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ABSTRACT

We study the interaction between rate control and medium
access control in wireless networks. We start out by devel-
oping a discrete time model for the interaction of TCP Reno
rate control and IEEE 802.11 medium access control. Con-
sidering the operating point of the system, we obtain the
well-known characteristics that the throughput decreases as
the number of nodes in the network increases and that IEEE
802.11 does not provide per-flow fairness. We then pro-
pose and study alternative rate and medium access control
schemes which allow to offer per-flow fairness, as well as pro-
vide a stable and predictable throughput as the number of
nodes increases.
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It is well-known that the combination of TCP Reno rate
control and IEEE 802.11 as medium access control has sev-
eral drawbacks in the context of a single cell wireless ad hoc
network [1]: (a) the throughput deteriorates as the num-
ber of nodes in the network increases and (b) IEEE 802.11
medium access control leads to per-node fairness but not
per-flow fairness, i.e. IEEE 802.11 gives each node an equal
chance of accessing the channel and hence penalizes flows
which share a common network node with other flows. Here,
we develop a mathematical model to explain these character-
istics. In addition, we develop alternative rate and medium
access control schemes that provide per-flow fairness and a
stable throughput as the number of nodes increases.

In order to focus on the interaction of rate and medium
access control, we make several simplifying assumptions for
our analysis. In particular, we assume that (a) packet loss is
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1. INTRODUCTION

In this paper we investigate the interaction between rate
(congestion) and medium access control in wireless networks.
To simplify the analysis, we consider the case of a single
cell wireless ad hoc network. We study the following ques-
tions: (a) Throughput: how does the system throughput
scale as the number of nodes in the network increases, and
(b) Fairness: how is the throughput shared among flows
(connection). We will use the terms flow and connection
interchangeably.
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due to fading or co-channel interference, (b) all nodes trans-
mit at same data rate, i.e. we ignore that different nodes
might experiences channel conditions and adapt their tran-
mission rates accordingly, and (c) all packets are assumed to
be of the same (expected) length. Incorporating the above
issues in the model is beyond the scope of this paper.

Our analysis provides new insight into the interaction be-
tween rate control and medium access control; in particular,
it suggests that a simple medium access control scheme is
sufficient to provide per-flow fairness. We comment on this
in more details in Section 4.

Below we highlight the literature that is most relevant
to our work. For the analysis, we use the models pro-
posed by Kelly [4] and Low [5] in order to characterize the
dynamics of TCP Reno rate control, and the models pro-
posed by Bianchi [2] and Kumar et al. [3] to characterize
the IEEE 802.11 medium access control. The IEEE 802.11
model presented in [2, 3] is derived under the assumption
that nodes always have a packet to send (node saturation
assumption); however, this assumption is not true when the
transmission rates are regulated through TCP Reno rate
control and queues periodically become empty. Here, we
adapt the model of [3] to a more general setting where nodes
can have empty queues. The fact that 802.11 medium ac-
cess control does not provide per-flow fairness is well-known.
Approaches to address this issue have been proposed by
Nandagopal et al. [6], Ozugur et al. [7], and Bharghavan et
al. [8]. Whereas the approaches in [6, 7, 8] require the im-
plementation of separate queues for each flow and possibly
the exchange of some global state information, the approach



presented here is fully distributed and uses only a single
(shared) queue at each node. In [9], Heusse et al. propose
a medium access control scheme to avoid a throughput col-
lapse as the number of nodes increases. The scheme uses
channel feedback information (i.e. the number of idle slots
between transmission attempts) to adapt the channel access
probabilities and stabilize the throughput. Compared with
the analysis presented here, the work in [9] does not con-
sider per-flow fairness nor does it study the interaction of
the medium access control with a given rate control scheme.

The rest of the paper is organized as follows. In Section 2,
we study the interaction of TCP Reno rate control and IEEE
802.11 medium access control. In Section 3, we consider
alternate medium access rate control mechanisms to provide
per-flow fairness and provide a stable throughput.

2. INTERACTIONOFTCPRENOANDIEEE
802.11

Consider a single cell ad hoc network consisting of a set
of nodes N = {1,2,--- , N} where all N nodes are within
transmission range of each other. Let M = {1,2,.-- M}
be the set of active TCP connections, and let s(m) and d(m)
be the source and destination node of connection m, respec-
tively. For connection m, let bs ., be the number of active
data packets (i.e. packets within the current TCP window)
that have not yet been successfully transmitted and are still
backlogged in the MAC-layer at node s(m), and let bq ,,, be
the number of backlogged ACK packets at node d(m). Fur-
thermore, let A, be the transmission rate of connection m
(we provide an expression for A, in the next subsection).
Using the above definitions, let x = (A, bs,bs) where A\ =
(>\1,---,)\M), bs = (bs,1,...,bs,M), and bd = (bd,l,---,bd,M)-
We use © = (A, bs,bq) as the system state.

To study the interaction between TCP Reno and the IEEE
802.11 protocol, we pursue the same approach as in [5] to
analyze TCP Reno and model the dynamics as a discrete
time system

z(t +1) = ¢(z(t),

where z(t) = (A(t),bs(t),bq(t)) is the state at time ¢t and
the function ¢ describes the system dynamics. As in [5],
we then study the existence of an operating point z* such
that * = ¢(z*), and use =™ to characterize the system per-
formance in terms of throughput and fairness. We proceed
as follows. In Subsection 2.1 we characterize the dynam-
ics of the transmission rates under TCP Reno, and Subsec-
tion 2.2 we model the dynamics of the backlog under IEEE
802.11. In Subsection 2.3 we then combine these two models
to formulate the system model that we use to analyze the
interaction between TCP Reno and IEEE 802.11.

We use the following notation. Let by, = bs,;m+ba,m be the
total backlog of connection m and let B, be the total backlog
at node n, i.e. B, is given by B, = EmeM,S(m):n bs,m +
ZmeM,d(m):n ba,m. We assume that each node n has a finite
amount of buffer space available given by B, > 0.

2.1 TCP Reno Rate Control

For our analysis of TCP Reno, we use the discrete time
model proposed by Kelly in [4] and used by Low in [5]. That
is, we consider a discrete time system where the length of
each time slot is equal to one time unit. For a connection
m € M, let wy,(t) be the window size (in terms of packets)

t=1,2,..,

of connection m during time slot ¢, ¢ > 0. The transmission
rate A (t) (in terms of packets per time slot) of connection
m at time ¢ is then given by

Am(t) = wm (t)/Dm (1), (1)

where D,,(t) is the round-trip time of connection m, i.e.
D, (t) denotes the number of time slots it takes for connec-
tion m to receive a positive ACK for a packet sent at the
beginning of slot ¢.

