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Abstract—In this paper, we consider CSMA policies for
scheduling packet transmissions in multihop wireless networks
with one-hop traffic. The main contribution of the paper is
to propose a novel CSMA policy, called Unlocking CSMA (U-
CSMA), that enables to obtain both high throughput and low
packet delays in large wireless networks. More precisely, we show
that for torus interference graph topologies with one-hop traffic,
U-CSMA is throughput optimal and achieves order-optimal delay.
For one-hop traffic, the delay performance is defined to be
order-optimal if the delay stays bounded as the network-size
increases. Simulations that we conducted suggest that (a) U-
CSMA is throughput-optimal and achieves order-optimal delay
for general geometric interference graphs and (b) that U-CSMA
can be combined with congestion control algorithms to maximize
the network-wide utility and obtain order-optimal delay. To
the best of our knowledge, this is the first time that a simple
distributed scheduling policy has been proposed that is both
throughput/utility optimal and achieves order-optimal delay.

I. INTRODUCTION

One of the most intriguing research challenges in the context
of wireless networking is the design of a scheduling policy that

a) is throughput optimal,
b) achieves a low packet delay, and
c) has a simple and fully distributed implementation.
From a complexity theoretic viewpoint, unless NP ⊆ BPP

or P = NP, there does not exist a universal scheduling policy
that has the above three properties for all possible network
topologies [1]. However, it is still possible to design a policy
that has the above properties for a subset class of network
topologies. This seems to be true for geometric networks [2],
[3], in which only links that are geometrically close interfere
with each other. These networks closely approximate a wide
range of practical wireless networks, and are known to admit
Polynomial-Time Approximation Scheme (PTAS) for several
NP-hard optimization problems (see e.g., [2], [4]). For this
reason, we focus in this paper on the design of scheduling
policies for large geometric wireless networks.

There are two main approaches for the design of scheduling
policies in wireless networks: matching policies [2], [3], [5]–
[16] and random access policies [17]–[36]. Despite the past
efforts that have significantly advanced our understanding
of these policies and their performance, to the best of our
knowledge, there is no instance of these policies that realizes
all of the three properties mentioned earlier, even for geometric
networks.

Matching policies are able to achieve throughput optimality
[5]–[7], [9] and can achieve order-optimal delay [15]. How-
ever, these properties are obtained assuming that an NP-hard

problem can be solved in each scheduling round. Reducing
the complexity of matching policies, in general, comes at the
price of losing throughput optimality [10]–[13] or a large delay
[1]. The design of a matching policy that achieves all three
properties given above remains an open research challenge
(see Section II for further discussion on matching policies).

Random access policies are simple and can be implemented
in distributed manner. Among random access policies, the
classical CSMA policy is known to be throughput-optimal
[24], [29]–[31]. However, as we discuss below, the delay
performance of CSMA policies can be poor.

As a motivating example consider a wireless network with
L = n2 links, and for which the interference graph [2], [29]–
[31] is given by an n × n torus (see Fig. 1). Furthermore,
assume that all traffic is one-hop traffic and that the link packet
arrival rates are uniform, i.e., the packet arrival rate to each
link is equal to λ. Let ρ be the corresponding load1, and define

ε = 1− ρ.

For this simple topology, a mixing-time analysis [31] upper-
bounds the one-hop packet delay under the classical CSMA
policy as

O
([1

ε

]cuL)
,

where cu > 1 is a constant. For small ε, a similar analysis
[37] lowerbounds the one-hop packet delay under the classical
CSMA policy as

Ω(eclL/(logL)
2

),

for some constant cl > 0.
The above delay-bounds show that the classical CSMA

policy exhibits a threshold behaviour in the sense in order
to achieve a high throughput, i.e., to make ε small, one has
to tolerate a delay that exponentially grows with the network-
size L. The threshold behaviour and the exponential growth are
related to the phase transition phenomenon2 in the hard-core
lattice gas model [38], [39]. Due to such threshold behaviours,
even in mid-sized simple topologies, the classical CSMA
policy cannot support a high throughput with low delay (see
Section IV-A).

In this paper, we propose Unlocking CSMA (U-CSMA) as
a new CSMA policy that overcomes the threshold behaviour

1In the limit of large torus, the maximum uniform throughput is 0.5, and
load ρ in the limit becomes λ

0.5
. See Section III-C for the definition of ρ.

2Phase transition has also been reported as the cause of border effects that
persist in 2D under the classical CSMA policy [27].
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of the classical CSMA policy. While being simple and dis-
tributed, U-CSMA has the following properties for geometric
networks with one-hop traffic [2], [3].

a) It enables to achieve a high throughout/utility arbitrarily
close to the optimal with a low packet delay.

b) The packet delay under this policy is order-optimal, i.e.,
it stays bounded as the network-size increases to infinity.

