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Abstract—In this paper, we study how an individual in a social
network should decide whether or not to adopt a trend, based on
how many people in his/her neighborhood in the social network
adopted the trend. In particular we are interested in the question
in what adoption policy leads to an optimal trend-adoption in
the sense that an individual only adopts a trend if the majority
of his/her social network will do so. We use a decision process
on a Erdös-Rényi random graph model to model and study this
situation. Using this model, we obtain the result that the optimal
policy for an individual is to adopt a trend if two people in
their neighborhood did. Interestingly, this result/behavior was
experimentally observed in real social networks. We hope that
this work will help towards building applications that is able
to automatically push relevant content to users in online social
networks.

I. INTRODUCTION

Online Social Networks have experienced an explosive
growth over the recent a few years, and that growth has
accompanied abundant interest in the study of the spread of
trends in social networks. In this paper, we study how an
individual in a social network should decide on whether or
not to adopt a trend. We use the term “trend” quite broadly
where a trend could for example be a fashion trend, a new
technology, an idea, or a behavior.

Two paradigms for modeling trend adoption in social net-
works have been proposed in the literature: the threshold
model and the cascade model. Both models are based on the
natural assumption that individuals tend to be influenced by
their acquaintances with whom they communicate. Yet the
two are intrinsically modeling two different types of influence
in social networks. In the threshold model, each individual
observes the number of adoptions among his friends, and only
adopts the trend if the number of adoptions among his/her
friends exceeds a particular threshold value. On the other hand,
in the cascade model, each individual can be convinced to
adopt the trend through interactions with friends in the social
network who have already adopted the trend.

However, two recent studies by Backstorm el. [4] on friend-
ship links and community membership on LiveJournal, and the
co-authorship network in the computer science bibliography
hosted by the Digital Bibliography & Library Project (DBLP),
showed that neither the threshold model nor the cascade
model is sufficiently realistic (for more details, see in Section
2). Hence in this paper, we re-investigate the problem of

trend adoption in social networks, and propose a new model
that better predicts the observed behavior in real-life social
networks.

Our first contribution in this paper is thus a new hybrid
model for studying how individuals are influenced by their
acquaintances in social networks. The hybrid network model
considers the social network population as two groups: one
group in which individuals follow cascade process to decide
whether or not to adopt; the other group in which users
obey threshold strategy to make the decision. The basic idea
behind the hybrid network is that, with respect to trend
adoption, we can distinguish between two types of individ-
uals: 1) individuals who make “informed decisions” and 2)
individuals who “imitate”. We refer to individuals who make
informed decisions as informed adopters. Informed adopters
have (insider) knowledge about the trend to adopt and decide
whether or not to adopt based on information/discussion with
other insiders who have already adopted. As a result, among
the insider’s group, the adoption process can be modeled by
the cascade process. We refer to individuals who imitate as
followers. Followers do not have enough knowledge about the
trend so as to make informed decisions, and as a consequence,
decide whether or not to adopt depending on how many other
people already have adopted the item. Hence for the latter
group, the adoption process can be captured by the threshold
model. In addition, we consider an initial set of individuals
who adopt the trend without being influenced by others. We
refer to these individuals as trendsetters (early adopters). The
trendsetters are important as they serve as “seeds” that enable
the spread of the trend.

Note that followers have no special knowledge about the
trend and therefore need to rely on their observation of what
informed adopters do in order to decide on whether or not to
adopt the trend. As such, the goal of a follower is to adopt
the trend only if a large fraction of informed adopters does so,
since this can be taken as an indication that the trend is indeed
worth adopting. However, followers do not have a “global
view” but only a “local view”, i.e. they can only observe
what the informed adopters who are neighbors in their social
network do, but they can not observe the adoption behavior
of all informed adopters. As such, the question we want to
explore is whether it is possible to choose a threshold value
that guarantees that followers make the correct decision and
adopt the trend only if a majority of the informed adopters



does so, even though they have only local information.
Our second contribution is to characterize a optimal thresh-

old strategy for the followers. More precisely we show that is
optimal for followers to adopt a trend as soon as two friends
in their social network adopted the trend. Interestingly, this
behavior was observed in the Backstorm el. [4] on friendship
links and community membership on LiveJournal, and the co-
authorship network in DBLP.

To the best of our knowledge, it is the first time that a
mathematical model is proposed to address and reassemble
the real-life influence propagation pattern.

The rest of the paper is organized as follows. In Section
2, we discuss related work of empirical studies on real social
networks. Section 3 presents our mathematical model, problem
statement and numerical results. In Section 4, we propose
a tractable model. In Section 5, we perform the analysis to
address the choice of threshold value. Finally we conclude
and discuss the future work in Section 6.