TCP Reno uses packet loss as a congestion indicator [5],
where window size wn, is increased by ﬁ for each acknowl-
edged packet and halved for each packet that is not acknowl-
edged. As in [4], we characterize the likelihood that a given
packet belonging to connection m is not acknowledged and
the window size wy, is halved at time ¢ by a congestion in-
dicator function P,. We make the following assumption for
the congestion indicator function.

AsSUMPTION 1. The congestion indicator function for con-
nection m s a function of the backlog (of all connections) at
the source node s(m) and destination node d(m) of connec-
tion m, which is given by By(m) + By(m)- Furthermore, we
have that P : [0, By(m) + Bam)] = [0,1] is strictly increas-

ing with Py (0) =0 and Py, (Bs(m) + Bd(m)) =1.

The above assumption implies that the less buffer space that
is available along the path of connection m, the more likely
it is that a data packet, or ACK, is lost and the window w,
is halved. One can show (see [4] for a detailed derivation)
that the expected change in the window size w,, (per time
slot) at time ¢ is then given by

An(®) { L= P (Bagmy (t) + Bagm) (1))

W (t)

_ Wm (t)
2

P (But (1) + Ba (1) } )

Using the above equation, we can then express the expected

change in the transmission rate A, as follows. Recall that
bs,m is the number of active data packets (i.e. packets within
the current TCP window) of connection m that have not yet
been successfully transmitted and are still backlogged at the
source node s(m) of connection m. As all active packets (i.e.
all data packets and ACKs within the current window size)
of connection m are backlogged either at node s(m) or d(m),
and we have that

Wi (t) R bs,m () + ba,m (8) = b (1), 3)

where the above equation does not hold strictly (and intro-
duces a modeling error) as it ignores lost packets. For TCP
Reno we have that wn,(t) > 1, m € M, and in the following
we impose the condition that

bm(t) > 1,

Using Eq. (1)-(4), one can show (see [5] for a derivation) that
(under suitable assumptions) the expected rate of change in
the transmission rate \,, at time ¢ is given by
Am (t)?
bm(t)?

=P (Ba(m) (t) + Bagm) (1)) (bm;t)Q) ] '

t>1. (4)




2.2 |EEE 802.11 Medium Access Control

The medium access control of IEEE 802.11 works roughly
as follows [3]. Before a transmission attempt, nodes sense
the channel for a given time interval L; (called DIFS - Dis-
tributed Inter Frame Space) to detect whether the channel
is free (idle). If the channel is sensed to be free, a node will
wait for some random time before starting with the trans-
mission as follows. Each node keeps track of a back-off timer
and a retry counter. The back-off timer interval is chosen
at random uniformly from the interval [1, CW], where CW
is set equal to a given constant CWyin for the first trans-
mission attempt of a packet. The back-off timer is then
decremented by one every time the channel is sensed to be
idle. When the back-off timer reaches zero, a transmission
starts. If a collision occurs (i.e. two or more nodes make a
transmission at the same time), CW is doubled (up to some
given constant CWmax), the retry counter is incremented
and the packet is backlogged waiting for next transmission.
When the retry counter reaches the maximal retry limit K,
the packet is discarded.

Bianchi [2] and Kumar et al. [3] have shown that (under
suitable assumptions) the IEEE 802.11 protocol can be mod-
eled as follows. Let L; be the time a node has to detect the
channel to be idle before making a transmission attempt.
We will refer to this time as an idle period. Let N, be the
number of nodes that have a packet to send. Then after
an idle period, each of the N, nodes makes a transmission
attempt with probability g(N,) where g(NN,) is the unique
solution to the following fixed-point equation [3]

{ g=1-(1-q""

149 4. 49K
9= SoFoTwr++0Fwg

and wy = min{2 CWmintl OWmaxt11  In the above equa-
tion, ¥ characterizes the collision probability observed by a
given node. If exactly one node makes a transmission, then
the packet is successfully transmitted. We assume that all
packets have the same length and the time it takes to trans-
mit one packet is equal to L,. If two or more nodes make
a transmission, then all transmitted packets are lost and
become backlogged. Let L. be the duration of a collision
period. We make the following assumption.

AsSSUMPTION 2. We have that 0 < L; < Lp and 0 < L, <
L,.

The above assumption is based on the IEEE 802.11 standard
where the time required to sense an idle channel and a colli-
sion does not exceed the transmission delay of a packet [3],
i.e. when the RTS/CTS mechanism then we have L. < L,,
otherwise we have L. = L,.

Note that in the above IEEE 802.11 model, nodes make
a transmission attempt only after an idle period of length
L;. Furthermore, an idle period is followed by either (a)
another idle period of length L; in the case where no node
makes a transmission attempt, (b) a successful transmission
of length L, in the case where exactly one node makes a
transmission attempt, or (c) a collision period of length L.
in the case where two or more nodes make a transmission
attempt. This observation suggests that it might be con-
venient to characterize the system dynamics by considering
the times when idle slots start. We pursue this approach
in our analysis. More precisely, we mark the times when
a new idle period starts as follows. Starting the system at

time ¢ = 0, let ¢ be the time at which the kth idle period
of length L; ends.

Using the above model, we can characterize the probabil-
ity that a packet is successfully transmitted as follows. Let
B, (k) be the backlog number at node n at time ¢, and let
the function I,(B,(k)) be given by

I.(B») :{

Note the I4(Br(k)) indicates whether node n has a packet
to transmit at time ¢.

The probability that node n makes a successful transmis-
sion attempt between ¢ and ;41 is then equal to

I.(B (k))q(N (k))
1— I, (Bn(k))q k))H(

= 22;1 I.(Bn

B, 0<B,<1,
1, B>l ®)

— L(Bi(k))a(Na(k)),

where N, (k) (k)). We refer to N, (k) as the

number of active nodes at time . Note that I,(By(k))q(Ns(k))

is the probability that node n makes a transmission attempt
in the time interval [t,tx+1] and

1 — IL.(Bn k))q k))H(

is the probability that all other nodes (except node n) do
not make a transmission attempt in [tg, tx1]-

Assuming that g(N,(k)) is small, we can simplify the
probability that node n makes a successful transmission at-
tempt between ¢, and tr4+1 to

I.(Bn (k))q(Na(k))e ¢
Na(k)q(Na(k)) and

Ba(k))a(Na(k)))

where G(k) =

e I (1~ L(B(®)aN. (k)
= (B (R)a(V. ()

We refer to G(k) as the offered load at time tg.

Consider a connection m € M with source node s(m).
Given that node s(m) makes a transmission attempt, we
assume that the probability that this packet belongs to con-

nection m is equal to ;ng) where bs,,, is the number of
s(m

packets of connection m backlogged at node s(m) and By ()
is the total backlog (over all connections) at node s(m). The
probability that a data packet of connection m is success-
fully transmitted between t;, and tx41 is then given by

Gom(k)eC®),

where Gsm (k) = 51’";@3)1 (Bs(m)(k))q(Na(k)) and we use

the convention that Gs,m(k) = 0 if By (k) = 0.
Similarly, the probability that an ACK of connection m
is successfully transmitted is by node d(m) given by

Gam(k)e ™)

where Gy, (k) = bd "‘(fz)I (Bagm)(k))q(Na(k)) and we use
the convention that Gd,m( ) = 0if By (k) = 0.