We provide analytical results for the torus interference
topology with uniform packet arrival rate as considered earlier,
and show that for large network-size L, the delay under U-
CSMA is order-optimal and is

O
([1

ε

]3)
. (1)

It is important to note that the above delay bound is inde-
pendent of the network size L, in sheer contrast to the delay
under the classical CSMA policy that exponentially increases
with the network-size L. This means that U-CSMA does not
suffer from the threshold behaviour and is indeed able to
provide high throughput with low delay for arbitrarily large
torus topologies.

In our simulation study, we use U-CSMA jointly with a
congestion control algorithm to maximize a network-wide
utility in large random geometric networks. We show that
using U-CSMA, we can assign packet arrival rates closely
to the optimal with a low packet delay that stays bounded as
the network-size increases, and hence, a delay that exhibits
order-optimality. As far as we are aware, it is for the first
time that a simple distributed scheduling policy is proposed
that can operate close to the optimal with order-optimal low
packet delay.

We believe that the design principle of U-CSMA and the
novel approach taken to study its performance open up a new
direction into the design and study of scheduling policies for
large-scale wireless networks. The main significance of our
study in this paper is that it realizes the possibility of having
large-scale wireless multihop networks that can be maintained
in a simple distributed manner and that can provide high
throughput/utility, arbitrarily close to the optimal, with order-
optimal low packet delay.

A key step to obtain the delay bound in (1) is where
we show that the schedule under the classical CSMA pol-
icy quickly converges to a maximum schedule in geometric
networks. Using techniques from mean field theory [40], we
show that for large torus and lattice topologies with large
uniform attempt-rates, the distance (see Section V-A) to the
maximum schedules as a function of time t drops as 1√

t
. To the

best of our knowledge, our result is the first that analytically
characterizes the fast convergence behaviour of the classical
CSMA policy. As this convergence is independent of network-
size L, it is fundamentally different than the convergence time
to the steady-state (i.e., the mixing time) of the dynamics of
the classical CSMA policy, which can be exponentially large
in L [37].

The rest of the paper is organized as follows. In the next
section, we briefly review the related work. In Section III,

we present the network model and the classical CSMA policy
model. In Section IV, we provide an overview of our main
results, including the description of U-CSMA and simulation
results. In section V, we provide a formal statement of our
analytical results in this paper.

II. RELATED WORK

In this section, we provide a brief, by no means exhaustive,
overview of the work in the area of wireless scheduling that
is closest to ours in this paper. We consider two main classes,
i.e., the matching policies and random access policies.

Matching Policies: Maximum Weight Matching (MWM)
policy was first proposed in the seminal work in [5]. This
policy is perhaps the first policy that is throughput-optimal
in a wide range of settings [5]–[7], [9]. MWM policy at any
time slot maximizes a weighted summation of queue-sizes in
the network, which can be an NP-hard optimization problem
[2]. Despite its complexity, simulations [16] show that MWM
policy is close to the optimal in terms of delay for one-hop
traffic. For multihop traffic, the delay under MWM policy is
O(Lε ), and for one-hop traffic is order-optimal as O( 1

ε ), under
certain conditions [15] that hold for geometric networks. The
delay bound in our paper for one-hop traffic is O([ 1ε ]3), which
includes a multiplicative factor of [ 1ε ]2 as well as 1

ε . This
factor can be interpreted as the scheduling-time needed to find
schedules that are ε close to the optimality. However, we note
that the delay performance in [16] and the O( 1

ε ) bound in [15]
are obtained assuming that the NP-hard problem of MWM
policy can be solved at every time slot.

Greedy Maximal Matching (GMM) policy is a simple and
distributed alternative for MWM policy, see e.g., [2], [11].
While GMM policy is not throughput-optimal in general,
a number of local pooling results [3], [10], [13] indicate
that for a noticeable subset of topologies, GMM policy is
indeed throughput-optimal. However, GMM requires message
passing, and it is an open area to investigate the delay
performance of GMM policy. Maximal Matching (MM) policy
is simpler than GMM policy and has order-optimal delay of
O( 1

ε ) for one-hop traffic [12]. However, this policy is not
throughput-optimal and is guaranteed to stabilize only half
of the capacity region. See [14] for a comparison of different
matching policies.

Random Access Policies: Random access policies started
with the classical Aloha protocol [17], for which an optimality
result was first established in [18]. The capacity of random
access policies under collision detections, acknowledgements,
or backoff schemes have been studied in [19], [20], [22]. The
recent work in [26] chooses access probabilities in an Aloha-
like policy based on queue backlogs to achieve the capacity
region of slotted Aloha. In [25], [33], distributed protocols
are proposed that assign access probabilities to maximize a
network utility under an Aloha-like protocol. Due to their
simplicity, Aloha-like protocols have been also used in mobile
networks [23]. These protocols however are not throughput-
optimal [26].
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CSMA policies are a special class of random access policies
that assume nodes can sense whether their neighbours are
transmitting. Performance of these policies as defined in
802.11 standard for a specific network setup is studied in [21].
For a special class of networks with primary interference, it
is known that 1) CSMA polices are throughput-optimal [24],
and 2) for a subclass of these networks such as the n × n
switch, the delay to access the channel becomes memoryless
under CSMA policies, leading to an O( 1

ε ) (normalized) packet
delay [32].

