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Abstract—CSMA policies are examples of simple distributed
scheduling algorithms in wireless networks. In this paper, we
study the delay properties of CSMA in the limit of large
networks. We first define an ideal network under which CSMA
becomes memoryless in that the delay to access the channel
becomes an exponential r.v. independent of the past. We
then show that, in the limit of large bipartite graphs with
primary interference constraints, simple CSMA policies become
memoryless.

I. INTRODUCTION

CSMA policies are simple distributed policies, which play

an essential role in many of the current standards. It has

been shown that CSMA policies are throughput optimal for

multihop networks under fairly general interference models

[1]. In the case of primary interference model [6], [7], more

explicit results are provided in [2] characterizing the rate

region of CSMA policies in the limit of large networks with

many small flows. One fundamental question is how the

packet delay behaves as the size of the network increases

or the boundary of capacity region is approached. This delay

is closely related to the delay to access the channel due to the

contention among nodes. Once the access delay is properly

characterized, one can also obtain bounds for the queueing

delay. Literature [3] [4] suggests that in general CSMA may

lock into a schedule for a long time, making the access delay

unacceptably large. This implies that CSMA has schduling

memory that causes short-term unfairness.

Ideally, we would like to have access delays as renewal

intervals that have exponential distribution. Motivated by this,

we define a scheduling policy π to be memoryless for a

given network and a given arrival rate vector if it satisfies

the following condition:

• Under the policy π, for any link, the delays to access

the channel (to transmit one packet) scaled by the arrival

rate of that link are 1) i.i.d. random variables, and 2) are

exponentially distributed with unit mean.

This property ensures that the access delays are not correlated

in time and also ensures short-term fairness.

Our goal is to examine nontrivial cases under which CSMA

policies become memoryless. As the first step, we define an

ideal network under which CSMA becomes memoryless. We

use the intuition gained to provide an upper bound for the

average access delay in the limit of large networks with many

small flows as studied in [2]. We then consider networks that

can be represnted by bipartite graphs. We show that under

some conditions, one can use the results from the mean-field

theory [5] to explicitly predict the behaviour of CSMA on

these networks. Specifically, we can accurately predict the

fraction of idle nodes over any finite interval of time. We

use this prediction and show that in the limit when the size

of the bipartite networks grows to infinity, CSMA becomes

memoryless.

II. SYSTEM MODEL

We consider a wireless network (N ,L) composed of a set

N of nodes with cardinality N, and a set L of directed links

with cardinality L. A directed link (i, j) ∈ L indicates that

node i is able to send data packets to node j. We assume

that the rate of transmission is the same for all links. For

simplicity, we assume the system is time-slotted and each

timeslot has duration β time units. Further, we assume that

packet lengths are geometrically distributed with unit mean,

and we rescale time such that the time it takes to transmit one

packet is on the average equal to one time unit. We define Ni

to be the set of all neighbours of node i, i.e., Ni = {j; (i, j) ∈
L or (j, i) ∈ L}. We also define Li = {l; l = (i, j) ∈ L} to

be set of all outgoing links from node i.

Interference Model: We focus on networks under the

well-known primary interference, or node exclusive interfer-

ence, model [6], [7]. In this model, a packet transmission

over link (i, j) is successful if only if within the transmis-

sion duration, there exists no other activity over any other

link (m, n) which shares a node with (i, j). The primary

interference model applies, for example, to wireless systems

where multiple frequencies/codes are available (using FDMA

or CDMA) to avoid interference, but each node has only a

single transceiver and hence can only send to or receive from

one other node at any time.

Traffic Model: We characterize the network traffic by a

rate vector λ := {λr}r∈R where R is the set of routes used

by the traffic, and λr, λr ≥ 0, is the mean rate in packets

per unit time along route r ∈ R .

For a given route r ∈ R, let sr be its source node and dr

be its destination node, and let

Rr = {(sr, i), (i, j), · · · , (v, w), (w, dr)} ⊂ L
be the set of links traversed by the route. We allow several

routes to be defined for a given source and destination pair
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(s, d), s, d ∈ N .

Given the rate vector λ = {λr}r∈R, we let

λ(i,j) =
∑

r:(i,j)∈Rr

λr, (i, j) ∈ L, (1)

be the mean packet arrival rate to link (i, j). Similarly, we

let

Λi =
∑

j∈Ni

[

λ(i,j) + λ(j,i)

]

, i ∈ N .

be the mean packet arrival rate to node i ∈ N . Introduction of

λ(i,j) allows us to focus on single hop packet transmissions

and on the delay of accessing the channel for any given link.