2.3 System Model

Combining the TCP Reno and IEEE 802.11 model given
above, we obtain the following system model that we use for
our analysis. Let the time t; be as defined in the previous



subsection and let z(k) = (A(k),bs(k), ba(k)) be the system
state at time ¢;. We then describe the system as a discrete
time system

z(k +1) = ¢(z(k)),

where the function ¢ characterizes the expected change of
the state x(k) between time t5 and tx+1. More precisely, the
expected change in the A (k), bs,m (k), and bg,m (k), are as
given below.

Let L(k) be the expected length of the interval [tx, tr+1]
given by (see [12] for a detailed derivation)

k>1,

L(k) = Li+Gk)e °PL, +... (6)
+ (1 —e W _ G(k)e_G(k))Lc7

where e"¢®) G(k)e¢® and 1 — e~ ®) — G(k)e C®) | are
the probabilities that between ¢; and tx4+1 we have no trans-
mission attempt, a successful transmission, or collision, re-
spectively. Note that the expected number of new data pack-
ets of connection m received between time t5 and tx1is then
equal to A, (k)L(k). Using the TCP Reno model of Subsec-
tion 2.1, the expected change in the transmission rate of
connection m in the interval [tx,tr+1] is given by

Am(k+1) = (7)

M) + 2 (h? [P - P 1,

where the congestion indicator function Py, (k) = P, (Bs(m) (k)+

Bd(m)(k)) is as given in Assumption 1.

Using the IEEE 802.11 model of Subsection 2.2, the ex-
pected change in the backlog of connection m at node s(m)
between time ¢;, and ;i is given by

bs,m(k+1) = (8)
be.m (k) + Am (k) L(k) — Gom (k)eC®),

where A\, (k)L(k) is the expected number of new data pack-
ets of connection m received between time t; and try1, and
Gs,m(k)e~¢®) is the probability that a data packet of con-
nection m is successfully transmitted between time t; and
tr+1- Similarly, the expected change in the backlog of con-
nection m at node d(m) between time t; and tx+1 is given
by

ba,m (k) + Gs,m (k)e_G(k) — Gd,m(k)e—G(k),
where G 1 (k)e~ ¢ is the probability that a new ACK gets

generated at node d(m) and Gq,,(k)e”®*) is the probabil-
ity that an ACK is successfully transmitted.

To characterize the system performance in terms of through-

put and fairness, we analyze the performance at a system
operating point.

DEFINITION 1. We call z* € R‘?,_M an operating point if
z* = ¢(z).
Note that the system is in equilibrium at an operating point,
i.e. the expected change of the system state at an operating
point is equal to 0. We are interested in the following ques-
tions: (a) does an operating point exist and is it unique and
(b) what is the system performance in terms of throughput
and fairness at an operating point.

Subnet A

y_§

Figure 1: A special case

Subnet B

In the following, we use the operating point to charac-
terize the system performance. Computing the average sys-
tem performance would require to compute the steady-state
probabilities of the Markov chain associated with the sys-
tem dyanamics, which is not feasible for the above system.
In Section 2.5, we will use a numerical case study to investi-
gate how well the operating point analysis characterizes the
average system performance.

Definition 1 does not require that the backlog at an op-
erating point z* = (A*,b,b;,) takes on an integer value.
As the system dynamics ¢ captures the expected change in
the state variables, we can interpret b} ,, as an approxima-
tion for the expected backlog of connection m at node s(m),
and by ,, as an approximation of the expected backlog at
node d(m). Furthermore, the node backlog B;, at an oper-
ating point can be interpreted as an apporximation of the
expected backlog at node n and I,(B;) € [0,1] as an ap-
proximation of the likelihood that node n has a packet to
transmit.

In the following, we will refer to N; = Ele I.(B,) as
the number of active nodes at the operating point x”*.

2.4 Operating Point

Unfortunately, it is difficult to answer the above questions
regarding the existence and properties of an operating point
for a general network topology. The reason is that the con-
gestion indicator function Pr,(Bs(m) + Bgm)) introduces a
nonlinear coupling that makes it difficult to obtain analytical
solutions for a general network topology. To overcome this,
we consider the network topology given by Fig. 1' which
consists of two sets of connections, M4 = {1,..., M4} and
Mp = {1,..,Mp}. We refer to the connections in the set
M4 as subnet A and the connections in set M p as subnet
B. Note that the connections in subnet A share the same
source node ng. This topology captures the situation where
node no acts as a server for all other nodes in subnet A. In
the following we assume that M4 > 2; otherwise subnet A
does not exist (M4 = 0) or is identical to a connection in
subnet B (M4 = 1). For this topology, we are interested in
the following questions: (a) how does the throughput scale
as the number of nodes (connections) in subnet B increases
and (b) how is the throughput shared between connections
in subnet A and B.

For our analysis, we make the following assumption re-
garding the congestion indicator function for subnet B.

AssUMPTION 3. For all connections m € Mp we have
that Pp,(2) <1/3.

'For the analysis in the Section 3 we do not need to make
this restriction.



The above assumption is a (mild) technical assumption on
the buffer space at nodes in subnet Bj; it states that each
node in subnet B has a buffer space to easily accommodate
2 packets. This assumption is needed to prove the existence
of system operating point. For connections in subnet A we
make the following assumption.

ASSUMPTION 4. For all connection m € M4, the conges-
tion indicator function is a function of the total backlog By,
at node ng such that

Py(Bng) = Pt (Bng) = P(Bnyg), m,m' € Ma,

where P : [0, By,] — [0,1] is strictly increasing with P(0) =
0, and P(Bn,) = 1. Furthermore, we have that P(1) < 2/3.

The above assumption is motivated by a result presented
in [3] which implies that the total backlog at node ng will
be much larger than the backlog at any other nodes in subnet
A and a packet loss is most likely due to congestion at node
ng. The assumption that P(1) < 2/3 is again a technical
assumption needed to prove the existence of an operating
point.

Using the above assumptions, we obtain the following re-
sult.

PROPOSITION 1. Under Assumptions 1-4 there exists an
operation point. If Mp > 0, then there exists an infinite set
of operating points.

The above result states that there always exists an operating

point; but it is not necessarily unique. However, as shown

in the next result, the expected number of active nodes N

at an operating point, and hence the offered load G* =
= q(Ng), is unique.

PROPOSITION 2. Let ™ be an operating point, and let N,
be the expected number active nodes and G* the offered load
at ™. Under Assumptions 1-4, we have N; = 2(1 + Mp)
and G* =2(1+ MB)q(N,).