Throughput-optimality of CSMA policies extends to net-
works with arbitrary interference graphs [29]–[31]. The
throughput-optimal CSMA policies in [29]–[31] are based on
a continuous time Markov chain that prevents collisions. This
is addressed by considering contention resolution [30], [34].

Both in [29] and [30], it is assumed that there is a time-scale
separation and, hence, CSMA dynamics quickly converges to
its steady-state faster than the rate by which queues change
over time. The authors of [31] and later those of [36] show that
as long as attempt rates of nodes change sufficiently slowly,
throughput optimality can be achieved. A related work [35]
divides the time axis into frames, and updates parameters of
CSMA policy only at the beginning of each frame. How-
ever, delay performance under the above throughput-optimal
schemes is not investigated, and the upperbound on the delay
inferred from these papers increases with the network-size.

Before concluding this section, we note that there are nu-
merous results that study link starvation under CSMA policies,
e.g., see [28] and references therein. In particular, the work
in [27] shows that in 2D, the phase transition phenomenon
makes the CSMA policy lock into a certain similar set of
states for a long time, causing large packet delays. Using
this insight, we propose U-CSMA which has a simple and
distributed implementation, and provides both high throughput
and a low packet delay.

III. NETWORK AND CLASSICAL CSMA POLICY MODEL

In this section, we introduce the network and classical
CSMA policy model that we use in this paper.

A. Network Model

We consider a fixed wireless network consisting of a set
N of nodes, and a set L of links with cardinality L. We
refer to L as the network size. A link l = (n,m) ∈ L
indicates that transmitter node n and receiver node m are
within transmission range of each other and can exchange data
packets. Each link l = (n,m) corresponds to a queue that is
maintained by its transmitter node n.

We model the contention between links by an interference
graph G(L, E) [2], [29]–[31], [35], where L is the set of links
and E is the set of edges. An edge e = (l, l′) ∈ E in the graph
G(L, E) indicates that the two links l and l′, l, l′ ∈ L interfere
with each other. In the following, we will refer to L as the
node set of the interference graph, and to the set E as its edge
set. We define a geometric interference graph [2]–[4] to be a
graph whose vertices can be considered as points on the plane,

and where two vertices are connected by an edge if and only if
the distance between them is less than the interference range r
where r > 0. We define a geometric network as a network with
geometric interference graph. We define a random geometric
network as a geometric network for which the vertices of its
interference graph are points that are distributed according to
a uniform stochastic process over a convex region in the plane.

We define a valid schedule to be a subset of links in L no
two of which interfere with each other. We define a maximum
schedule to be a valid schedule with the largest number of
links in L. We also define a link to be active at time t, if the
link is transmitting at time t. We define a scheduling policy to
be an algorithm, randomized or deterministic, that determines
which links are active at any given time.

Throughout the paper, we assume that traffic is one-hop.
Let λl be the packet arrival rate for transmission over link l,
which corresponds to a queue in the network, and let

λ = (λl)l∈L

be the arrival rate vector for a given network. We assume
arrivals are i.i.d so that every unit of time, one packet arrives
to link l, l ∈ L, with probability λ independent of any other
arrival event in the network. Extension to non i.i.d arrivals is
provided in the technical report [41]. Finally, we assume that
the rate of transmission is the same for all links, and it takes
one unit of time to transmit any one packet.

B. Classical CSMA Policy

For our analysis, we define the classical CSMA policy as
follows, similar to the ones presented in [27], [29]–[31]. Given
a wireless network with interference graph G(L, E), every
link l ∈ L independently of others senses transmissions of
any conflicting link in the interference graph G(L, E), i.e.
of any link l′ such that the edge e = (l, l′) is contained in
the edge set E . A link l senses the channel as idle at time t
if all of its conflicting (interfering) links are not active and
not transmitting at time t. If link l senses that any of its
interfering links is transmitting, then it waits until all of its
interfering links become silent. Once this happens, link l sets
a backoff timer with a value that is exponentially distributed
with mean 1/zl, zl > 0, and starts to reduce the backoff
timer. If the timer reaches zero before any of its interfering
links start a transmission, then link l starts a transmission.
Otherwise, link l simply waits until all of its interfering links
become silent again, and repeats the above process. We define
zl to be the transmission attempt-rate of link l. We assume
that all transmission times are independently and exponentially
distributed with unit mean.

