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Abstract. We analyze the class of Carrier Sense Multiple Access (CSMA) policies for scheduling
packet transmissions in multihop wireless networks with primary interference constraints. Our main
result is to establish that, in an appropriate limiting regime of large networks with a small sensing
period, CSMA policies are capacity-achieving. While such efficiency characteristics of CSMA policies
has been well-established in the special case of single-hop networks, their analysis for general multihop
networks has been an open problem due to the complexity of the interaction among coupled interference
constraints.
To answer this problem, we first introduce a novel fixed point equation to approximate the CSMA
policy performance, and prove that the approximation becomes accurate for large networks with a
small sensing period. Then, we use this approximation to characterize the achievable rate region of
static CSMA schedulers, and show that the achievable rate region asymptotically converges to the
capacity region of the network under primary interference constraints. This work reveals that random
access schemes, which can operate asynchronously, can be used in large networks to serve many flows
efficiently. Our empirical investigations also indicate that the accuracy of our fixed point formulation
is achieved even for moderately sized networks.
This result has important implications for network algorithm design for ad hoc networks in that it
reveals for the first time that random channel access schemes with attractive complexity, overhead,
distributiveness, and asynchronism characteristics can achieve maximum throughput in large multihop
networks.
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1 Introduction

In this paper, we investigate Carrier Sense Multiple Access (CSMA) policies for multihop wireless
networks in which nodes operate asynchronously and sense the wireless channel before making an
attempt to transmit a packet, which may result in collisions. Our aim is to understand the achievable
rate region of such random access policies. For fully-connected (also called single-hop) wireless networks
where all nodes are within transmission range of each other, it is well-known that CSMA policies
are throughput-optimal1 in the limiting regime of networks with many small flows and small sensing
periods [1]. However the analysis of CSMA schedulers for general multihop networks has been an
open problem due to the complexity in the interaction amongst interfering transmissions. As a result,
currently very little is known about the performance of CSMA in wireless multihop networks, and
whether they are still throughput-optimal in this case.

Here, we analyze the performance of CSMA policies for general wireless networks with primary
interference constraints. The main contribution of the paper is to show that CSMA policies are asymp-
totically throughput-optimal for large networks with many small flows and a small sensing time. This
is a surprising and counter-intuitive result, and we provide a discussion in Section 5 to give intuition
why this result is true.

The main results that we obtain in our analysis are as follows. We introduce a novel fixed point
approximation, called the CSMA fixed point, to characterize the service rates of CSMA schedulers, and
show that the fixed point approximation is asymptotically accurate for large networks with a small
sensing time. Using the fixed point approximation, we characterize the achievable rate region of the
static CSMA schedulers for networks with primary interference constraints. We show that the achievable
rate region converges to the capacity region for networks with many small flows and a small sensing
time.

This paper is a continuation of our earlier work [15], in which we analyzed the synchronized operation
of CSMA policies. This assumption greatly simplifies the analysis but is not realistic for a practical
network. Here, we provide the analysis and results for the general case of an asynchronous operation of
the networks, and we provide numerical results to confirm our theoretical statements and to investigate
the accuracy of our result for moderate sized networks.

Our results have important implications. While the design of throughput-optimal network algorithm
design has attracted much attention (see, for example, [3,5,6,8,11,17,18,21,24,25] and references therein)
in the last decade following the seminal work of Tassiulas and Ephremides [22], there are important
issues such as computational and communication complexity, synchronization, and distributiveness
that need to be resolved before their practical implementation. Our results show that CSMA policies
can also achieve throughput-optimality in large multihop networks and are potentially much simpler
to implement; hence, opening up the possibility of obtaining practical distributed resource allocation
mechanisms for wireless multihop networks that are throughput optimal.

The paper is organized as follows. In Section 3, we define our system model and in Section 4 we
describe the main components of the class of CSMA policies we consider in this paper. In Section 5
we provide a summary and discussion of our main result. We provide our fixed point formulation and
prove its asymptotic accuracy in Sections 7-sec:asymp. In Section 10 and 11, we respectively provide
a characterization of the achievable rate region of the class of CSMA policies, and show that it is
asymptotically capacity achieving. We end with concluding remarks in Section 12.

2 Related Work

For single-hop networks where all nodes are within transmission range of each other, the performance of
CSMA policies is well-understood. For the case where nodes are saturated and always have a packet to
sent, the achievable rate region of CSMA policies is easily obtained [2]. For the case where nodes only
make a transmission attempt when they have a packet to transmit has recently been derived for the
limiting regime of many small flows [2]. Furthermore, the well-known “infinite node” approximations
provides a simple characterization for the throughput of a given CSMA policy, as well as the achievable

1An algorithm is said to be throughput-optimal if it stabilizes the network queues for flow rates that are stabilizable

by any other algorithm.
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rate region of CSMA policies, in the case of a single-hop networks [1]. This approximation has been
instrumental in the understanding of the performance of CSMA policies, as well as for the design of
practical protocols for wireless local area networks [1].