An important implication of Proposition 2 is that at an
operating point, not all nodes are saturated, i.e. not all
nodes have packet to send. To see this, note that Propo-
sition 2 states that the number of active nodes (i.e. nodes
that have a packet to send) at an operating point is equal to
N; = 2(14+Mp) which is strictly smaller than the total num-
ber of nodes in the network given by N = 1+ M4 +2Mp (see
Fig. 1). The interpretation of the result is as follows: while
all nodes in subnet B are saturated, only 2 of the (1 + M4)
nodes in subnet A are saturated (i.e. have a packet to send),
i.e. most nodes in subnet A are not saturated.

Proposition 2 states that N; and the offered load G™ at
an operating point only depends on the number of connec-
tions Mp in subnet B. Furthermore, the offered load G*
increases as Mp increases. Using these results, we charac-
terize below the system throughput at an operating point
and how this throughput is shared among individual con-
nections. We provide a proof for Proposition 1 and 2 in
Appendix A.

24.1 Throughput

It is well-known (see for example [12]) that for the IEEE
802.11 model of Subsection 2.2 the system throughput 7' (in
packets per unit time) is a function of the offered load G
given by

T(G) = (10)

10

-

°— @,100,2)
(1,100,17)

- - (1,100,100

0 10 20 30 M 40 50 60
B

Figure 2: Throughput at the operating point as a
function of Mp for different values of (L;, Ly, L.).

where L(G) = Li + Ge ®L, + (1 — e~ ¢ — Ge™®)L.. Com-
bining this result with Proposition 2, we immediately obtain
the following corollary.

COROLLARY 1. Under Assumptions 1-4, the system through-
put at the operating point for TCP Reno with IEEE 802.11 is
equal to T(G™) where G* = Ngq(Ny) and N, = 2(1+ MBg).

Using the above result, we can compute how the system
throughput changes as the number of nodes in subnet B (and
hence the number of connections in subnet B) increases.
Fig. 2 gives the resulting graph which shows the through-
put T(G*) decreases when the number of connections Mp
becomes larger. Note that the degree of throughput degra-
dation depends on the values of L;, L., and L,, i.e. on the
actual implementation of the medium access protocol.

2.4.2 Fairness

The next result shows that network does not provide per-
flow fairness.

PROPOSITION 3. Let ma be a connection in subnet A and
mp be a connection in subnet B, and let X\;,, and A,
be the throughput of these two connections at an operating

point. Under Assumptions 1-4, we have that

1 g(N3)e <

Ama = 3T LGY

and
O 16 il
mpg — L(G*) )

and Ay, , [Ammy = 1/Ma.

The above result states that connections in subnet A obtain
a smaller throughput than connections in subnet B. In fact,
(as all connections in subnet A share the same source node
no) the combined throughput received by nodes in subnet A
is equal to the throughput of a single connection in subnet
B. We provide a proof for Proposition 3 in Appendix A.

2.5 Numerical Results

In this subsection, we illustrate the above results using
numerical case studies in which we implemented the actual
TCP Reno protocol and IEEE 802.11 protocol. We use these
numerical results to study how well the performance pre-
dictions obtained by the theoretical results of the previous
subsection match the actual system performance.



For the IEEE 802.11 medium access control we use the
following parameter values: CWmin = 32, CWnax = 1024
and K = 7. The values for L;, L,, and L., that we used are
given in Table 1, along with the theoretical optimal value
Topt of the throughput given by Eq. (10) for the different
choices of L;, Ly, and L..

Table 1: (L;, Ly, L) and Top,

(LivavLC) TOPt
(1,100,1) || 0.9630
(1,100,17) | 0.9318

(1,100,100) | 0.8654

For the case studies, we set the number M4 of connections
in subnet A equal to 3 but vary the number of connections
Mp in subnet B in order to investigate how the through-
put scales as the number of nodes in the network increases.
Using this setup, we simulated the system for 180,000 time
slots.

2.5.1 Throughput

Fig. 3 shows the time average system throughput for the
different scenarios. The experimental results confirm the
results of Subsection 2.4 that the throughput decreases as
the number of connections Mp in subnet B increases. In
addition, the throughput predicted by the theoretical results
in Subsection 2.4 matches quite well the numerical results.

10

(=2}

— (1,100,1) - Theory |-~ _ o
(1,100,17) - Theory T
-~ (1,100,100) - Theory
O Simulation

0 10 20

30 \_40 50 60
B

Figure 3: Time average system throughput for dif-
ferent values of (L;, Ly, Lc).

2.5.2 Fairness

Next we investigate how the throughput is shared among
connections for the case where (L;, L,,L.) = (1,100,17),
and M4 = 3 and Mp = 10. Fig. 4 shows the trajectory of
the transmission rates of one connection in subnet A and
one connection in subnet B. The time average transmission
rate of the connection from subnet A is equal to 0.17 x 1073
and the time average transmission rate of the connection in
subnet B is equal to 0.417 x 1073, Hence the connection
of subnet A gets roughly 1/3 of the transmission rate of
a connection in subnet B as predicted by the theoretical
results in Section 2.4.

2.6 Discussion

We developed a mathematical model to study the inter-
action between TCP Reno rate control and IEEE 802.11
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Figure 4: Trajectory of the transmission rates of one
connection in subnet A (bottom) and one connection
in subnet B (top).

medium access control. Although we made several simpli-
fying assumptions, the numerical results illustrate that the
model indeed predicts well the actual system performance
in terms of throughput and fairness. In the next sections,
we study an approach to provide per-flow fairness and to
avoid the throughput degradation as the number of nodes
increases.

3. ANALTERNATIVERATEANDMEDIUM
ACCESS CONTROL

In this section, we consider an alternative rate and medium
access control scheme to provide per-flow fairness and avoid
a throughput degradation as the number of nodes increases.
The basic idea for the medium access control scheme is the
following: a node that serves several connections will typi-
cally have a larger backlog than nodes that serve only a few
connections. Therefore, in order to provide per-flow fairness
we should give nodes with a large backlog a higher chance
of accessing the channel and transmitting a packet. As we
show below, this simple mechanism is indeed sufficient to
obtain per-flow fairness. To avoid a throughput degrada-
tion, we consider a rate control mechanism that uses a price
(congestion) signal to modulate the packet transmission rate
of individual connection. An important feature of both the
rate control and medium access control scheme that we con-
sider is that they can be implemented in a fully distributed
manner.

3.1 RateControl

We consider a rate control mechanism where the transmis-
sion rate A\, of connection m depends on a price (control)
signal u,, as follows.

ASSUMPTION 5. The transmission rate Am (m) 18 a func-
tion of um where Am(Um) s bounded, differentiable, and
strictly decreasing such that limy,, oo Am(um) = 0.