The above models an idealized CSMA policy in which
1) any link can always sense transmissions of all of its
interfering links, and 2) there is no hidden-terminal problem
that can create packet collisions as in [27], [29], [31]. These
assumptions can be removed using the methods of [30], [34].
Hence, we continue assuming that the above two assumptions
hold.
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Fig. 1. Lattice and torus interference graphs. Each dark circle represents a
link, and an edge between two dark circles shows that their corresponding
links interfere with each other.

We characterize a classical CSMA policy by the vector z =
(zl)l∈L where zl is the transmission attempt-rate of link l.
Given vector z, the network dynamics as which links are active
over time can be represented by a Markov process [29]. Using
this, we can define µl(z), l ∈ L, as the service rate of link l
under z, i.e., µl(z) is the fraction of time that link l is active
under the CSMA policy z.

We say that the classical CSMA policy z stabilizes the
network for a given packet arrival rate vector λ if [5]

λl < µl(z), l ∈ L. (2)

It is well-known that the classical CSMA policy is through-
put optimal [24], [29]–[31], i.e., if there exists some policy,
CSMA or not, that can stabilize the network for a given λ,
then there exists a classical CSMA policy z that stabilizes the
network for λ.

C. Lattice and Torus Interference Graphs with Uniform At-
tempt and Packet Arrival Rates

To obtain analytical results, we consider wireless networks
with grid-like interference graphs. In particular, we consider
the lattice interference graph GL = GL(L, E) and the torus
interference graph TL = TL(L, ET ). In both cases, the set L is
the set of all links where each link l ∈ L can be represented by
coordinates (i, j), i, j ∈ {0, ..., n}, on the plane. See Fig. 1 for
an illustration. Hence, the network-size, i.e., the total number
of links, is given by L = (n+ 1)2.

It remains to specify which links interfere with each other.
For the lattice interference graph GL, we assume that there
exists an edge e ∈ E between any two links l = (i, j) and
l′ = (i′, j′), l, l′ ∈ L, iff link l and link l′ differ in exactly
one coordinate, i.e., we have that

|i− i′|+ |j − j′| = 1.

For the torus interference graph TL, the edge set ET contains
all edges defined for the lattice interference graph GL. In
addition, the set ET contains an edge between link l = (i, 0)
and link l′ = (i, n), for 0 ≤ i ≤ n, and also contains an edge
between link l = (0, j) and link l′ = (n, j), for 0 ≤ j ≤ n.
As a result, the torus interference graph TL is the same as
GL with additional edges around the boundary of GL so that
every link has exactly four interfering links.

Given a lattice or torus interference graph, we define a link
l = (i, j) ∈ L as an even link iff i + j is an even number.
We define L(e) as the set of all such even links. Similarly, we

define a link l = (i, j) ∈ L as an odd link iff i+ j is an odd
number, and define L(o) as the set of all odd links.

For the lattice and torus interference graphs GL and TL,
we focus on CSMA policies {z} with uniform transmission
attempt-rates so that

zl = z, l ∈ L,

for some z > 0. In addition, we focus on the case of uniform
packet arrival rates, i.e., we let

λl = λ, 0 < λ < µmax(L), l ∈ L. (3)

where µmax(L) is the maximum uniform-throughput, i.e., the
maximum throughput that can be provided for all links by any
policy in the network. For lattice interference graph GL, we
have that

µmax(L) = 0.5.

This throughput can be achieved, for instance, by alternating
between two valid schedules L(o) and L(e) every unit of time,
which allows every link to be active half of the time. For torus
graph TL, due to boundaries being wrapped around, L(o) and
L(e) are not valid schedules, but we can show that

lim
L→∞

µmax(L) = 0.5.

Having defined µmax(L), for a given lattice or torus inter-
ference graph with L links, we define the network load factor
or simply load ρ as

ρ = ρ(λ) =
λ

µmax(L)
. (4)

We also define ε to be the distance to maximum load of ρ = 1:

ε = ε(λ) = 1− ρ(λ). (5)

We next provide an overview of our main results.

IV. OVERVIEW OF MAIN RESULTS

In this section, we provide an overview of our main results.
We first investigate the performance of the classical CSMA
policy as defined in Section III-B, and explain why under this
policy it is impractical to obtain both high throughput and low
delay. We then propose and describe a novel CSMA policy
called U-CSMA. We show that for geometric networks with
one-hop traffic, U-CSMA policy overcomes the shortcomings
of the classical CSMA policy and allows to obtain high
throughput or utility, arbitrarily close to the optimal, with low
packet delay that is order-optimal, i.e., stays bounded as the
network-size increases to infinity.