II. RELATED WORK

In this section, we provide the related work of empirical
studies concerning threshold strategy on real social networks.
The subject of threshold is not new. In fact, it is well used in
various fields of science [3]: as a method of segmentation in
image processing, as a model in toxicology, as a phenomenon
in particle physics, etc. However, the mathematical study of the
threshold strategy and the optimum threshold value on social
networks is the first time in the paper.

Backstorm el. [4] studied two large sources of data:
friendship links and community membership on LiveJournal,
and the co-authorship network in DBLP. They plotted the
individual’s probability p of joining a LiveJournal/DBLP
community as a function of the number of friends, k, already
in the community (Fig1, Fig2). Both plots exhibit qualitatively
similar shapes in which p continues increasing, but more
and more slowly as k increases. We take a closer look at
Fig.1, since the error bars are smaller here. The probability
of joining LiveJournal has a close fit to a logistic function for
k = 0, 1, 2, with a rapid growth at k = 2. After this point,
the probability of joining the community has a close fit to
a logarithmic function. For the largest jump in p at k = 2,
Backstorm el. claimed that the marginal benefit of having a
second friend in a community is particularly strong. Such a
curve suggests the individual’s strategy of a threshold pattern:
individuals have a low tendency to take an action if not many
acquaintances did so; then the tendency increases very fast
if a certain number of acquaintances have done so; beyond
this point the tendency still increases, but does so slower
and slower. The action herein is an abstract notation, which
could be joining a community (Fig.1), or attending another
conference (Fig.2). Though the empirical study of Backstorm
el. reveals the individuals’ threshold strategy, their research
focus was on quite a different subject: the evolution of large
social networks.

Fig. 1. The probability p of joining a LiveJournal community as a function
of the number of friends k already in the community. Error bars represent
two standard errors [4].

Fig. 2. The probability p of joining a DBLP community as a function of
the number of friends k already in the community. Error bars represent two
standard errors [4].

One variation of the above threshold strategy is in the
context of voluntary vaccination [5]: once a sufficient
proportion of the population is already immune, either
naturally or by vaccination, people tend to skip vaccination
under the voluntary policy due to morbidity risks of the
vaccination itself. That is individuals tend to avoid taking an
action once a threshold is reached. Bauch el. [5] performed
a game theoretical analysis based on Nash equilibrium to
explain the threshold strategy with respect to vaccination.
However, they need to assume that all individuals are provided
with the same information and use this information in the
same way to assess risks.

Here this paper lifts the assumption of synchronized global
information, and considers the situations where individuals
have social contacts with their friends, thus have merely
local observations. And individuals make decisions based on
the limited information. To the best of our knowledge, our
work provides a unique approach to choose a threshold value
so that individuals can make correct choices based on local
observations.



III. MODEL AND PROBLEM STATEMENT

In this section, we introduce our hybrid model for trend
adoption in social networks, state the question of interests,
and provide a numerical case study to illustrate our result.

Recall that our scenario of trend adoption in the social
network: individuals can observe whether their friends have
adopted the trend or not, and make the decision based on
these observations. We refer to an individual who adopted the
trend as active, and to an individual who has not adopted the
trend as non-active, or inactive. Note that individuals only go
from non-active to active status, but not from non-active to
active.

A. Social Network Graph

Our model consider two main groups in the social network
population. One is the “informed adopter” group consisting
of individuals who have knowledge about the trend and make
informed decision based on information/discussion with other
insiders who have already adopted. For this group, we model
their user behaviour as cascade process. The other is the “fol-
lower” group consisting of individuals who don’t have enough
knowledge about the trend to make informed decisions, and as
a consequence, decide whether or not to adopt by “imitating”
their acquaintances who already have adopted the trend. For
the second group, we presume they obey threshold strategy.

We think of a social network as a collection of individuals
who have connections with one another in social bonds
such as friendship, kinship, or relationships of beliefs and
knowledge [7]. We use a graph G to represent the entire
social network. As part of the social network graph G,
we define a undirected subgraph G1 of G representing the
“informed adopters” and directed subgraph G2 representing
the “followers”.

In the rest of the paper, we will use the terms individuals
and nodes/vertices interchangeably.

More precisely, we use the following Erdös-Rényi [11]
random graph model. We denote with V (G1) the vertex set
of G1 given by

V (G1) = {1, 2, 3, · · · , n1},

where n1 denotes the total number of informed adopters in the
social graph G. Each node in V (G1) represents an informed
adopter in the social network.