III. CAPACITY REGION

Consider a fixed network (N ,L) with traffic vector λ =
{λr}r∈R. A scheduling policy π then defines the rules that

are used to schedule packet transmissions on each link

(i, j) ∈ L. We define the link service rates as a function

of the rate vector λ = {λr}r∈R.

Definition 1 (Service Rate). Consider a fixed network

(N ,L). The link service rate µπ
(i,j)(λ), (i, j) ∈ L, of policy

π for the traffic vector λ = {λr}r∈R is the fraction of time

node i spends successfully transmitting packets on link (i, j)
under π and λ, i.e. the fraction of time node i sends packets

over link (i, j) that do not experience a collision.

Let P be the class of all policies π that have well-defined

link service rates. We then define network stability as follows.

Definition 2 (Stability). For a given network (N ,L), let

µπ(λ) = {µπ
(i,j)(λ)}(i,j)∈L the link service rates of policy

π, π ∈ P , for the rate vector λ = {λr}r∈R. We say that

policy π stabilizes the network for λ if λ(i,j) < µπ
(i,j)(λ),

(i, j) ∈ L.

Based on this stability criteria, the capacity region of a

network (N ,L) is then defined as follows.

Definition 3 (Capacity Region). For a given a network

(N ,L), the capacity region C is equal to the set of all traffic

vectors λ = {λr}r∈R such that there exists a policy π ∈ P
that stabilizes the network for λ, i.e. we have

C = {λ ≥ 0 : ∃π ∈ P with λ(i,j) < µπ
(i,j)(λ), ∀(i, j) ∈ L}.

IV. CSMA POLICIES AND THEIR RATE REGION

In section, we first define a CSMA policy and then

elaborate on their achievable rate region.

A. CSMA Policies

A CSMA policy is given by a transmission attempt prob-

ability vector p = (p(i,j))(i,j)∈L ∈ [0, 1]L and a sensing

period (or idle period) β > 0. The policy works as follows:

each node, say i, senses the activity on its outgoing links

l ∈ Li. We say that i has sensed link (i, j) ∈ Li to be idle

for a duration of an idle period β if for the duration of β

time units we have that (a) node i has not sent or received

a packet and (b) node i has sensed that node j has not sent

or received a packet. If node i has sensed link (i, j) ∈ Li

to be idle for a duration of an idle period β, then i starts a

transmission of a single packet on link (i, j) with probability

p(i,j), independent of all other events in the network1 . If

node i does not start a packet transmission, then link (i, j)
has to remain idle for another period of β time units before i

again has the chance to start a packet transmission. Thus, the

epochs at which node i has the chance to transmit a packet

on link (i, j) are separated by periods of length β during

which link (i, j) is idle, and the probability that i starts a

transmission on link (i, j) after the link has been idle for β

time units is equal to p(i,j),

Recall that we assume a time-slotted system, where each

timeslot has a duration of β. Further, we assume that when

packets are not available dummy packets are transmitted over

a link. We distinguish between a link being busy and active.

Specifically, we define:

Definition 4 (Active Link). A link (i, j) is defined to be

active at time t, if node i is transmitting to node j at time t.

Definition 5 (Busy Link). A link (i, j) is defined to be busy

at time t, if at least one of nodes i and j are transmitting to

one of their neighbouring nodes.

B. Rate Region of CSMA Policies with Primary Interference

Here, we provide key observations provided in [2] re-

garding the rate region and throughput-optimality of CSMA

policies in the limit of large networks. We first give a

definition.

Definition 6 (Achievable Rate Region of CSMA Policies).

For a given network (N ,L) and a given sensing period β, the

achievable rate region of CSMA policies is given by the set

of rate vectors λ = {λr}r∈R for which there exists a CSMA

policy p that stabilizes the network for λ, i.e. we have that

λ(i,j) < µ(i,j)(p), (i, j) ∈ L.

For given network (N ,L), let Γ(β) be the achievable rate

region of CSMA policies when the duration of an idle period

is equal to β. In [2], it is shown that

lim
β↓0

Γ(β) = {λ ≥ 0 : Λi < 1, for all i ∈ N} (2)

for large networks with many small flows and small sensing

period. Since it is impossible for any policy to stabilize

the network with a node i requiring Λi ≥ 1, this result

states limβ↓0 Γ(β) = C, and thus, CSMA policies are

(asymptotically) throughput-optimal.