‘We use the following approach to compute the signal u,, in
a distributed manner. The source node s(m) observes the
channel and uses channel feedback information to update
um. Let I(-) be the indicator function and let Z(k) be a
random variable indicating the total transmission attempts
between t3 and tx11. Then I(Z(k) =0), I(Z(k) = 1) and
I(Z(k) > 2) indicate that an idle period, a successful trans-
mission, or a packet collision, occurred between time t; and



tr+1, respectively. Using this channel feedback, the signal
um is updated as follows

Un(k+1) = [um (k) — aI(Z(k) = 0) + BI(Z(k) = 1)
+y(wn (R)I(Z (k) > 2)]*, (11)

where [u]t = max{u, 0}, v € R, and «, B and 7(u) satisfy
the following assumption.

AsSUMPTION 6. We have a > 0 and 8 € R. Further-
more, vy i a non-negative and strictly decreasing function
7+ [0, +00) = [Ymin, Ymax]-

The above update rule has the following intuition. If the
channel is idle, then the price should be decreased (and the
transmission rate increased) in order to make more efficient
use of network bandwidth. If a collision is detected, then
the price should be increased in order to reduce the prob-
ability of additional collision in the future. Furthermore,
connections with a high rate should decrease their rate more
aggressively than connections that already have a low rate;
hence the function v should be a decreasing function.

3.2 Medium Access Control

Below we describe more precisely the medium access con-
trol scheme that we consider.

Again, nodes sense the channel before making a trans-
mission attempt. After an idle period of length L;, node n
makes a transmission attempt with probability B,q, where
B, is the number of backlogged packets at node n and g,
0 < g < 1, is a given parameter such that B,q < 1 for all
nodes n € N. The condition B,q < 1 is needed to pre-
vent a system deadlock®. Note that the expected number of
transmission attempts (over all nodes) is given by

N
G = Z B.q.
n=1

If exactly one node makes a transmission attempt, then this
packet is successfully transmitted. If two or more nodes
make a transmission, then all transmitted packets are lost
and become backlogged. Again, we assume that all packets
have the same length and the time it takes to transmit one
packet is equal to L,. Furthermore, let L. be the duration
of a collision.

As before, let tx be the time when the kth idle period of
length L; ends. Consider a connection m € M with source
node s(m). Given that node s(m) makes a transmission at-
tempt, we again assume that the probability that this packet

bs,m
Bein) where bs,m the

number of packets of connection m backlogged at node s(m)
and B,(,,) is the total backlog (over all connections) at node
s(m). Under this model, the probability that a data packet
of connection m makes a transmission attempt between time
tr and tp41 is given by

Gs,m(k) = bs,m(k)q.

belongs to connection m is equal to

2An alternative approach to prevent a system deadlock is
as follows. After an idle slot of length L;, node n makes a
tranmission attempt with probabiltiy ¢, = min{B,q,1—¢€},
where €, 0 < € < 1. Note that this approach does not require
a priori knowledge of the buffer sizes B,, n € . However
the analysis of this scheme is more involved.

Similarly, the probability that an ACK of connection m
makes a transmission attempt at time ¢, is given by

Gd,m (k) = bd,m (k)qa

and the probability of a transmission attempt (by any con-
nection) at time ¢ is equal to

OEDY (Gsm(k) + Gam k)) ZBn k)q.

m=1

Again, we will refer to G(k) as the offered load at time t.

Assuming that the parameter g is small, one can approx-
imate the probability that a data packet of connection m
makes a successful transmission attempt between t; and
tk+1 by

Gsm k)k) H Gsz k))(l_Gdl(k))NGs m( ) —G(k)’
(12)

and the probability that an ACK of connection m is suc-
cessfully transmitted by

% [1( = Gai(k) (A = Gasi(k)) = Gam(k)e 9.

= (13)
3.3 System Model

For the above rate and medium access control scheme,
we define the system state as © = (u,bs,bq) where v =
(u1, ..., un) indicates the price associated with connection
m, and the backlog vectors b, and by are as previously de-
fined. Note that at state x = (u,bs,bq) the transmission
rate of connection m is equal to A, = Am (um)-

The expected change in the price u, of connection m
between time t;, and tr41 is given by

(k4 1) = [um (k) — ae™% (k) + ﬂG(k)e_G(k) o
+y(um(B))(1 — e P — G(k)e “®)*F, (14)

where e ¢®) | G(k)e ¢™®) and 1 — e %®) — G(k)e ®) | are
the probabilities that between t; and t;1 we have no trans-
mission attempt, a successful transmission, or collision, re-
spectively.

The expected change in the backlog bs,m between time ty,
and ty41 is given by

bs,m(k+1) = (15)
ba,m () + Am (k) L(k) = Go,m (K)e™ “*,
and the expected change in the backlog bq ., between time
tr and tx41 is given by
bam(k+1) = (16)
bam (k) + Gam(k)e™ %) — Gy m(k)e ™).

Using Eq. (14)-(16), we can again model the dynamics as
a discrete-time system

2(k+1) = ¢(z(k), k21,

and use the operating point * = ¢(z*) to characterize the
system performance. The above model leads to a simpler
mathematical structure of the system dynamics and we can
analyze the above system for a general network topology.



Before we study the existence and properties of an operat-
ing point, we introduce the following result for the function
T(G) given by Eq. (10) that we use to choose the parameters
q and the function 7.

LEMMA 1. Under Assumption 2, there exists a unique
Gt >0 such that

+ _
G" = argrggz}cT(G).

Furthermore, we have that G* € (0,1).

The lemma states that there exists a unique offered load G*
that maximizes the function T'(G). The proof of Lemma 1
is straightforward and we omit a detailed derivation.

Using the above lemma, we make the following assump-
tion on the retransmission parameter ¢ and the function 4.

ASSUMPTION 7. We have that
(a) 4 < 1y

(b) 23, Am(a) > T(GY),

(c) a<B< &%,

. (a—pGH)e=¢*
(d) Ymin Z (1_:—G+ _Ge+e_G+) .

The above conditions (c) and (d) ensures that Ymin > 0,
and condition (b) implies that the unconstrained arrival rate
3, Am(0) exceeds the maximal throughput T(G1). Note
that Assumption 7 can always be satisfied by (i) choosing ¢
small enough, (ii) appropriately choosing o and 8, and (iii)
choosing ymin large enough.

3.4 Operating Point

We have the following result for the above system.

PROPOSITION 4. Under Assumption 2 and Assumptions & -

7, there exists a unique operating point x*. Furthermore,
there exists a unique price u* > 0 such that for all connec-
tions m € M we have u;, = u*.

We provide a proof for Proposition 4 in Appendix B.

Having established the existence of a unique operating
point, we next characterize the throughput at the operating
point z* and how the throughput is shared among different
connections.