A. Performance of Classical CSMA Policy

Consider a fixed wireless network with torus interference
graph, as defined in Section III-C, having L links and a
uniform packet arrival rate λ to each link, as defined in (3).
It is well-known that [38] if all links use the same rate z,
then the following holds for the achieved uniform throughput
µ(z, L):

µmax(L)− µ(z, L) = Θ(z−1). (6)
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This means that to be Θ(ε) away from the maximum uniform
throughput µmax(L), an attempt rate z of order 1

ε is needed.
For the above network, two threshold behaviours exist, as

explained in the following.
Threshold Behaviour as a Function of Attempt-rate z: It

is well-known that for a fixed network size L, as the attempt
rate z increases beyond a threshold, the delay of classi-
cal CSMA policy on the torus interference graph increases
substantially. This increase is related to a phase transition
phenomenon, in terms of the existence of more than one Gibbs
measures for the infinite torus [39].

The currently best explicit characterization of the delay of
the classical CSMA policy in terms of z shows that the delay
is (see, e.g., the mixing time analysis in [31])

O(zcuL), (7)

for some constant cu > 1. While for z < 1, the above
bound can be moderate for a moderate network size L, for
z > 1, there will a rapid increase even for moderate values
of L. Since by (6), a large attempt-rate is needed to support
a high throughput, this explains why the classical CSMA
policy cannot provide high throughput without incurring a
large delay.

We note that by (6), the classical CSMA policy needs to
use an attempt rate of order 1/ε to support the load ρ = 1− ε,
which can be used to write the delay bound in (7) as

O
([1

ε

]cuL)
. (8)

Threshold Behaviour as a Function of Network-size L:
Depending on the value of a given attempt z, as we increase
the network size L, the delay of the classical CSMA policy
shows an undesirable threshold behaviour.

On one hand, there exists a constant zc,1 > 0 such that for
all attempt-rates z < zc,1, the delay is upperbounded as [42]

O(log(L)). (9)

This bound states that for low attempt rates resulting in low
uniform-throughput, the delay increases only logarithmically
in the network size L.

On the other hand, there exists a constant zc,2 > 0 such for
any attempt-rate z > zc,2, the delay is lowerbounded as [37]

Ω(eclL/(logL)
2

), (10)

for some constant cl > 0. Hence, for large attempt-rates
required to support high throughput, the delay grows expo-
nentially with the network-size L, which results in a threshold
behaviour as L increases. It is this exponential increase in
the delay that prevents the classical CSMA policy to provide
high throughput with low packet delay as the network-size L
increases.

Simulation: To illustrate the threshold behaviours, we have
simulated a torus of size L ∈ {100, 400, 1600} under the
classical CSMA policy with uniform attempt rate z.

For a given network size L, to support the uniform arrival
rate λ (see Section III-C) where

λ = (1− ε)µmax(L), ε > 0, (11)

and consequently a load factor (as defined in (4)) of ρ = (1−
ε), we have chosen the attempt rate z such that the resulting
uniform throughput µ(z, L) is given by

µ(z, L) = µmax(L)(1− ε

2
) > λ. (12)

Fig. 2(a) shows the resulting average queue size per link as
a function of ρ in linear scale. This figure clearly illustrates
the two threshold behaviours.

First, we see that for a given network-size L, for a small load
ρ less than 0.3, the queue-sizes are small. However, as the load
ρ increases towards 0.5, which requires a larger attempt-rate z,
the queue-size increases from only few packets to thousands.
While the classical CSMA policy is throughput-optimal and
in principle can support a load ρ close to 1, we see that in
practise, it cannot support loads as low as 0.5, i.e., it cannot
reach the 50% utilization without incurring a large delay. For
instance, for the 20× 20 torus, the large delay becomes more
than 1sec for a packet length of 2346 bytes and a channel rate
of 54Mbs as in 802.11 standards.

Second, we see that for a given ρ, the queue-size shows two
different behaviours. If ρ < 0.4, the queue-size is small and
hardly changes with the network size. In contrast, for ρ > 0.4,
the queue-size shows a threshold behaviour and drastically and
exponentially increases with the network size. For instance, at
ρ = 0.44, the queue-size almost doubles every time that the
network size L increases by a factor of 4.

Intuition: By (6), in order to support a high uniform
throughput, the classical CSMA policy needs to use a large
attempt rate z. For a large attempt rate z, the network state will
mainly alternate between two types of transmission patterns
(valid schedules) where either mostly links in the set of even
links L(e), or links in the set of odd links L(o), are active
(see Section III-C). However, as z and L increase, transitions
between these two types of patterns occur very infrequently.
This implies that the classical CSMA policy tends to lock into
one type of transmission patterns for a very long time before
it switches to the other type of patterns [39].

This locking-in behaviour of the CSMA policy immediately
implies that while one type of links, e.g., even links, are active
for a long time, the other type of links, e.g., odd links, cannot
transmit for a long time. As a result, this locking-in behaviour
leads to large queue-sizes and hence a large packet delay.

We next describe U-CSMA and provide theoretical and
simulation results characterizing its performance.

B. U-CSMA and Its Performance

The main contribution of this paper is to propose U-CSMA
that overcomes the threshold behaviours faced by the classical
CSMA policy.