To formally define these networks, consider a sequence

{(N (N),L(N))} of networks for which the number of nodes

N increases to infinity. Let {λ(N)} be the corresponding

sequence of arrival rate vectors for all links. A sequence of

networks with many small flows and small sensing period is

the one for which the following hold:

• limN→∞ Nβ(N) = 0.

• lim supN→∞
(

max(i,j)∈L(N) λ
(N)
(i,j)

)

= 0.

1To avoid self-interference, where a node may transmit over two
outgoing links, nodes first decide to transmit with probability σ =
P

{(i,j):(i,j) idle} p(i,j). Once they decide to transmit, they choose (only)

one link, say (i, j1), with probability σ−1p(i,j1).
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But we have that E[τ2
l ] ≥ E[τl]

2 = (λ(i,j))
−2. Therefore,

E[τ2
l ] = Θ

( 1

λ2
(i,j)

)

, as λ(i,j) → 0. (12)

This suggests that the access delay τl should be exponentially

distributed with mean λ(i,j). We have the following theorem:

Theorem 1. Let τ s
l = λ(i,j)τl be the scaled version of

the access delay τl. Under the ideal network assumption,

independent of the past

lim
λ(i,j)→0

lim
β→0

τ s
l

D→ X,

where X is an exponential r.v. with unit mean, and conver-

gence is in distribution.

This theorem essentially states that, due to the Markovian

nature of the system, the scaled access delays are i.i.d. and

exponentially distributed with unit mean. Hence, CSMA is

memoryless on the ideal networks with small flows.

Proof of Theorem 1: The main idea here is that

whenever the state returns to (0, 0), upon transition to a new

state, with probability ps given in (8), link l becomes active

for average duration of one unit time. If λ(i,j) is suffieintly

small, then many returns to (0, 0) must be made before link

l transmits. These many attempts remove the uncertainty of

the length of return times to (0, 0). In such a case, it seems

as if link l attempts to transmit with probability ps in regular

time intervals; hence, we expect a geometric distribution. In

the limit, when ps is small, by proper scaling, we obtain an

exponential distribution, which is the claim of the theorem.

Define a transition epoch to be the timeslot te, where the

state changes from the previous timeslot such that S(te −
1) = (0, 0) and S(te) 6= (0, 0). Recall that every timeslot

has duration β. Define τ̂(0,0) to be the time between two

consequtive transition epochs t
(1)
e and t

(2)
e given that the state

never becomes (l) between the epochs. Let

τ̄ = E[τ̂(0,0)].

We have that

lim
λ(i,j)→0

lim
β→0

τ̄ =
(1 + κ)2

2κ
. (13)

In addition,

lim
λ(i,j)→0

lim
β→0

ps

λ(i,j)
=

(1 + κ)2

2κ
. (14)

Consider a point t on the real time axis. By this point,

there must be ⌊ t
β
⌋ timeslots. Suppose timeslot zero is the

first transition epoch. Define a failuare as an event where

once in (0, 0), the next new state is not (l) and link l does not

transmit. Once in (0, 0) this event happens with probability

(1 − ps). Let the event Ej be defined as

Ej = {There are j failures upto and including time t and

the j + 1th transition epoch occurs after time t.}
(15)

We note that given a failuare event corresponding to a

transition epoch, the time from begining of the epoch to

the next epoch, is a r.v., which we already defined as

τ̂(0,0). Given that there are j consequitive failuares, define

{τ̂ (k)
(0,0), k = 1, · · · , j} to be sequence of τ̂(0,0)’s. We note

that given Ej , the corresponding r.v.’s τ̂
(k)
(0,0), k = 1, · · · , j,

are independent of each other since the system is Markovian.

Using the above observations and definitions, for the

probability that link l does not transmit by time t, we have

P (τl > t) =

∞
∑

j=1

P (Ej) =

∑

j> t
τ̄
(1+ǫ)+1

P
(

E′
j

)

(1 − ps)
j (16)

+
∑

j< t
τ̄
(1−ǫ)−1

P
(

E′
j

)

(1 − ps)
j (17)

+
∑

|j− t
τ̄
|<ǫ t

τ̄
+1

P
(

E′
j

)

(1 − ps)
j , (18)

where ǫ > 0 is chosen such that ǫ t
τ̄

is an integer, and

E′
j = {Event that

j
∑

k=1

τ̂
(k)
(0,0) > t.}.