3.4.1 Throughput

To characterize the throughput at the operating point z*,
we use the following notation. For G > 0 and y > 0, let the
function f(G,y) be given by

f(Gy)=—ae™? +8Ge™C +y(1 —e 9 — Ge™).

Note that f(G,y) is equal to the expected change in the
price um as given by Eq. (14) for the offered load G and
Ym(um) = y. One can derive the following result for the
function f(G,y).

LEMMA 2. Let Assumptions 6 - 7 hold. Then for y >

(a—Batye—a%

(—e—GF —gFe—aT)’ there exists a unique G(y) > 0 such that

f(G(y),y) =0.

Furthermore, we have that G(y) € (0, G*] and G(y) is strictly

decreasing in y.

Using Lemma 2, we immediately obtain the following re-
sult for the throughput at the operating point.

LEMMA 3. Let Assumption 2 and Assumptions 5 - 7 hold.
Then the offered load G™ at the operating point ™ satisfies
the following condition,

0 < Gmin < G* < Gmax S G+

where Gmin = G(Ymax) and Gmax = G(Ymin), and Ymin
and Ymax are as given in Assumption 6. Furthermore, the
throughput T(G™) at the operating point x* is such that
T(Gmin) < T(G*) < T(Gmax)-

Lemma 3 implies that the offered load G* at the operating
point depends on the control parameters o, 3, and the func-
tion 7(-), but not on other parameters such as the number of
connections M or the rate functions Am (um), m € M. This
is important as it means that one can tune the throughput
T(G") to lie within in a desired range [T'(Gmin), T (Gmax)] C
[0, T(G")] without having any prior knowledge of connec-
tion number M or rate functions A, (um). Moreover, the
throughput is lower bounded by T'(Gmin) (and does not col-
lapse) as the number of nodes in the network increases.

In Subsection 3.5, we provide an algorithm for choosing
the parameters a and (3, and the function -, in order to
obtain a desired throughput range [T(Gmin), T (Gmax)] C
0, 7(G*)].

3.4.2 Fairness

Proposition 4 states that at the operating point all con-
nections see the same price u*, i.e we have that u,, = u".
m € M. As the throughput of connection m at the oper-
ating point is equal to Am(u*), this implies that per-flow
fairness is obtained by assigning each connection same rate
function A, (um). However, more general bandwidth shar-
ing (fairness) properties can be obtained by suitably choos-
ing the rate functions A,,, m € M. In particular, the rate
function can be used in order to provide differentiated qual-
ity of service in terms of throughput. We will illustrate this
in Subsection 3.6.

3.5 Choosing the Control Parameters

Below we provide an algorithm for choosing the control
parameters o and 8, and the function 4, to obtain the follow-
ing system properties: (i) the operating point is unique, and

(ii) the system throughput lies in a given range [T'(Gmin), T(Gmax)],

Gmin < Gmax S G+.
(1) Choose a small a > 0.
(2) Choose a small 8 such that o < 8 < Zr.

(3) Choose a non-negative strictly decreasing function 7y (uy, )
satisfying the following conditions
(a) =2 <7 (um) <0,

(b) . _ ae~C%max_pgGpne~ Gmax
Ymin = T = CGmax — Gage— Cmax

_ oe”%min—pGy;ne=¢
(C) Ymax = 1-e~C%min—G <

min

. e—Cmin’
min€ min

Condition (3-a) is needed to guarantee that the price signals
converge; a discussion of this issue is beyond the scope of
this paper.

One can show that choosing Gmin and Gmax introduces
a trade-off with respect to performance and the speed of



convergence, i.e. if Gmin is very close to Gmax then the
possible throughput range [T'(Gmin), T (Gmax)] will be small
and T(G™) will always be close to the optimal throughput
T(Gmax), however in this case Ymin Will be close t0 Ymax
which can lead to a slow convergence of the prices un,.

3.6 Numerical Results

In this subsection, we illustrate the above results using
a numerical case study for the network topology of Fig. 1
where we use the above algorithm for choosing the control
parameters « and 8, and the function -y.

Table 2 indicates the desired range of the system through-
put for the different scenarios that we considered, where the
goal was to obtain a system throughput that is close to the-
oretical maximum throughput T,,: given in Table 1.

Table 2: (L;,Ly,L;) versus Gminy Gmaxy IT(Gmin) and
T(Gmax)

(Li, Lp, Le) || Gmin | Gmax | T(Gmin) T(Gmax)
(1,100,1) || 0.76 | 0.7710 | 9.68 x 107> | 9.68 x 102
(1,100,17) | 0.29 | 0.3010 | 9.32 x 1072 | 9.32 x 1073

(1,100,100) || 0.12 | 0.1310 | 8.65 x 1072 | 8.65 x 1072

Using the algorithm of the previous subsection, we choose
the following control parameters o and £, and functions 4.

Table 3: (L;, Ly, L.) versus control parameters
(Li7 LP: LC) a ﬁ 'Y(Um)

(1,100, 1) 0.05 | 0.06 | 0.0022 x e~ “™ + 0.0095
(1,100,17) || 0.005 | 0.01 | 0.0059 x e~ “™ +0.0394
(1,100, 100) || 0.005 | 0.03 | 0.0706 x e “™ + 0.1161

The transmission parameter ¢ is chosen to be equal to
0.001 and the rate functions A, (um) are given by

Am (Um)

[kA (3e‘<“m‘2) - 1)]+ meEMa (17)

An(um) = [ks (370~ )] m e Mp, (18)

where the parameters k4 and kp can be used to obtain dif-
ferent bandwidth sharing properties. For the case study, we
use the setting ka = kg = 0.01 to obtain per-flow fairness.
in addition we also use k4 = 0.02 and kg = 0.01 so that
a connection in subnet B should receive twice the rate of
connections in subnet A. We use this setup to investigate
whether the scheme us indeed able to provide differentiated
quality of service in terms of throughput.

We simulate the system for 60,000 time slots. In each
time slot ¢ of the simulation, we generate new packets for
connection m according to Poisson random variable with
mean of Ay, (um (t)).

3.6.1 Throughput

Fig. 5 shows the time average system throughput for the
different scenarios where we chose k4 = ks = 0.01; the
results for k4 = 0.01 and kg = 0.02 were identical. The nu-
merical results illustrate that the rate control mechanism is
indeed able to provide a stable throughput as the number of

nodes in the network increase. Also, the theoretical results
predict well the actual time average system throughput.
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Figure 5: Time average system throughput for dif-
ferent values of (L;, L,, L.).

3.6.2 Fairness

Fig. 6 illustrates the trajectory of the throughput of for
one connection in the set M 4 and one connection in the set
M p for the case where (L;, Ly, Lc) = (1,100, 17), and M4 =
3 and Mp = 10. For ka4 = 0.01 = 0.01, the time average
throughput for a connection in subnet A is equal to 0.703 x
10~2 while the time average throughput of connection in
subnet B is equal to 0.734 x 1072, and the two connections
receive roughly the same throughput as intended.

