Rate Control for Random Access Networks: The Finite Node Case

Peter Marbach Department of Computer Science University of Toronto

- Point-to-Point Wide Area Networks
 - Price-Based Rate Control (F. Kelly, S. Low, etc.)
- Local Area Networks
 - Random Access

Problem Formulation

$$\max_{x_r \ge 0} \sum_r U_r(x_r)$$

subject to

 $Ax \leq C$

Rate Control

- Lagrange Multipliers
- "Link Price"
 - Input Rate
 - Backlog
- Rate: $x_r = D_r(u_r)$, $u_r = \sum_{l \in r} \mu_l$

- Collisions Backlog Stability
- Retransmission Strategies for Backlogged Packets
- Rate Control
 - Input Rate?
 - Backlog?
- Channel Feedback
 - Idle/Transmission/Collision

- Rate Control
 - Collision: Reduce Rate
 - Idle: Increase Rate
- Questions
 - Stable?
 - Operating Point?
 - Packet Scheduling?

- Channel Model: Slotted Aloha
 - CSMA, CSMA/CD
- Use Channel Feedback to Modulate Rate
 - Idle, Successful, Collision Slot
- Markov Chain Formulation
 - Stability
- Infinite Node Model: Operating Point
- Finite Node Model: Packet Scheduling

- Poisson Arrival Rate
- Fixed Retransmission Probability q, 0 < q < 1
- Price (Control) Signal *u*
- Aggregated Transmission Rate $\lambda(u)$
 - Continuous, Strictly Decreasing
 - $lim_{u\to\infty}\lambda(u) = 0$
- Collision: Increase Price
- Idle Slot: Decrease Price
- Price Adaptation: $\alpha < 0, \gamma > 0$

$$u_{t+1} = \left[u_t + \alpha I[Z_t = 0] + \beta I[Z_t = 1] + \gamma I[Z_t \ge 2] \right]^+$$

- Markov Chain (n_t, u_t)
- System is stable.
- (Under suitable conditions) There exists a unique operating point (n^*, u^*)
- We can set $S^* = \lambda(u^*)$ and $D^* = n^*/S^*$ by choosing α, β, γ .

• Finite Number of Nodes

$$\lambda(u) = \sum_{m=1}^{M} \lambda_m(u).$$

- Nodes can have several backlogged packets
- Backlog-Dependant Retransmission Probabilities

$$q_m(n_m) = \begin{cases} n_m q_m, & n_m q_m \le 1 - \epsilon, \\ 1 - \epsilon, & \text{otherwise,} \end{cases}$$

• Backlog-Independent Retransmission Probabilities, q_m .

- "Scheduling" is important
- Service differentiation
 - Rate

$$\lambda(u) = \sum_{m=1}^{M} \lambda_m(u).$$

– Delay

$$q_m(n_m) = \begin{cases} n_m q_m, & n_m q_m \le 1 - \epsilon, \\ 1 - \epsilon, & \text{otherwise,} \end{cases}$$

Assumption: "Price tends to increase when all nodes are saturated and retransmit with probability $1 - \epsilon$."

Case Study

Node	Bandwidth	Delay
1	low	high
2	low	low
3	high	high
4	high	low

Results

Node m	S_m	D_m
1	0.021	186.7
2	0.021	19.9
3	0.206	116.5
4	0.210	11.8

- Point-to-Point vs. Random Access Networks
- Markov Chain Model
- Operating Point
- Delay and Throughput Differentiation
- End-to-End Rate Control

- Price-Based Rate Control
 - Frank Kelly, Steven Low,.....
- Rate Control and Slotted Aloha
 - Kleinrock and Lam
 - Mittal and Venetsanopoulos
- TCP over 802.11
 - Cali *et al*.
- Price-Based Rate Control for Random Access Networks
 - Jin and Kesidis
 - Battiti et al.