We treat each summation in sequence. The event j >
t
τ̄
(1 + ǫ) + 1 implies that with probability one

j−1
∑

k=1

τ̂
(k)
(0,0) < t, (19)

which can be written as
∑j−1

k=1 τ̂
(k)
(0,0)

j − 1
− τ̄ <

t

j − 1
− τ̄ < −τ̄

ǫ

1 + ǫ
. (20)

As mentioned earlier, τ̂
(k)
(0,0)’s are i.i.d., and hence, by large

deviation results [8], we have that the probability of (20) is

upperbounded by δ(ǫ)j−1, where 0 < δ(ǫ) < 1. Hence

P
(

E′
j , j >

t

τ̄
(1 + ǫ) + 1

)

< δ(ǫ)j−1 < δ(ǫ)
t
τ̄
(1+ǫ). (21)

To examine the case where j < t
τ̄
(1 − ǫ) − 1, note that

this event requires that

j
∑

k=1

τ̂
(k)
(0,0) > t. (22)

We consider two subcases. First, suppose j >
√

t
τ̄

(1 − ǫ).
Hence, we must have that

∑j

k=1 τ̂
(k)
(0,0)

j
− τ̄ >

t

j
− τ̄ > τ̄

ǫ

1 − ǫ
> τ̄

ǫ

1 + ǫ
. (23)

By large deviations for this case, we also have that

P
(

E′
j ,

√
t

τ̄
(1 − ǫ) < j <

t

τ̄
(1 − ǫ) − 1

)

< δ(ǫ)j

< δ(ǫ)
√

t
τ̄

(1−ǫ). (24)

For the second subcase where j ≤
√

t
τ̄

(1−ǫ), by positivity

and independence of r.v.’s, from the last inequality, it simply

follows that

P
(

E′
j , j <

√
t

τ̄
(1 − ǫ)

)

< δ(ǫ)
√

t
τ̄

(1−ǫ). (25)
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We now consider the third summation at (18). Let x denote

the scaled version of t so that x = λ(i,j)t. We have
∑

|j− t
τ̄
|<ǫ t

τ̄
+1

P
(

E′
j

)

(1 − ps)
j

= (1 − ps)
t
τ̄

∑

|j− t
τ̄
|<ǫ t

τ̄
+1

(1 − ps)
j− t

τ̄ P (E′
j)

= (1 − ps)
x

λ(i,j)τ̄
∑

(1 − ps)
j− x

λ(i,j)τ̄ P (E′
j). (26)

Noting that by (13) and (14)

lim
λ(i,j)→0

lim
β→0

(1 − ps)
x

λ(i,j)τ̄ =

lim
λ(i,j)→0

lim
β→0

(1 − ps)
x

−ps

ps
λ(i,j)τ̄ = e−x, (27)

and that, for j with |j − t
τ̄
| < ǫ t

τ̄
+ 1, we have

(1 − ps)
ǫx

λ(i,j)τ̄ ≤ (1 − ps)
j− x

λ(i,j)τ̄ ≤ (1 − ps)
− ǫx

λ(i,j)τ̄ ,

(28)

we can multiply all sides of (28) by P (E′
j), take the

summation and the limit, and use (26) and (27) to obtain

e−(1+ǫ)x lim
λ(i,j)→0

lim
β→0

∑

|j− t
τ̄
|<ǫ t

τ̄
+1

P
(

E′
j

)

≤ lim
λ(i,j)→0

lim
β→0

∑

|j− t
τ̄
|<ǫ t

τ̄
+1

P
(

E′
j

)

(1 − ps)
j

≤ e−(1−ǫ)x lim
λ(i,j)→0

lim
β→0

∑

|j− t
τ̄
|<ǫ t

τ̄
+1

P
(

E′
j

)

(29)

From (21), (24), and (25), we have that for some 0 <

δ′(ǫ) < 1

P
(

|j −
√

t

τ̄
| > ǫ

√
t

τ̄
+ 1

)

< 3δ′(ǫ)
√

t = δ′(ǫ)

√
x

λ(i,j) . (30)

Letting λ(i,j) → 0

lim
λ(i,j)→0

lim
β→0

P
(

|j − t

τ̄
| > ǫ

t

τ̄
+ 1

)

= 0. (31)

Since by definition τ s
l = λ(i,j)τl, it immediately follows from

(29) and (31) that

e−(1+ǫ)x ≤ lim
λ(i,j)→0

lim
β→0

P (τ s
l > x) ≤ e−(1−ǫ)x.