U-CSMA: The basic idea behind our proposed U-CSMA
policy is very simple. U-CSMA uses a classical CSMA policy
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(a) Illustration of the threshold behaviours under
classical CSMA policy for torus interference graph.
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haviours under U-CSMA for the torus interference
graph.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

200

300

400

500

600

700

800

900

1000

Ratio ρ
u

A
ve

a
g

e
 Q

u
e

u
e

 S
iz

e
 P

e
r 

L
in

k

 

 

Network−size L=100

Network−size L=400

Network−size L=1600

(c) Performance under U-CSMA policy combined
with congestion control in random geometric inter-
ference graphs, as a function of utility ratio ρu.

Fig. 2. Illustration of performance under the classical CSMA policy and U-CSMA.

z as described in Section III-B. However, periodically, i.e., at
times

Ti = iT, i ∈ {0, 1, 2, · · · },
U-CSMA resets, or unlocks, the transmission pattern of the
classical CSMA policy by requiring all links to become silent,
and then immediately restarts the classical CSMA protocol to
operate as usual. In the rest, we refer to parameter T as the
unlocking period. We note the in the limit of large T , U-CSMA
reduces to the throughput-optimal classical CSMA policy.

The intuition behind the above unlocking mechanism is to
prevent the threshold behaviour by preventing the policy from
locking into a particular transmission pattern for too long. In
technical report [41], we provide one approach to implement
U-CSMA in a fully distributed and asynchronous manner.

Analytical Results: In order to characterize the performance
of U-CSMA, we first need to know how to choose the
unlocking period T . While a smaller T helps employ the
unlocking mechanism more frequently leading to a smaller
delay, it may also prevent the underlying classical CSMA
policy used by U-CSMA from converging to a maximum
schedule that is necessary to obtain a high throughput. Hence,
as the first step, we need to study how fast the classical CSMA
policy converges to a maximum schedule.

Our first analytical result (see Proposition 1 in Section V)
shows that for the lattice and torus interference graphs with
uniform attempt rate z, valid schedules under the classical
CSMA policy quickly converge to a maximum schedule at
a rate that becomes independent of network-size L for large
networks and attempt-rates. Remarkably, this result shows that
the distance to the maximum schedules roughly drops as

1√
t
.

Our second analytical result (see Proposition 2 in
SectionV-B) uses the above convergence result to stabilize
networks with torus interference topology and uniform packet
arrival rate λ. In particular this result shows that U-CSMA
with unlocking period

T (ε) = Θ
([1

ε

]2)
, (13)

and with large uniform attempt rate3 z stabilizes the load
ρ = (1− ε) for large networks with torus interference graph.
Hence, by the above choice for the unlocking period, U-CSMA
stabilizes queues in the network, all of which have packet
arrival rate of λ = (1− ε)µmax(L).

Further, this result shows that by the above choice for the
unlocking period T (ε), the average queue-size per link and,
hence, average delay become order-optimal and independent
of the network size L in the sense that for large L and attempt-
rate z, they are upperbounded as

O
([1

ε

]3)
. (14)

Comparing the above delay bound with the ones in (8) and
(10) for the classical CSMA policy, we see that U-CSMA
does not suffer from the threshold behaviours. Specifically,
we see that as a function of 1/ε, the queue-size under U-
CSMA increases at most with exponent 3 as opposed to the
exponent L under classical CSMA policy, as suggested by the
bound in (8). Moreover, U-CSMA has changed a queue-size
that exponentially grows with the network size L (see (10))
to a queue-size that does not depend on the network size L.

Simulation Results: To illustrate the performance of U-
CSMA and compare it with the analytical results, we have
simulated a torus of size L ∈ {100, 400, 1600} under U-
CSMA. We have set the uniform attempt rate at z = 50, and
for a given uniform arrival rate

λ = (1− ε)µmax(L),

or load ρ = 1− ε, we have chosen the unlocking period T as

T =
1.2

ε2
. (15)

Fig. 2(b) shows the resulting queue-sizes as a function
of load ρ. We make the following two observations. First,
comparing Fig. 2(b) with Fig. 2(a), we see that while the
classical CSMA “hits the wall” and its queue-size becomes
on the order of thousands of packets before reaching a low
load of ρ = 0.5, U-CSMA can indeed get much closer to the

3Large attempt rates can be achieved by Glauber dynamics as in [30], [31].
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maximum load of 1. In practical terms, for a packet length of
2346 bytes and a channel rate of 54Mbs as in 802.11 standards,
the average packet delay under U-CSMA becomes 30ms and
90ms for 80% and 85% channel utilization, respectively, while
the delay under the classical CSMA becomes more than 1sec
before even reaching the 50% utilization. In addition, re-
plotting the queue-size as a function of ε = 1 − ρ in log-log
scale (see Fig. 3), we see that the average exponent by which
queue-size increases as a function of 1/ε is 3.02, which closely
matches the exponent 3 as predicted by the analysis in (14).