Between any pair of nodes i, j ∈ V (G1), with probability
p1 ∈ (0, 1] there exists an undirected edge between two
informed adopters i and j in G1, independent of everything
else. Let E(G1) be the resulting edge set of G1 given by

E(G1) = {ei,j |i, j ∈ V (G1)}.

Each edge in E(G1) stands for the social connection within
G1.

The average node degree λ1 in G1 is then given by

λ1 = p1n1

and we have the relation

p1 =
λ1
n1
. (1)

Note that λ1 represents the average number of informed
adopters a node in G1 communicates with.

Let V (G2) the vertex set of G2 given by

V (G2) = {1, 2, 3, · · · , n2},

where n2 denotes the total number of followers in the social
graph G. Each node in V (G2) represents a follower in the
social network.

We assume that with probability p2 ∈ (0.1] there exists
a directed edge e(i, j) between a follower i in G2 and an
informed adopter j in G1, independently of everything else.

Let E(G2) be the edge set of nodes in G2. Each edge in
E(G2) stands for the social connection between a follower in
G2 and an informed adopter in G1, i.e. we have

E(G2) = {ei,j |i ∈ V (G1), j ∈ V (G2)}.

The average node degree λ2 in G2, i.e. the average number
of informed adopters that a follower in G2 knows, is then
given by

λ2 = p2n1

and we have the relation

p2 =
λ2
n1
.

Using the above notation, the graphs G1 and G2 are charac-
terized by the parameters (n1, λ1) and (n2, λ2), respectively.
Accordingly, we use the notation G1(n1, λ1) and G2(n2, λ2)
to characterize the two graphs.

Aggregated, let e(G) be the random variable denoting the
number of edges in G.

e(G) = |E(G)|

And let N(v) be the set of immediate neighbours of v,
which stands for the set of friends, relatives or acquaintances
of v on the social network.

N(v) = {w|w ∈ V (G), and ev,w ∈ E(G)}

B. Asymptotic Behavior

In the following we are interested in the asymptotic behavior
as the social graph becomes large. As such, we consider an
infinite sequence of social graphs denoted by n = 1, 2, ...,
and let G1(n1, λ1) and G2(n2, λ2) be functions of n; i.e. the
parameters (n1, λ1) and (n2, λ2) of G1 and G2, respectively,
depend on n. We assume that n1 and n2 become large
(approach infinity) as n increases.

Assumption 1. We have

lim
n→∞

n1(n) =∞

and
lim
n→∞

n2(n) =∞.



To keep the notation light, in the following we typically
do not explicitly state the dependency of parameters such as
(n1, λ1) and (n2, λ2) on n.

Note that the above implies that the edge probabilities p1
and p2 are also functions of n. For our analysis, we make the
following assumption on p2(n).

Assumption 2. We have

lim
nto∞

p2(n) =
λ2(n)

n1(n)
= 0.

The above assumption states that the followers can only
observe a vanishingly small fraction of the informed adopters.

C. Trendsetters

In addition to the informed adopters and followers, we
consider a third group of individuals, namely the trendsetters
or early adopters. Trendsetters adopt the trend without being
influenced by others in the social network. Trendsetters serve
as “seeds” that enable the spread of the trend.

In our model, the trendsetters are given by a subset A1 of the
informed adopters G1, i.e. A1 is the the initial active set within
the insiders group, G1. This size of the set A1 can depend on
n and we make the following technical assumption on the
size of the set A1(n), i.e. the total number of trendsetters as
a function of n.

Assumption 3. There exist positive constants ε and k, and
c ∈ [0, 12 ) such that

lim
n→∞

|A1(n)| > ε

and
lim
n→∞

|A1(n)| ≤ k ∗ (nc1). (2)

We restrict the size of A1(n) because we want to focus on
the case where the numbers of trendsetters does not dominate
the total number of informed adopters.

D. Trend Adoption

We consider the following policies for informed adopters
and followers to adopt a trend.

Informed Adopters – Influence Cascade: Informed adopters
in G1 are influenced by the decisions made by other informed
adopters who are within one hop friendship on G1(n1, λ1).
We model this process using the independent information
cascade model that was introduced to study the problem of
the maximum influenced set in social networks [6], [8], [9].

More precisely, we divide the set E(G1) into two disjoint
subsets of open and blocked edges. An edge e(i, j) ∈ E(G1)
is open with probability ρ1 ∈ [0, 1], independent of everything
else; otherwise it is blocked.

The trend adoption then only propagates over open edges,
i.e. if node i has adopted the trend and node e(i, j) is an open
edge, then node j will also adopt the trend [6], [8], [9].