Since the choice for ǫ > 0 is arbitrary, we have

lim
λ(i,j)→0

lim
β→0

P (τ s
l > x) = e−x.

The proof is complete by noting that we can obtain the same

limit starting from all states S 6= (l).

VI. A GENERAL BOUND FOR ACCESS DELAY

In this section, we obtain a general bound for the access

delay in networks with many small flows described in Sec-

tion IV-B. For simplicity, we drop the dependence on N .

Here, we do not assume the ideal hypothesis used in the

previous section. To simplify the analysis, suppose Λi = Λ
for all i ∈ N . Based on (2), this assumption implies that

the node-wise distance to the boundary of capacity region is

1 − Λ. From (4) and (5), it follows that

lim
β→0

ρi = 1 − Λ, i ∈ N . (32)

We redefine κ in this section so that similar to (7), we have

lim
β→0

ρi =
1

1 + κ
, i ∈ N . (33)

Note that by (3)

lim
β→0

p(i,j)

β
= λ(i,j)(1 + κ)2. (34)

Using the above definitions, for the maximum probabilty rate

that node i becomes active, we obtain

Gmax = lim
β→0

1

β

∑

j

(p(i,j) + p(j,i)) = κ(κ + 1) (35)

The key to obtain the bound lies in the fact that packet

lengths accross all nodes are i.i.d. and geometrically dis-

tributed. This implies that while the activities of node i may

be correlated to those of node j, given that for instance,

node i is transmitting to one other node k 6= j, its packet

transmission is geometrically distributed with unit mean,

independent of the current state of node j.

Considering the above, and that independent of the past,

Gmaxβ is maximum attempt probability for any node, one

can construct a worst case Markov chain similar to the one

in the previous section and show that, independent of the

past, the average delay for the next access to the channel is

O( (1+κ)2

λ(i,j)
) as λ(i,j) → 0. Since by (32) and (33), (1 + κ) =

(1 − Λ)−1, we have the following:

Theorem 2. In the limit of large networks with many small

flows and small sensing period β, as defined in Section IV-B,

regardless of the past history, the expected time for the next

access to the channel is O( 1
(1−Λ)2

1
λ(i,j)

).

VII. LARGE BIPARTITE GRAPHS AS IDEAL NETWORKS

In this section, we show that ideal networks as defined

in Section V are indeed feasible by considering the limit

of large bipartite graphs. Consider a sequence of networks

{(N (N),L(N)), N ∈ N}, where each network can be rep-

resented as a bipartite graph with a set of N sender nodes

NS = {1, · · · , N} and a set of N receiver nodes NR =
{N + 1, · · · , 2N} . For the N th network, we assume the

sensing period is β(N) such that

lim
N→∞

N2β(N) = 0. (36)

We also assume a symmetric CSMA policy p(N) = {p(N)
(i,j)}

on each network where

p
(N)
(i,j) =

κ2

N
β(N), i ∈ NS , j ∈ NR. (37)

Let Y (N)(n) = (Y
(N)
(i,j)(n), i ∈ NS , j ∈ NR) be the vector

of link states at timeslot n, where Y
(N)
(i,j)(n) = 1 indicates

that link (i, j) is transmitting, otherwise Y
(N)
(i,j)(n) = 0. Sim-

ilarly, let Y
(N)
S (n) = (Y

(N)
(i) (n), 1 ∈ NS) and Y

(N)
R (n) =

(Y
(N)
(j) (n), j ∈ NR) be the vectors of sender and reciver
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nodes states at timeslot n, respectively. The vector Y (N)(n)
evolves according to a Markov chain.

A. Mean Field Approximation

Here, we show that using mean field theory [5], one can

use a simple ODE to characterize the CSMA behaviour on

large bipartite networks. First, we note the following two

observations:

• Given that there are no collisions at timeslot n, the

total number of active links is equal to the number

of transmitting nodes, which is equal the number of

receiving nodes.

• Given that there are no collisions at timeslot n, the state

of links or nodes at timeslot n + 1 only depends on

Y
(N)
S (n).