Second and as remarkably predicted by the analysis, the
queue-size does not change significantly with the network size.
In fact, for 20×20 and 40×40 torus the queue-sizes are hardly
distinguishable. This confirms that 1) U-CSMA eliminates the
threshold behaviours that exist for the classical CSMA policy,
and 2) the queue-size under U-CSMA is order-optimal in that
it stays bounded as the network size increases.

To investigate whether the insight gained through the analy-
sis for the torus interference graph carries over to general net-
work setups, we have simulated a geometric interference graph
[2]–[4], see Section III-A, in which L ∈ {100, 400, 1600}
links are randomly distributed over a square area of 10× 10,
20 × 20, and 40 × 40, respectively. We have chosen the
interference range r so that every link on the average interferes
with six other links. As in [8], [11], [33], we have implemented
a congestion control algorithm to tune the arrival rate to each
link so that a network-wide logarithmic utility function Unet is
maximized. This algorithm operates on top of U-CSMA (see
technical report [41] for further details).

Fig. 2(c) plots the average queue-size as a function of ρu

ρu =
Unet
Uopt

,

i.e., ρu is the ratio of the achieved network-wide utility to
the optimum maximal utility Uopt. Remarkably, the delay
behaviour is similar to the one illustrated by Fig. 2(b).

The main observation here is that the insight gained through
the analysis for the torus interference graph also holds for
the general case considered here. First, we observe that even
in random topologies under a congestion control algorithm,
we can use U-CSMA to assign arrival rates closely to the
optimal without incurring a large delay. For instance, for a
packet length of 2346 bytes and a channel rate of 54Mbs, the
delay becomes 40ms to get to 80% of optimality. Interestingly,
the exponent by which queue-size increases as a function of
1/(1−ρu) approaches 3, the same exponent in the delay bound
of torus graph in (14) (see the technical report [41] for the
corresponding log-log plot).

Second, we observe that the queue-size and hence the
delay slightly change with the network-size. This means order-
optimality of delay is preserved, and therefore, we can use U-
CSMA jointly with congestion control to assign arrival rates
close to the optimal with low packet delay in arbitrarily large
networks.

Next, we provide formal statements of our analytical results.

V. PERFORMANCE ANALYSIS

In this section, we formally state the analytical results de-
veloped in this paper for lattice and torus interference graphs.
These results characterize the rate by which the schedule under
classical CSMA policy converges to maximum schedules, and
characterize the delay-throughput tradeoff under U-CSMA. A
more detailed discussion of these results with complete proofs
and further simulation results is provided in technical report
[41].

The analytical results presented in this section use two
assumptions on the properties of schedules under the clas-
sical CSMA policy. Due to lack of space, we are unable
to state these assumptions here. A formal statement of these
assumptions and a detailed discussion as why these assumption
are expected to hold are provided in technical report [41].
Simulation results are provided in order to investigate whether
these assumptions indeed lead to correct qualitative results,
not only for lattice and torus topologies, but also for random
geometric networks

A. Convergence to Maximum Schedules Under Classical
CSMA Policy

Our first result characterizes the rate by which the schedule
under classical CSMA policy converges to maximum sched-
ules. We consider the lattice or torus interference graph with
L links, and a classical CSMA policy with uniform attempts
rate z, as described in Section III.

To state our first result, we use the following notation. Let
θL(t, z) be the density, i.e., fraction, of links that are active at
time t, t > 0. Hence, if Na(t, z) is the total number of links
that are active at the time t under a classical CSMA policy
with uniform attempt rate z, then θL(t, z) is given by

θL(t, z) =
Na(t, z)

L
We assume that the system is idle at time t = 0 such that

θL(0, z) = 0, z > 0.

Let δL(t, z) be

δL(t, z) = 0.5− θL(t, z). (16)

Since 0.5 is the fraction of links that can be active under a
maximum schedule in lattice or torus interference graphs in
the limit of large L, we see that δL(t, z) can represent the
distance between the schedule at time t and the limit maximum
schedules.

Proposition 1 characterizes how fast the distance δL(t, z)
approaches 0, or in other words, how fast the distance to
maximum schedules drops to 0, in the limit of large L and z.

Proposition 1. Suppose the interference graph is given by
the lattice (or torus) interference graph GL (or TL). Under
Assumptions 1-2 in [41], there exists a positive constant C1,
independent of z and L, such that for any τ > 0, we have
that

lim inf
z→∞

lim inf
L→∞

P

[
sup
t∈(0,τ ]

[
δL(t, z)− C1√

t

]
≤ 0

]
= 1.
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Proof: Proof is provided in technical report [41].
Proposition 1 states that for every finite time-horizon (0, τ ],

with probability approaching one as first the network size L
approaches infinity and then z approaches infinity, the distance
δL(t, z) between θL(t, z) and the maximum fraction of active
links 0.5 converges to 0 and drops as O( 1√

t
) for t ∈ (0, τ ].