Followers – Threshold Strategy: Here we assume that fol-
lowers use a threshold policy in order to adopt the trend, i.e. a
follower will adopt the trend only if the number of informed

adopters that adopted the trend exceeds a given threshold
value. More precisely, let ta be a threshold value used by
the followers in G2(n2, λ2) in order to decide whether or not
to adopt the trend. A follower then adopts the trend only if he
observes ta number of adoptions among his one-hop friends.

E. Adoption Process

The trend adoption process then proceeds as a discrete time.
At time t = 0, only the trendsetters A1 in G1 have adopted the
trend, i.e. are active in G1. The trend then spreads from A1 as
follows. When a node i ∈ V (G1) first becomes active in step
t, it is given a single chance to activate each currently non-
active neighbour j ∈ N(i), and it succeeds with probability
ρ1. If i succeeds, then j will become active in step t+ 1. The
cascade terminates when no node has become newly active at
a given time step. Followers V (G2) in G2 observe whether
their one-hop friends in G1 and adopt the trend as soon as
ta of their friends have adopted the trend, i.e .have become
active.

F. Problem Statement

In the above scenario of the individual adoptions on social
networks, we are interested in the question of an optimal
threshold decision policy, which allows followers to make the
correct decision in the sense that they only adopts a trend if the
majority of informed adopters in G1 will adopt the trend. Thus
we are interested in which threshold value ta to choose such
that followers will almost always make the correct decision
to conform with the majority of individuals in G1. Note that
the threshold decision policy merely makes use of individuals’
local observations.

It is well known [11] that (asymptotically) a majority of
informed adopters in G1 will adopt the trend only if

lim
n→∞

ρ1λ1 > 1

and only a small fraction of informed adopters in G1 will
adopt the trend if

lim
n→∞

ρ1λ1 < 1.

Therefore, the question we want to study is whether there
exists a threshold value ta that ensures that (asymptoti-
cally) no follower will adopt the trend in the case where
limn→∞ ρ1λ1 < 1, and each follower will adopt the trend
with positive probability if limn→∞ ρ1λ1 > 1.

G. Main Result

Our main result is to prove that choosing the threshold value
ta = 2 is optimal for followers in the sense that the threshold
value ta = 2 ensures that a follower never makes a mistake
by adopting a trend that is adopted only by a small fraction of
the informed adopters, while maximizing the probability that
a follower adopts the trend when a majority of the informed
adopters does so.

More precisely, we obtain the following result. Consider a
follower i in G2 and let the random variable Ki denote the
number of active neighbours of i after the cascade process
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Fig. 3. Double jump at λ1ρ1 = 1.

has finished, i.e. the numbers of active informed adopters in
G1 to whom follower i is connected in the social graph G.
Conditional on λ1ρ1, let F (k) be the probability there exists
at least one node in G2 who has at least k number of active
neighbours in G1, i.e. F (k) is given by

F (k) = Pr(∃i ∈ V (G2), such that Ki ≥ k|λ1ρ1 < 1). (3)

In our main result in Section 5 we show that

lim
n→∞

F (1) > 0

and
lim
n→∞

F (k) = 0, for k = 2, 3, · · · .

Note that this result implies that under a any threshold value
ta ≥ 2, no follower will make the mistake to adopt a trend if
only a small fraction of the informed adopters does so. This is
not true for the threshold value ta = 1, i.e. under the threshold
value ta = 1 some followers will make a the mistake and adopt
the trend even though only a small fraction of the informed
adopters does so. Hence, using a threshold ta ≥ 2 is “safe” as
ensures that followers never make a mistake. Moreover, among
all value ta ≥ 2 the value t2 = 2 is optimal in the sense that
it maximizes the probability of adopting the trend when a
majority of the informed adopters does so. In particular, one
can show that under the threshold ta = 2 followers will adopt
the trend with a strictly positive probability when a majority
of the informed adopters adopt the trend.

H. Numerical Results

To illustrate our result, we provide a numerical case study.
First, we plot the fraction of nodes in G2 that adopts the

trend as the product of λ1ρ1 increases (Fig. 3). This leads to
an important observation, known as the double jump [12].

Furthermore, in order to examine closely the relation be-
tween individual adoption behaviour and their neighbourhood
adoption status, we plot Fig. 4 , in which we find that
the fraction of nodes who adopt the trend has a sudden
rise with two active neighbours presenting. Interestingly, this
observation was experimentally observed in real social net-
works [4]. This is one important feature of our model. As
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before, no propagation models can reproduce this “second-
adoption” phenomenon (Fig.1, 2) that appears in real life.

IV. EQUIVALENT MODEL

In this section, we propose the equivalent model of G
in Section 3, G′(n1, n2, λ1ρ1, A1, λ2, ta). In particular, we
shall prove that the size of the influenced set produced
by ρ1-cascade process over G1(n1, λ1, A1) has the same
distribution as that of the influenced set on G′1(n1, λ1ρ1, A1).