For general multihop networks, results for CSMA policies are available for idealized situation of
instantaneous channel feedback. This assumption of instantaneous channel feedback allows the elimina-
tion of collisions, which significantly simplifies the analysis. Under this assumption, Jiang and Walrand
in [10] derived a dynamic CSMA policy that, combined with rate control, achieves throughput-optimality
while satisfying a given fairness criterion. Similar results have been independently derived by Shah and
Sreevastsa in [20] in the context of optical networks. While these results are obtained for a simplified
(idealized) model of CSMA policies, they suggest the fact that CSMA policies might be throughput-
optimal. In this work, we confirm this suggestion in the presence of collisions. It should be noted
that the result by Jiang and Walrand has been obtained for general interference models, whereas our
analysis focuses on wireless networks with primary interference constraints. However, our analysis does
not assume instantaneous channel feedback and hence takes packet collisions into account.

The paper establishes a connection between the (asymptotic) behavior of CSMA in multihop wireless
networks with well-known results for the Erlang fixed point in loss networks [12]). In particular, our
proof for showing that the CSMA fixed point formulation is asymptotically accurate heavily uses results
and techniques developed by Hajek and Krishna for the special case of a loss network where each link
has capacity one, and the route of each connection consists of two links [9]. This suggests, as it was
also noted in [2], that there is a close connection between the analysis of CSMA policies in multihop
networks and loss networks. Moreover, our analysis suggests that for the well-known limiting regimes
for which it can be shown that the Erlang fixed point is asymptotically accurate (see for example [12]),
it should also be possible to show the same result for the CSMA fixed point presented in this paper.
Exploring this connection beyond the limiting regime considered in this paper is future work.

3 System Model

In this section we describe the network and the traffic model assumed in our paper (see also Fig. 1).

Figure 1: Example of a network where two routes f and g given by Rf =
{(sf , i), (i, j), (j, v), (v, w), (w, df )} and Rg = {(sg, k), (k, i), (i, j), (j, n), (n, dg)}. In this net-
work: the set of upstream neighbors of node j is given by Uj = {i, v}; the set of downstream
neighbors of node j is given by Dj = {i, sg, n, v}; the set of outgoing links of node j is given
by Lj = {(j, i), (j, sg), (j, v), (j, n)}; and the set of links that interfere with (i, j) is given by
I(i,j) = {(j, i), (sf , i), (i, k), (k, i), (j, sg), (j, v), (v, j), (j, n)}; the mean rate on link (i, j) is given by
λ(i,j) = λf + λg; and the load on node i is Λi = 2λf + 2λg.

Network Model: We consider a fixed wireless network composed of a set N of nodes with cardinality
N, and a set L of directed links with cardinality L. A directed link (i, j) ∈ L indicates that node i is
able to send data packets to node j. We assume that the rate of transmission is the same for all links
and all packets are of a fixed length. Throughout the paper we rescale time such that the time it takes
to transmit one packet is equal to one time unit.

For a given node i ∈ N , let Ui := {j ∈ N : (i, j) ∈ L} be the set of upstream nodes, i.e. the set
containing all nodes which can receive packets from i. Similarly, let Di := {j ∈ N : (j, i) ∈ L} be set
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of downstream nodes, i.e. the set containing all nodes j from which i can receive packets. Collectively,
we denote the set of all the neighbors of node i as Ni := Ui ∪Di. Also, we let Li := {(i, j) : j ∈ Di} be
the set of outgoing links from node i, i.e. the set of all links from node i to its upstream nodes Ui.

Throughout the paper, we assume that Ui = Di, for all i ∈ N so that we have Ui = Di = Ni, for
each i ∈ N . This assumption simplifies the notation as we can use a single set Ni to represent both Di

and Ui. Our analysis can be extended to the more general case requiring only notational changes.
Henceforth, we will describe a network by the tuple (N ,L).

Interference Model: We focus on networks under the well-known primary interference, or node
exclusive interference, model [13, 23].

Definition 1 (Primary Interference Model). A packet transmission over link (i, j) ∈ Li is successful
if only if within the transmission duration2 there exist no other activity over any other link (m,n) ∈ L
which shares a node with (i, j). ⋄

The primary interference model applies, for example, to wireless systems where multiple frequen-
cies/codes are available (using FDMA or CDMA) to avoid interference, but each node has only a single
transceiver and hence can only send to or receive from one other node at any time (see [19] for additional
discussion).

We use the following notation to represent the primary interference constraints. For each link l ∈ L,
let Il denote the set of links l′ ∈ L that interfere with link l, i.e. the set of all links l′ ∈ L that have a
node in common with link l.
Traffic Model: We characterize the network traffic by a rate vector λ := {λr}r∈R where R is the set
of routes used by the traffic, and λr, λr ≥ 0, is the mean rate in packets per unit time along route
r ∈ R .