For k4 = 0.01 and kp = 0.02, the time average through-
put for a connection in subnet A is equal to 0.386 x 10~3
while the time average throughput of connection in subnet
B is equal to 0.801 x 1072, and the connection in subnet
B receive roughly twice the throughput of connections in
subnet A as intended.
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Figure 6: Trajectory of the transmission rates of one
connection in subnet A (bottom) and one connection
in subnet B for k4 = kp = 0.01 (left) and ka = 0.01
and kp = 0.02 (right).

4. CONCLUSION

The above analysis provides new insight into the interac-
tion between rate control and medium access control. In par-
ticular, it suggests that (a) a simple medium access scheme
(as given in Section 3) is sufficient to provide per-flow fair-
ness and (b) a stable throughput (as the number of nodes
increases) can be achieved by suitably controlling the arrival
rate of new packets to the system.

The above analysis has two important drawbacks: it con-
siders only single cell networks and it requires an alter-
nate rate control to TCP Reno in order to provide a stable



throughput (which is not a realistic assumption). However,
it seems possible to overcome both issues. In particular, us-
ing the above analysis one can design an active queue man-
agement scheme that works together with TCP Reno as a
way to ensure a stable throughput as the number of nodes
increases. Moreover, these mechanisms can be applied and
analyzed for the case of a multihop ad hoc networks. These
results will be presented in a forthcoming paper.
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APPENDIX
A. PROOF OF PROPOSITION 1, 2, AND 3

We use the following result to prove Proposition 1 - 3.

LEMMA 4. Under Assumptions 1-4, the state z* € R?;_M
18 an operating point for the system given by Eq. (7) - (9) if
only if for all connections m € M we have

* G* B G:i,me_G

(@) A= ETG*) L(G*)

*

>0

and

2(1 — Pm(B:(m) + Bg(m))) -

() b =bym +bim = . .
P, (B.s(m) + Bd(m))

PROOF. Let z* be an operating point. By Assumption 2,
we have L(G*) > 0. Using Eq. (8) and (9), we obtain that
at z* we have

*

v Gime @ Gime™®

" L(GY) L(G)

Note A;, > 0 as otherwise we have that G ,, = G5 ,, =0,
and b ,,, = b} ,, =0, which contradicts Eq. (4).

Furthermore, using Eq. (7) we obtain that at * we have

1= Pra By + Bigm) )
(01)?

.o bm (B§<m> + BJ(m))
_()‘m) P)

(Am)?

LG — ...

L(G*) =0,

and it follows that

2(1 = P (B3 + Biomy)

P, (B;‘(m) + B;(m))

bin = bs,m + ba,m =

The above results establish that the conditions (a) and (b)
of the lemma are necessary conditions. Furthermore, using
Eq. (8) and (9) it is straightforward to check that the condi-
tions of the lemma are sufficient, i.e. if the conditions hold
then z* is indeed an operating point. []

Using the above results, we can prove Proposition 1, 2 and
3 as follows.

Proor. Using Lemma 4, at an operating point z we have
Gs,m = Ga,m > 0. It follows that (see Subsection 2.2)

bs m bd m
= Iu(Bs(m)) = = I(Bgim)) > 0. (19)
Bs(m) a\DPs(m) Bd(m) a (m)
The above equation implies that for all connections m € M,
we have at an operating point that

beym >0, bam > 0. (20)

Let us first consider a given connection m € Ma. By
definition we have s(m) = ng and bym = Bg(m). Using
equation Eq. (19), we have at an operating point that

bs,m
B I.(Bngy) = Ia(Ba(m))-
no

Recall that
Bn(): Z bs,m- (21)

MEM 4

l};;’: < 1. Combining the

It follows that bs,m < Bn, and
above results we obtain that

bs,m
I.(Byim)) = B I,(By,) < 1. (22)

ng
Eq (22) implies that (see definition of I,)
Io(Ba(m)) = Ba(m) = ba(m)
and we have

bs,m = Bnobd,m/Ia (Bno)- (23)



Using Assumption 4, we can then write the condition for b,
in Lemma 4 as

2(1 = P(By,))

PBay) Y

b = (Buo/1a(Bno) + 1)ba,m =

As the above equation holds for any connection m € M4,
it follows that for all connections m’,m’ € M., we have
bm’ = bm”; bs,m' = bs,m"; and bd,m’ = bd,m”- It then
follows that

I4(Bn,)
ba,m = ——"0, . 2
d, M m€E My (25)
Using the above result, we can rewrite Eq. (24) as

2(1—P(Bng))
P(Brg)
Let the two function fa(Bn,) and ga(Bn,) be given as
follows,
B + 1a(Bny)
Bn — 0 0
fA( 0) Ma
and

2(1 — P(Bu,))

gA(BnO) = P(Bno)

If By, is the backlog at node no at an operating point, then
we have that

fa(Bry) = ga(Br,)-

In the following, we construct such a solution. Note g4 (Bn,)
is strictly decreasing in By, with g(0) = co and ga(co) = 0.
Note M4 > 2. Furthermore, for B,, <1 we have

_ Bng + Bn, 2

Fa(Bro) Ma < Ma <1
and
94(Bny) > g(1) = W >1,

where the last inequality from Assumption 3 which states
that P, (1) < 2/3. The above two equations imply that

there does not exist a B, < 1such that fa(Bn,) = ga(Bn,).

Hence, it suffices to consider B,, > 1 in order to construct
a solution the equation fa(Bn,) = ga(Bng)- Note that for
B, > 1 we have

(Bro +1)

$a(Bog) = Pre L),
and fa is continuous and strictly increasing in Bp, with
fa(l) = 377 and fa(co) = oo. Combining these results

with the fact that ga is continuous and strictly decreasing
in By, with ga(1) > 1 it follows that there exists a unique
B, > 1 such that fa(Bn,) = ga(Bng)-

Let By, be the unique solution to fa(B;,) = ga(B,,),
then for any connectio*n m € M4 we have at an operating

point @ that b, = 222, b, = 7o, and b, = b, +b3
are the unique solutions to Eq. 24 and Eq. 25.

Having characterized the backlog at an operating point
for connections m € M4, consider next a given connection
m € Mp. In this case, we have bsm = By and bgm =
Bji(m), and we can rewrite Eq. 19 as

Ia(bs,m) = Ia(bd,m)- (26)

Bng+la(Bng) _
Ma =

Let the functions f, and g, be given as follows
fB(bm)szl’L7 meO

and

2(1 — P (bm))
Pr(bm)

Then the condition on b,, in Lemma 4 can be rewritten as

fB(bm) = gB(bm).
Using Assumption 3 which states that P (2) < 1/3 for

m € Mp, we obtain that gg(2) = 4/ 2(1%?2;2)) 2 2. Note

gB(c0) = 0 and gg(bn) is continuous and strictly decreas-
ing for b,, > 0. Using the above results, it follows that
there exists a unique by, > 2 such that fg(bm) = gB(bm).
Combining these results with Eq. 26, we obtain that at an
operating point the backlog b; ,,, and by, of a connection
m € My is such that know

b;,m 2 1)
bim > 1, (27)
S

gB(bm) = bm > 0.