The above means that if we could isolate the effects of

collisions, then the total number of idle or active sender nodes

could also evolve as a simple Markov chain. We therefore

consider a modified system where we add to the state of

nodes the collision state c. Once the state of a node becomes

c, its state never changes. Upon reaching the state c, a sender

node never attempts to transmit afterwards, and a receiver

node stays busy forever so that it cannot receive packets

from any sender node. Let Ỹ (N)(n), Ỹ
(N)
S (n), and Ỹ

(N)
R (n)

be vectors showing the states of links, sender nodes, and

receiver nodes in the modified system, respectively.

The modified system works as follows. Starting from an

initial state of no collisions, it operates, the same as the

original system until the first collision event happens. Upon

this event, the state of sender nodes involved in collision

changes to c, and stays at c forever. The same happens for

receiver nodes involved in the collision event. However, since

the number of receiver nodes envolved in a collision is less

than those who tranmit and collide, the system randomly

adds a sufficient number of idle receiver nodes and changes

their state to c. By this operation, every time that there is

a collision, the same number of sender and reciver nodes

change their state to c and are essentially disabled forever.

Define M̃ (N)(n) = (M̃
(N)
0 (n), M̃

(N)
1 (n), M̃

(N)
c (n)) as

the vector of occupancy measure for sender (or receiver)

nodes where for each state s ∈ {0, 1, c}

M̃ (N)
s (n) =

1

N

N
∑

i=1

1{Ỹ
(N)

i
(n)=s}. (38)

Note that by definition,

M̃
(N)
0 (n) + M̃

(N)
1 (n) + M̃ (N)

c (n) = 1.

Next, we study how M̃N
s (n) evolves for s ∈ {0, 1, c}.

Consider timeslot n, and suppose M̃ (N)(n) = M̃ (N). Then,

any of Ñ0(n) = NM̃
(N)
0 (n) = NM̃

(N)
0 idle nodes (with

state 0) sees Ñ0 idle receiving nodes (with state 0). By (37),

in the next timeslot, an idle node i becomes active with total

probability

p0 = p0(M̃
(N)) = M̃

(N)
0 κ2β(N), (39)

given it is the only node that becomes active. At the same

time, any of Ñ
(N)
1 (n) = NM̃

(N)
1 (n) = NM̃

(N)
1 active

nodes becomes idle independently of others with probability

β(N). Considering the contributions from both idle and active

nodes, we have

fN
0 (M̃ (N)) , E[M̃

(N)
0 (n + 1) − M̃

(N)
0 (n)|M̃ (N)(n) = M̃ (N)]

= − 1

N
Ñ0p0 + M̃

(N)
1 β(N)

= −
(

(M̃
(N)
0 )2κ2 + (1 − M̃

(N)
0 − M̃ (N)

c )
)

β(N).

(40)

Similarly, considering the fact that only single tranmissions

add to M̃
(N)
1 , we obtain

fN
1 (M̃ (N)) = E[M̃

(N)
1 (n + 1) − M̃

(N)
1 (n)|M̃ (N)(n) = M̃ (N)]

= −M̃
(N)
1 β(N) +

1

N
Ñ0p0(1 − p0)

Ñ0−1

= −(1 − M̃
(N)
0 − M̃ (N)

c )β(N)

+ (M̃
(N)
0 )2κ2β(N)(1 − p0)

Ñ0−1. (41)

Finally, we have

fN
c (M̃ (N)) = E[M̃ (N)

c (n + 1) − M̃ (N)
c (n)|M̃ (N)(n) = M̃ (N)]

=
1

N
E[ # of collisions|M̃ (N)(n) = M̃ (N)]

=
1

N

(

Ñ0p0 − Ñ0p0(1 − p0)
Ñ0−1

)

= (M
(N)
0 )2κ2β(N)(1 − (1 − p0)

Ñ0−1). (42)

It follows from (36) that limN→∞ β(N) = 0 and

limN→∞ Nβ(N) = 0, which can be used to show that

lim
N→∞

(1 − p0)
Ñ0−1 = lim

N→∞
(1 − p0)

− (Ñ0−1)p0
p0

= lim
N→∞

e−(Ñ0−1)p0 = lim
N→∞

e−(M̃2
0 κ2Nβ(N)−M̃0κ2β(N)) = 1.