Before proceeding, we need to define the influenced set I1
on G1. Let the influenced set be the set of vertices connected
to A1 via open edges in G1, i.e.,

I1 = {v|v ∈ V (G1), v connects to A1 via open edges}

Hence by the end of the influence cascade process, all the
nodes in I1 become active.

The equivalent model G′1 is a Erdös-Rényi graph. G′1 has
the same vertex set as G1, but with a different edge preserving
probability

p′1 = p1ρ1,

where p1 is defined in (3.1), the edge preserving probability
of G1, the success probability of the influence cascade
process. G′1 have the same initial active set as G1, A1, and
subjecting to the same size constraint.



Now we define the influenced set I ′1 on G′1. Let the
influenced set on G′1 be the set of vertices connected to A1

via edges in G′1, i.e.,

I ′1 = {v|v ∈ V (G′1), v connects to A1 via edges e ∈ E(G′1)}

The following theorem guarantees that on both models the
distribution in the size of the influenced set is the same. To
prove that unfolding the influence cascade by determining the
open/block status of edges gradually at each time step is the
same as unfolding the influence cascade by determining the
status of all the edges at the beginning during the construction
of G′1, the idea is to argue that the distribution for a random
node joining the influenced set is the same over time steps in
both models.

Theorem 1. Given an initial active set A1, the distribution of
the influenced sets obtained by cascade process on G1 starting
from A1, is the same as the distribution of sets reachable from
A1 via edges on G′1.

Proof: First we argue the iterations of the influence
cascade process over G1. Define A(t)

1 to be the set of active
nodes at the end of iteration t, for t = 0, 1, 2, 3, · · · . If
a random node v has not become active by the end of
iteration t, then under the cascade process, the probability
that v will become active in iteration t + 1 is equal to
the chance that one of its active neighbours in A

(t)
1 but

not in A
(t−1)
1 succeeds in activating v. This probability is

P (v ∈ A(t+1)
1 |v /∈ A(t)

1 ) = 1−
∏
w∈A(t)

1 \A
(t−1)
1

(1− ρ1λ1

n1
).

Second we construct G′1 gradually as follows. We start
with the initial set A1. For each node v with at least one
edge stub, we determine whether it connects to A1. If so,
then v is reachable; if not, we keep the source of v’s edge
unknown subject to the condition that it comes from outside
of A1. Having now exposed a new set of reachable nodes
A

(1)
1 in the first time step, we proceed to reveal further

reachable nodes by performing the same process on edges
from A1, and in this way produce sets A(2)

1 , A
(3)
1 , A

(4)
1 , · · · .

If node v has not been determined to be reachable by the
end of time step t, then the probability that it is determined
to be reachable in time t + 1 is equal to the chance that its
edge comes from A

(t)
1 but not in A

(t−1)
1 ; this probability is

A
(t+1)
1 |v /∈ A(t)

1 ) = 1−
∏
w∈A(t)

1 \A
(t−1)
1

(1− ρ1λ1

n1
).

Thus, by induction over the iterations, we see that the
cascade process produces the same distribution over influenced
sets as the construction of G′1.

Since we have established the equivalence between the
G1(n1, λ1, ρ1, A1) in Section 3 and G′1(n1, λ1ρ1, A1) with
respect to the distribution in the size of the influenced set, and
G′1 is essentially a Erdös-Rényi graph.

V. ANALYSIS

In this section, we derive in detail the answer to
the question of the optimal trend-adoption policy on

G′(n1, n2, λ1ρ1, A1, λ2, t a). We shall specifically consider
the adoption policy in subcritical phase, and obtain the optimal
policy.

A. Decision Policy in Subcritical Phase

When p′1 = p1ρ1 ∈ [0, 1
n1

), G′1 is in subcritical phase.
We first derive the probability, u(k), for a random vertex in
G2(n2, λ2) possessing k active neighbours. Then by making
use of this formula, we derive the conditional probability,
F (k), for existing any node in G2(n2, λ2) with at least k
active neighbours. And we thus prove that in the subcritical
phase the correct decision policies are threshold strategies
with threshold value: ta = 2, 3, · · · .

Let Pa be the probability for a random node in G′1 being
active after the influence cascade terminates. Then Pa is given
by:

Pa =
|I1|
n1

(4)

In order to quantify Pa, we make use of the expectation
of |I ′1|, which can be expressed in closed form using per-
colation theory on random graphs. Percolation property of
random graphs has been extensively studied in the field of
epidemics spread [15], [16], [17]. It studies whether a disease
will dominate the whole population. If the disease does not
percolate the whole network, it quantifies the expected value
of the size of the infected population. The main approach used
is generating functions [18]. By the same approach, we are
now deriving E(|I ′1|) on Erdös-Rényi random graph, Gn,p,
with percolation probability ρ.

