u do

Set P tu to the sum of the weights of mixtureMt
u

Normalize the weights of mixtureMt
u

if `u
|Mt

u|
< 10 meters then

SimplifyMt
u with Algorithm 1

end if
end for
Normalize P tu so that

∑
u P

t
u = 1.

For all u, if P tu < 10−50 set P tu ← 0 andMt
u ← ∅

Return: Posterior at t, {P tu,Mt
u}



Figure 2. Selected Frames of Test Sequences: Inference results for the testing sequences. The left most column shows the full
map region for each sequence, followed by zoomed in sections of the map showing the posterior distribution over time. GPS data
is unavailable for these sequences. Zooming is done based on a smoothed bounding box of the dominant modes of the posterior.
Grid lines are every 500m.



Figure 3. Selected Frames of Test Sequences: Inference results for the testing sequences. The left most column shows the full
map region for each sequence, followed by zoomed in sections of the map showing the posterior distribution over time. GPS data
is unavailable for these sequences. Zooming is done based on a smoothed bounding box of the dominant modes of the posterior.
Grid lines are every 500m.