By the above limit and (40)-(42), we obtain

lim
N→∞

1

β(N)





fN
0 (M̃ (N))

fN
1 (M̃ (N))

fN
c (M̃ (N))



 = F (M̃ (N)) ,







(M̃
(N)
0 )2κ2 + (1 − M̃

(N)
0 − M̃

(N)
c )

−(1 − M̃
(N)
0 − M̃

(N)
c ) + (M̃

(N)
0 )2κ2

0






. (43)

It is easy to check that the system under consideration

satisfies all conditions of Theorem 1 in [5]. The theorem

allows us to apply mean filed results. To use the theorem,

first, define the related deterministic ODE with initial vector

value M̃(0) as

dΦ(t, M̃(0))

dt
= F (Φ(t, M̃(0)))

Φ(0, M̃(0)) = M̃(0), (44)

where F (·) is defined in (43). In addition, define a

continuous-time version of M̃ (N)(t) denoted by M̃
N

(t) by

M̄N (t = nβ(N)) = M̃ (N)(n), n ∈ N (45)

M̄N (t) is affine on [nβ(N), (n + 1)β(N)].

We have the following theorem:

Theorem 3. If M̃ (N)(0) → M̃(0) in probability [resp. in
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mean square ] as N → ∞, then as N → ∞
sup

0≤t≤T

‖M̃ (N)
(t) − Φ(t, M̃(0))‖ → 0

in probability [resp. in means square], where Φ(t, M̃(0)) is

the solution of (44).

This theorem suggests that for any finite time-horizon, we

can use the deterministic ODE solution of (44) as an approxi-

mation to M̃ (N)(t). The approximation becomes accurate in

the limit. Note that instead of only one time instatnt, the

theorem provides a much stronger result in terms of the sup
of distances over a time interval. Before studying the ODE

in (44), we need to show that the modified system closely

approximates the original system. Let

M (N)(n) = (M
(N)
0 (n), M

(N)
1 (n)),

be the vector of fraction of idle and active sender (or receiver)

nodes in the original system. Let M (N)(t) be the continuous-

time vesrion of M (N)(n), defined similarly as M̃
(N)

(t). We

prove the following:

Theorem 4. Suppose limN→∞ N2β(N) = 0. As N → ∞,

sup
0≤t≤T

‖M (N)(t) − M̃
(N)

(t)‖ → 0 (in probability).

Proof: We show that limN→∞ N2β(N) = 0 implies

rare collision events even when N → ∞. First, note that

probability of collision at a given timeslot is given by

p(N)
c (N0) = 1 − (1 − p0)

N0 − N0p0(1 − p0)
N0−1, (46)

where N0 is the number of idle nodes at the given timeslot,

and p0 is given by (39). It is clear that pN
c increases with

p0 and N0. Suppose N0 = N and p0 = κ2β (note that

p0 ≤ κ2β). Letting p
(N)
c = p

(N)
c (N0 = N), we have

p̄(N)
c , 1 − p(N)

c = (1 − κ2β)N−1(1 + (N − 1)κ2β). (47)

Therefore, the event that there are no collisions during the

first T time units, consisted of ⌊T
β
⌋, happens with probability

at least

p̄(N)
c (T ) = p̄

T

β(N)

c

=
(

(1 − κ2β(N))N−1(1 + (N − 1)κ2β(N))
)

T

β(N)

>
(

(1 − (N − 1)κ2β(N))(1 + (N − 1)κ2β(N))
)

T

β(N)

=
(

1 − ((N − 1)κ2β(N))2
)

T

β(N)

. (48)

By the assumption of theorem, we have that

lim
N→∞

p̄(N)
c (T ) = lim

N→∞
e−T (N−1)2κ2β(N)

= 1. (49)

The above means that when N is sufficiently large, with

probability close to one, no collisions happen in a window

of T time units. If this is the case, the modified system will

be exactly the same as original system. This implies that

lim
N→∞

P ( sup
0≤t≤T

‖M (N)(t) − M̃
(N)

(t)‖ > 0)

≤ lim
N→∞

(1 − e−T (N−1)2κ2β) = 0, (50)

completing the proof.

B. Study of the Characteristic ODE

In order to get intution into the bahaviour of the network,

we solve (44). First, note that the ODE implies that Φc(t)
does not change with time. Therefore, by solving for Φ0(t),
we can readily obtain Φ1(t) from Φ1(t) = 1 − Φ0(t) −
Φc(t) = 1 − Φ0(t) − Φc(0). We need to solve the following

ODE, which is a Riccati differential equation:

Φ′
0 = −κ2Φ2

0 − Φ0 + 1. (51)

Letting Φp(t) = Φ∞ as one particular solution of the ODE

to be defined such that

1 − κ2(Φ∞)2 − Φ∞ = 0,

we can find the solution by assuming Φ(t) = Φ∞ + 1
ν(t) :