Note that there is an infinite set of values b;,, and b,
which satisfy the above conditions.

The above two cases demonstrate that there always exists
at least one operating point and if Mp > 0 then operating
points are multiple.

Also note that at an operating point, we have I, (Bn,) = 1
and Ia(Bd(m)) = 1/MA, m € Muy; Ia(Bs(m)) = Ia(Bd(m)) =
1, m € Mp.

Having characterized the backlog at an operating point,
we obtain that the number of active nodes N, at an oper-
ating point is given by N; = Zivzl I.(B;) = 2(1 + Mg),
and the offered load at an operating point is given by G* =
NZq(N2) = 2(1 + Mg)a(N;).

Furthermore, for a connection ma € M4 we have at an
operating point that

* b; m % * *
Gd,mA = B*, A Ia(Bd(mA))q(Na) :q(Na)/MA
d(ma)
and
v a@a)e
mA T MAL(G*)
Similarly, for a connection mp € Mp, we have at an
operating point that G§ ., = I.(Bjun,))a(Ns) = a(Ng)
* _ (I(N;)E_G*
and )\mB = TLiGn

O
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The next lemma establishes that all connections have the
same price (congestion) signal at an operating point.

LEMMA 5. Under Assumption 6, if =¥ is an operating
point then there exists u* > 0 such that

m € M.

ProoOF. We prove the lemma by contradiction. Suppose
that the result is not true and there exist connections ¢, 5 €
M such that u; > uj. By Assumption 6, we then have that

y(ui) < y(uj).

* *
Uy = U ,



Furthermore, using Eq. (11) and Definition 1 we have at an
operating point z* that

max{—a, —u; }e_G* +8G*e~C" + F(ul)(1 — e~ — G*e_G*) =

max{—a, —u} 1e=CG" +8G*e~C" + (uj)(1 = e~ G —Gg*e Gy =0

Combing the above results, we obtain that
max{—a, —u; } > max{—a, —uj}. (28)
Suppose that u; > u; > «. In this case, we have that
max{—a, —u; } = —a = max{—a, —u}}
and Eq. (28) does not hold.
Similarly, if & > u; > uj then we have
max{—a, —u; } = —u; < —uj = max{—a, —u;},

and Eq. (28) does not hold.
Finally, if u; > —a > u] then we have

max{—a, —u; } = —a < —uj = max{—a, —u;},

and Eq. (28) again does not hold.
The above results establish that Eq. (28) never holds;
hence we obtain a contradiction and the lemma is true. [l

The next lemma shows that for the price u* of Lemma 5
we have that u* € (o, 00).

LEMMA 6. Let Assumptions 2, 5, and 7 hold. If z* is an
operating point and u* is such that uj, = u*, m € M, then
we have that o < u* < co.

PrOOF. We first show that u* > a. Suppose that this is
not true. Using Eq. 15 and (16), we have that

X X G*e ¢ 1 .
M) =Y An(u') = G §T(G ) (29)
meM

where the function T'(G) is as given by Eq. (10). By As-
sumption 7, we have that A(a) > T(G™T) and

T(G*) = 2A(u*) > 2X(a) > T(GT).

The above inequality contradicts the definition of G* and it
follows that v* > a.

Next, we show that u* < co. Suppose that u* = co. Then
we have that

Aw) = > Anlu’) =0,
meM
and

max{—a, —u*}e” % +BG* e C 4 yw*)(1 e ¢ —G* e F)
= max{—a,—u*} = —a < 0.

However, this contradicts the fact that z* is an operating
point and it follows that v* < co. [

Using the above lemmas, we show that there exists a
unique operating point.

LEMMA 7. Under Assumptions 2, and 5 - 7, there exists
a unique operating point x*.

ProOF. Using Lemma 5 and 6, we have at an operating
point z* that

—ae %4+ 8Ge™C + ()1 —e " —Ge %) =0.

Let the function p : [0,00) — [0, 00) be such that for y =
p(G) we have that

AW) = D Am(y) =27(G).
meMmM
One can show that under Assumption 5 and 7 the function
p is well-defined.
Let the function f : [0, 00) — R be given by

f(@)=—ae © +BGe © +~(p(G))(1—e € —Ge ©).

Note that in order to show that an operating point exists, we
have to show that there exists a G* > 0 such that f(G*) = 0.
Below we construct such a solution.

Let f'(G) be the derivate of f(G). We have that

F (@) =ae %+ 8 %(1-G) +...
+(p(G)p (G) (1 — e — Ge™ %) + 4(p(G))Ge™ ¢,

where p'(G) is the derivative of p(G).

Omne can show that p(G) is strictly decreasing for 0 <
G < GT; and we have that 7' (p(G))p'(G) < 0, 0 < G <
G™T. Combining this with the fact that by Assumption 7 we
have 8 > 0, it follows that f'(G) > 0, 0<G< G
Furthermore, we have f(0) = —a < 0.

Recall that by Lemma 1 we have Gt < 1. Furthermore,
by Assumption 5, we have that p(G) < oo for G € [GT,1].
Combining this with the fact that by Assumption 7 we have

_ —(a+8GT)e= ¢
Ymin Z (1—e=GT _Gg+e—GT)?
fG) = ae +BGe T +(p(G)(1~e 7 ~Ge )
ae % + ﬁG+67G+ + Ymin(1 —e" % — Ge™ )
ae_G+ + 6G+6_G+ + ...

—(a +8G)e= %"
(1—e Gt —GteG)

= 0, Gt<G<1.

we obtain

v Vv

(1- e ¢ - G+€7G+)

Finally, by Assumption 7 we have a@ < 3 and if follows
that

F(G) = ae™®+BGe™ +7(p(G))(1—e™ —Ge™ )
> ae”%+]alGe™ +y(p(@))(1 —e™¢ — Ge™)
> ae @ +lale +1(p(@)(1—e C—Ge )

(@)1 —e 9 —Ge ) >0, G>1. (30)

Using the above results, we have that f(0) < 0 and f(G)
is strictly increasing for G € (0, GT). Furthermore, we have
that f(G) > 0 for G > G*. As under Assumption 5 and 6
the function f(G) is continuous, it follows that there exists
a unique G* € (0,G%) such that f(G*) = 0. Using this
unique solution G* we can construct an operating point z*
by setting

« * Am (u™*)
B = b= Om _ 9oy X
s,m d,m 2q 2q 3
uy, = u =p(G).