Theorem 2. On Erdös-Rényi random graph G(n, p = λ
n ), the

expectation of the size of the influenced set with one vertex
percolated initially is 1−ρ

1−ρ−λρ .

Proof: Let pk be the probability for a random vertex
having degree k. pk is given by:

pk =

(
n− 1

k

)
pk(1− p)n−1−k ≈ λke−λ

k!
. (5)

Let G0(x) be the generating function of {pk}, which is given
by:

G0(x) =
∑
k≥0

pkx
k

Follow a random edge and reach a vertex v. Let {qk} be the
degree distribution of so-reached vertex v. Let G1(x) be the
generating function of {qk}, which is given by:

G1(x) =
∑
k≥0

qkx
k

A random edge has probability 1
e(G) to be chosen by the

uniform choosing policy, where e(G) denotes the total number
of edges in G. Conditional on v having degree k, the chosen
edge has probability k

e(G) being incident to v, i.e.,

P ( the chosen edge incident to v|deg(v) = k) =
k

e(G)
(6)



By Total law of probability, from (5, (6) we have:

P (the chosen edge incident to v) =

∑
k pkk

e(G)
. (7)

Thus by Bayes rule, from (5), (7) we have qk which is given
by:

qk = P (deg(v) = k| the chosen edge incident to v)

=
pkk∑
k pkk

=
pkk

z

(8)

where z is the average vertex degree. And in the case of
Erdös-Rényi random graph z = λ on our model.

Let p̃m be the probability for a random vertex having m
open edges. Let G0(x; ρ) be the generating function of {p̃m},
which is given by:

P (m edges of v are open |deg(v) = k)

=

(
k

m

)
ρm(1− ρ)k−m binomial distribution

⇒
p̃m = P (m edges of v are open)

=
∑
k

pk

(
k

m

)
ρm(1− ρ)k−m

⇒

G0(x; ρ) =
∑
m≥0

∑
k≥0

pk

(
k

m

)
ρm(1− ρ)k−mxm

=
∑
k≥0

pk

k∑
m≥0

(
k

m

)
(xρ)m(1− ρ)k−m

=
∑
k≥0

pk(1− ρ+ xρ)k

Thus
G0(x; ρ) = G0(1− ρ+ xρ) (9)

Now follow a random edge and reach a vertex v. Let q̃m
be the probability for so-reached v having m open edges. Let
G1(x; ρ) be the generating function of {q̃m}. Similar with the
derivation of (9), G1(x; ρ) is given by:

G1(x; ρ) = G1(1− ρ+ xρ) (10)

Let Z be a random variable denoting the size of influenced
set connected to a random vertex. Define H0(x; ρ) be gener-
ating function for the distribution of Z. Let Z̃ be a random
variable denoting the size of influenced set connected to a
random edge. Define H1(x; ρ) be generating function for the
distribution of Z̃. The influenced components generated by
H0(x; ρ) consist of the initial infected node, plus any number
of tree-like clusters, joined to it by single edges. Each tree-like
cluster has the size distribution generated by H1(x; ρ). Thus
we have:

H0(x; ρ) = xq0 + xq1H1(x; ρ)

+ xq2[H1(x; ρ)]2 + xq3[H1(x; ρ)]3 + . . .

i.e.,
H0(x; ρ) = xG0(H1(x; ρ); ρ)

and

H1(x; ρ) = xq̃0 + xq̃1H1(x; ρ) + xq̃2[H1(x; ρ)]2 + . . .

i.e.,
H1(x; ρ) = xG1(H1(x; ρ); ρ) (11)

The expected value of Z is given by differentiating H0(x; ρ),
i.e.,

E[Z] = H ′0(1; ρ) = 1 +G′0(1; ρ)H ′1(1; ρ) (12)

Differentiating equation (11), we have:

H ′1(1; ρ) = 1 +G′1(1; ρ)H ′1(1; ρ) =
1

1−G′1(1; ρ)
(13)

substitute (13) into (12), and make use of (8),(9), (10), we
have:

E[Z] = 1 +
ρG′0(1)

1− ρG′1(1)
(14)

We notice

G′0(1) =
∑
k≥0

kpkx
k−1|x=1 =

∑
k≥0

kpk = λ (15)