Φ(t) = Φ∞+
(

c(M̃(0)) e(1+2κ2Φ∞)t − κ2(1 + 2κ2Φ∞)−1
)−1

, (52)

where c(M̃(0)) is a contant depending on the intial state

M̃0(0) = Φ(0) and is given by

c(M̃(0)) =
1

M̃0(0) − Φ∞ +
κ2

1 + 2κ2Φ∞ . (53)

The above suggests that Φ0(t) and hence, with high

probability for large N , M
(N)
0 (t) with rate (1 + 2κ2Φ∞)

exponentially fast converges to Φ∞, where Φ∞ is the limit

fraction of idle nodes. Since

lim
κ→∞

(1 + 2κ2Φ∞)

2κ
= 1 and lim

κ→∞
Φ∞

κ−1
= 1. (54)

We observe that for large κ, the convergence rate should be

2κ, and the fraction of idle nodes should be κ−1 at any time

instant in a finite time horizon. It is clear that if at all times the

fraction of idle sending nodes is 1
κ

, then distribution of idle

periods becomes independent of each other and exponentially

distributed with mean 1
κ

, in which case we have an ideal

network where CSMA becomes memoryless. Theorem 3

and Theorem 4 suggest that this should become arbitrarily

accurate for any finite amount of time as the network size

increases. In the next section, we explore how we can use

these results for an inifite time-horizon.

In Fig. 2 and Fig. 3, we have shown how for a 50×50 and

a 400×400 network, the fraction of idle nodes changes with

time. We see that as expected, for a larger network size, the

simulation results better match with the analysis. Note that

the curves plotted are not averaged and simply show the sys-

tem behaviour over one simulation run. For these simulations,

we have set κ =
√

5 and chosen β(N) = 1
20N ln(N) , which is

less strict than the requirement of Theorem 4.

C. Back to the Ideal Picture

In the previous section, we showed that one can use a

simple ODE to characterize the macroscopic behaviour of

the network in terms of the fraction of idle nodes. Due

to the simple structure of the bipartite graphs, we can use

the previous theorems to also examine the infinite time-
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Fig. 2. Illustration of close match between simulation and analysis in terms

of the fraction of idle nodes over ten packet transmission times (κ =
√

5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

TimeF
ra

c
ti
o
n
 o

f 
id

le
 n

o
d
e
s

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

TimeF
ra

c
ti
o
n
 o

f 
id

le
 n

o
d
e
s

 

 

Analysis (400x400 network)

Simulation (400x400 network)

Analysis (50x50 network)

Simulation (50x50 network)

Fig. 3. Re-illustration of close match between simulation and analysis in

terms of the fraction of idle nodes in the transient region (κ =
√

5).

horizon bahviour of the system. In particular, we can show

the following result:

Theorem 5. Suppose limN→∞ N2β(N) = 0. For any ǫ > 0,

lim
N→∞

lim
τ→∞

1

τ

∫ τ

0

1| M
(N)
0 (t)−Φ∞|<ǫ

dt = 1, a.s. (55)

Proof: The proof follows by considering consequitive

intervals of length T , using Theorem 3, Theorem 4, noting

that the probability of collision exponentially drops to zero,

taking the limit as N → ∞ and then the limit as T → ∞.

Details are omitted due to space limitation.

This theorem suggests that in the limit, the system spends

all the time in states where the fraction of idle nodes is

close to Φ∞. This can be used to verify that the considered

bipartite networks become ideal networks in the limit and that

CSMA becomes memoryless on these networks. In Fig. 4, we

have plotted the distribution of idle periods for one particular

node over one simulation run as in the previous section but

over 1000 time units. The analytical curve is obtained by

finding Φ∞ and assuming an exponential distribution with

mean Φ∞

1−Φ∞ . As expected, the distributions are close to

exponential.

VIII. CONCLUSION

In this paper, we have defined ideal networks under which

CSMA policies exhibit desirable probabilistic behaviour. In

particular, we have shown that for these networks, the CSMA

delay to access the channel, under proper scaling, becomes

exponentially distributed independent of the past. With the
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Fig. 4. Distribution of idle periods for a given node in 20×20 and 50×50
networks (κ =

√
5).

help of the mean field theory, we have shown that large sym-

metric bipartite graphs with small flows provide examples

of the ideal networks. Although the considered example is

restricting, we believe similar results should hold for large

networks with sufficient symmetry properties.
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