The above convergence has two important implications.
First, under the classical CSMA policy, the distance to maxi-
mum schedules asymptotically drops as O( 1√

t
), only depend-

ing on time t. Second, as the O( 1√
t
) bound does not depend

on the network-size L or attempt-rate z, the convergence is
not negatively affected by a large L or large z. This is in a
stark contrast to the results obtained for for the mixing time of
CSMA policies, i.e., the rate at which CSMA policies reach
their steady-state, which increases with attempt-rate z and can
be exponential in the network size L [37].

B. Delay-Throughput Trade-off of U-CSMA

Proposition 1 states that under classical CSMA policy, the
distance to maximum schedules converges to zero at a rate
independent of network size in the limit of large network sizes
and attempt rates. Our second result stated in Proposition 2
characterizes the delay-throughput trade-off under U-CSMA
for the torus interference graph with uniform attempt-rate z
(see Section III-C). Intuitively, Proposition 2 states that in large
networks, the delay-throughput trade-off under U-CSMA does
not depend on the network-size L.

In order to formally state the throughput-delay trade-off for
any given link in the network, irrespective of its position, we
consider the torus interference graph TL (see Section III-C)
instead of the lattice interference graph GL. For the lattice
interference graph and similar topologies, it is well known that
due to boundary effects, the throughput achieved by links in
the network is not uniform over all links in the network when
a uniform attempt rate z is used [27]. The torus interference
graph is symmetric with respect to link positions, and as a
result boundary effects do not exist. While we develop the
analysis for the torus interference graph, the general insight
gained through the analysis carries over to more general
settings, as discussed in Section IV-B

To state Proposition 2, we introduce several definitions. We
first note that by Proposition 1, for the torus interference graph
TL and a given τ > 0, we can define a non-negative function
εp(L, z, τ) such that we have

P

[
sup
t∈(0,τ ]

[
δL(t, z)− C1√

t

]
≤ 0

]
≥ 1− εp(L, z, τ), (17)

and
lim sup
z→∞

lim sup
L→∞

εp(L, z, τ) = 0. (18)

For a given ε′ > 0, the above limit allows us to define
z(ε′, τ) and L(z, ε′, τ) such that for z > z(ε′, τ) and L >
L(z, ε′, τ), we have

εp(L, z, τ) <
1

2
ε′. (19)
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Fig. 3. Average queue-size as a function of distance ε to the maximum load
ρ = 1, under U-CSMA for the torus interference graph.

Furthermore, for a given uniform packet arrival-rate λ,
0 < λ < 0.5, and a given uniform attempt-rate z (see
Section III-C), we define Ql(t, z, λ) as the queue size of link
l at time t.

Proposition 2 is given as follows.

Proposition 2. Consider the torus interference graph TL, and
suppose Assumptions 1-2 in [41] hold. Let the uniform packet
arrival rate to each link be λ where 0 < λ < 0.5. Let the
unlocking period T (λ) used by U-CSMA be

T (λ) =
(16C1)2

ε2
= Θ

(
1

ε2

)
where ε = ε(λ) = 1− ρ(λ),

and C1 is a constant given in Proposition 1. Then, there exists
a positive constant C2 such that for z > z(ε, T (λ)) and L >
L(z, ε, T (λ)), the time average of the queue size for any link l
in TL satisfies the following under U-CSMA with the unlocking
period T (λ):

lim sup
t→∞

E

[
1

t

∫ t

0

Ql(t, z, λ) dt

]
<
C2

ε3
= Θ

(
1

ε3

)
Proof: Proof is provided in technical report [41].

Proposition 2 states that in order to get ε close to the
maximum load of ρ = 1, the expected time average of any
queue-size in the network becomes only O

(
1
ε3

)
, independent

of network-size L for large L. This is achieved by choosing
the unlocking period T to be on the order of 1

ε2 . By Little’s
Theorem, we have that the delay for any given link is also

O
([1

ε

]3)
. (20)

Quite surprisingly, the delay bound and the resulting
throughput-delay trade-off are valid for arbitrarily large torus
networks as long as z > z(ε, T (λ)). Moreover, since C2 in
the proposition is a constant, the delay bound does not depend
on the network-size L, and hence, we have an order-optimal
delay. This makes the delay-throughput trade-off under U-
CSMA independent of the network-size L for large L. As
a result, U-CSMA can indeed provide high throughput with
low delay for arbitrarily large wireless networks for which the
interference graph is given by a torus.
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To investigate the accuracy of the delay bound in (20), we
have replotted the queue-size as a function of ε under the
simulation setup of Section IV-B. The figure shows that the
queue-size increases with (average) slop 3.02 in log-log scale,
which, as expected, is close to the exponent 3 given in (20)4.
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