With (8), we also have

G′1(1) =
∑
k≥0

kqkx
k−1|x=1

=
∑
k≥0

k2pk
z

=
E(K2)

z

=
V ar(K) + E2(K)

z
=
λ+ λ2

λ
= 1 + λ

(16)

where K in (16) is a r.v. denoting the vertex degree of a ran-
dom node in Erdös-Rényi random graph G(n, p = λ

n ). Thus,
K has approximately Poisson distribution with E(K) = λ and
V ar(K) = λ. Substituting (15) and (16) into (14), we have

E[Z] =
1− ρ

1− ρ(1 + λ)

By Theorem 2, we have the expectation of the influenced
set given by:

E(|I ′1|) =
1− ρ1

1− ρ1(λ1 + 1)
for |A1| = 1

Further for |A1| ≤ k ∗ nc1 for some k, we have

E(|I ′1|) ≤
1− ρ1

1− ρ1(λ1 + 1)
k ∗ nc1 =≤ k′ ∗ nc1, for some k′.

If the influenced sets associated with each node in A1

are independent, the sum of the influenced sets has the
expectation of 1−ρ1

1−ρ1(λ1+1)k ∗ n
c
1. The inequality comes from

the possibility that those influenced sets overlap with one
another.



By Markov inequality and Theorem 2, we have an upper
bound of |I ′1| given by:

Pr(|I ′1| ≥ n2c) ≤
E(|I ′1|)
n2c1

≤ knc1
n2c1

=
k

nc1
→ 0 for n1 large

Since we have restricted the size of A1 by assuming that 0 ≤
c < 1

2 in (2), then limn1→∞ P (|I ′| ≥ nc
′

1 ) = 0, where c′ ∈
[0, 1). By Theorem 1, we have the same bound of |I1|:

lim
n→∞

P (|I1| ≥ nc
′

1 ) = 0, where c′ ∈ [0, 1) (17)

Alternatively, (17) can be written as:

lim
n1→∞

P (|I1| < nc
′

1 ) = 1 (18)

Now we bound Pa by substituting (18) into (4):

Pa =
|I1|
n1

<
nc
′

1

n1
= 0 with probability 1 for n1 large (19)

Equation (19) has an intuitive interpretation. In the subcriti-
cal phase of G′1(n1, λ1ρ1, A1), we randomly pick a node when
the influence cascade terminates. Such a node is non-active
with probability 1 for large networks. The following theorem
provides the distribution for a random node in G2(n2, λ2)
having na number of active neighbours.

Theorem 3. On our model G′(n1, n2, λ1ρ1, A1, λ2, ta), we
have P (Kv = na) = (λ2Pa)

na

na!eλ2Pa
, where Pa is given by (4).

Proof: First, we derive the degree distribution of a random
node in G2(n2, λ2). Let pk be the probability for a random
node v ∈ G2 having k neighbours. pk satisfies binomial
distribution and is given by:

pk =

(
n1 − 1

k

)
pk2(1− p2)n1−1−k

where p2 = λ2

n1
.

We apply Poisson approximation as n1 goes to infinity:

pk =

(
n1 − 1

k

)
pk2(1− p2)n1−1−k ≈ λk2e

−λ2

k!
(20)

Next we derive the distribution of the number of active
neighbours a random node in G2 possess. On the condition
that a random node v has degree k, the probability for v having
na active neighbours also satisfies binomial distribution:

P (Kv = na|deg(v) = k) =

(
k

na

)
Pnaa (1− Pa)k−na (21)

where Pa is the probability for a random node being active,
as defined in (4).

By Total law of probability, we remove the condition in (21),
and have the probability for v having na active neighbours
given by:

P (Kv = na) =
∑
k

pk

(
k

na

)
Pnaa (1− Pa)k−na (22)

By substituting pk in (20) into (22) and applying Taylor

expansion [20], we have

P (Kv = na) =

=
∑
k

λk2e
−λ2

k!

k!

(k − na)!na!
Pnaa (1− Pa)k−na

=
e−λ2Pnaa

na!(1− Pa)na

∑
k

λk2(1− Pa)k

(k − na)!

=
e−λ2Pnaa

na!(1− Pa)na
[λ2(1− Pa)]naeλ2(1−Pa)

=
(λ2Pa)na

na!eλ2Pa

Next, we use Theorem 3 to determine threshold decision
policy. In particular, we define F (k) to be a conditional
probability. It denotes the probability that there exists one
G2 node having at least k number of active neighbours,
conditional in subcritical phase. The next theorem quantifies
F (k), which in turn suggests that if choosing ta ≥ 2, with
probability 1, no nodes in G2 make a wrong decision.

Theorem 4. We have

lim
n→∞

F (1) > 0

and
lim
n→∞

F (k) = 0, for k = 2, 3, · · · .

Proof: To see whether there exists a “follower” node in
G2 having at least one active insider-neighbour in subcritical
phase, we compute limn→∞ F (1):

lim
n→∞

F (1) = lim
n→∞

1− [1− Pr(Kv ≥ 1)]n2

= 1− lim
n→∞

[Pr(Kv = 0)]n2

= 1− lim
n→∞

[
(λ2Pa)0

0!eλ2Pa
]n2

= 1− lim
n→∞

[
(λ2
|I1|
n1

)0

0!eλ2
|I1|
n1

]n2

= 1− 1

eλ2|I1|n2
n1

> 0

To see whether there exists a node in G2 having at
least two active neighbours in subcritical phase, we compute
limn→∞ F (2):

lim
n→∞

F (2) = lim
n→∞

1− [1− Pr(Kv ≥ 2)]n2

= 1− lim
n→∞

[Pr(Kv = 0) + Pr(Kv = 1)]n2

= 1− lim
n→∞

[
(λ2Pa)0

0!eλ2Pa
+

(λ2Pa)1

1!eλ2Pa
]n2

= 1− lim
n→∞

[
(λ2
|I1|
n1

)0

0!eλ2
|I1|
n1

+
(λ2
|I1|
n1

)1

1!eλ2
|I1|
n1

]n2

= 1− lim
n→∞

(1 + λ2|I1|
n1

)n

eλ2|I1|
(23)



To further reduce (23), let m = n1

λ2|I1| . Note that limn→∞m =
∞. Thus we reduce the nominator in (23) as follows:

lim
n→∞

(1 +
λ2|I1|
n1

)n1

= lim
n→∞

{(1 +
λ2|I1|
n1

)
n1

λ2|I1| }λ2|I1|

= lim
m→∞

[(1 +
1

m
)m]λ2|I1|

= eλ2|I1|

(24)

In the derivation of (24), we make use of the common
limit [21]:

lim
m→∞

(1 +
1

m
)m = e

Substitute (24) into (23). We have:

lim
n→∞

F (2) = 1− lim
n→∞

(1 + λ2|I1|
n1

)n2

eλ2|I1|

= 1− eλ2|I1|

eλ2|I1|

= 0.

(25)

(25) says that there exists no node having 2 or more active
neighbours in subcritical phase. It generalizes that there exists
no node having 3 or more active neighbours in subcritical
phase, and so forth. Thus we have limn→∞ F (k) = 0, for
k = 2, 3, · · · .

Theorem 4 suggests the decision policy for followers in
subcritical phase. The first part of the theorem says that the
threshold value should not be ta = 1. Since limn→∞ F (1) > 0
suggests that the probability is positive for existing at least one
node having 1 active neighbour by the end of influence cascade
process. If we choose ta = 1 as the threshold value, then by
the strategy the nodes with one active neighbour shall adopt
thus make the wrong decision in subcritical phase. The second
part says that the threshold value could be ta = 2, 3, · · · .
Since limn→∞ F (k) = 0 for k = 2, 3, · · · says the probability
tends to zero for existing any nodes having k or more active
neighbours. In words, with probability one there is no node
with k or more active neighbours for k ≥ 2. Hence these
choices of k can guarantee all the “follower” nodes in G2

not to adopt thus make the correct decision in the subcritical
phase. Moreover, one can show that under the threshold
ta = 2 followers will adopt the trend with a strictly positive
probability when a majority of the informed adopters adopt
the trend (i.e. when limn→∞ λ1ρ1 > 1); and the larger the
fraction of informed adopters who adopted the trend, the
higher the probability that a follower will do so. In this sense,
the threshold value ta = 2 the optimal value.

VI. CONCLUSIONS

In this paper, we study how an individual in a social
network should decide whether or not to adopt a trend, based
on how many people in their neighborhood in the social
network adopted the trend. In particular we investigated
the question in what adoption policy leads to an optimal

trend-adoption in the sense that an individual only adopts a
trend if the majority of their social network will do so. we
obtain the result that the optimal policy for an individual is
to adopt a trend if two people in their neighborhood did.

Our analysis is mainly done on the Erdös-Rényi random
graph model. Though our work is based on an oversimplified
model, it indeed shed some light on how individuals make
choices in real life. this result/behavior was experimentally
observed in real social networks. The work of Backstrom
el. [4] noticed the special effect of the second friend and
claimed that the marginal benefit of having a second friend
in the community is particularly strong. Here in our paper,
we prove the optimality of the threshold value of 2, which
coincides with the discovery of the special second adoption
found in [4].We hope that this work will help towards building
applications that is able to automatically push relevant content
to users in online social networks.
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