For a given route r ∈ R, let sr be its source node and dr be its destination node, and let

Rr = {(sr, i), (i, j), · · · , (v, w), (w, dr)} ⊂ L

be the set of links traversed by the route. We allow several routes to be defined for a given source and
destination pair (s, d), s, d ∈ N .

Given the rate vector λ = {λr}r∈R, we let

λ(i,j) :=
∑

r:(i,j)∈Rr

λr, (i, j) ∈ L, (1)

be the mean packet arrival rate to link (i, j). Similarly, we let

Λi :=
∑

j∈Ni

[

λ(i,j) + λ(j,i)

]

, i ∈ N . (2)

be the mean packet arrival rate to node i ∈ N .

4 Policy Space and CSMA Policy Description

In this section, we introduce the space of scheduling policies that we are interested in, and provide the
description of CSMA policies in that space. We also define the notions of stability and achievable rate
region.

4.1 Scheduling Policies and Capacity Region

Consider a fixed network (N ,L) with traffic vector λ = {λr}r∈R. A scheduling policy π then defines the
rules that are used to schedule packet transmissions on each link (i, j) ∈ L. In the following we focus
on policies π that have a well-defined link service rates as a function of the rate vector λ = {λr}r∈R.

2Notice that our definition of interference model does not require a time slotted operation of the communication

attempts, and hence applies to asynchronous network operation.
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Definition 2 (Service Rate). : Consider a fixed network (N ,L). The link service rate µπ
(i,j)(λ),

(i, j) ∈ L, of policy π for the traffic vector λ = {λr}r∈R is the fraction of time node i spends successfully
transmitting packets on link (i, j) under π and λ, i.e. the fraction of time node i sends packets over
link (i, j) that do not experience a collision.

Let P be the class of all policies π that have well-defined link service rates. Note that this class
contains a broad range of scheduling policies, including dynamic policies such as queue-length-based
policies that are variations of the MaxWeight policy [22], as well as noncausal policies that know the
future arrival of the flows.

We then define network stability as follows.

Definition 3 (Stability). For a given network (N ,L), let µπ(λ) = {µπ
(i,j)(λ)}(i,j)∈L the link service

rates of policy π, π ∈ P, for the rate vector λ = {λr}r∈R. We say that policy π stabilizes the network
for λ if λ(i,j) < µπ

(i,j)(λ), (i, j) ∈ L.

This commonly used stability criteria [22] requires that for each link (i, j) the link service rate
µπ

(i,j)(λ) is larger than the arrival rate λ(i,j). The capacity region of a network (N ,L) is then defined
as follows.

Definition 4. (Capacity Region) For a given a network (N ,L), the capacity region C is equal to the
set of all traffic vectors λ = {λr}r∈R such that there exists a policy π ∈ P that stabilizes the network
for λ, i.e. we have

C = {λ ≥ 0 : ∃π ∈ P with λ(i,j) < µπ
(i,j)(λ), ∀(i, j) ∈ L}.

4.2 CSMA Policies

In this paper we are interested in characterizing the performance of CSMA policies. In particular, we
are interested in the question whether CSMA policies are throughput-optimal in the sense that for a
given network (N ,L) they are able to stabilize any rate vector λ in the capacity region C. In this section,
we describe the basic operation of the CSMA policies that we consider; a more detailed description of
channel sensing and transmission scheduling mechanisms are given in Appendix A.

A CSMA policy is given by a transmission attempt probability vector p = (p(i,j))(i,j)∈L ∈ [0, 1]L

and a sensing period (or idle period) β > 0. The policy works as follows: each node, say i, senses the
activity on its outgoing links l ∈ Li. We say that i has sensed link (i, j) ∈ Li to be idle for a duration
of an idle period β if for the duration of β time units we have that (a) node i has not sent or received a
packet and (b) node i has sensed that node j have not sent or received a packet. If node i has sensed
link (i, j) ∈ Li to be idle for a duration of an idle period β, then i starts a transmission of a single
packet on link (i, j) with probability p(i,j), independent of all other events in the network. If node i
does not start a packet transmission, then link (i, j) has to remain idle for another period of β time
units before i again has the chance to start a packet transmission. Thus, the epochs at which node i
has the chance to transmit a packet on link (i, j) are separated by periods of length β during which link
(i, j) is idle, and the probability that i starts a transmission on link (i, j) after the link has been idle
for β time units is equal to p(i,j),

We assume that packet transmission attempts are made according to above description regardless
of the availability of packets at the transmitter. In the event of a transmission decision in the absence
of packets, the transmitting node transmits a dummy packet, which is discarded at the receiving end
of the transmission (see also our discussion in Section 12).

The duration of an idle period β is again given relative to the length of a packet transmission which
is assumed to take one unit time, i.e. if the length of an idle period is Li seconds and the length of
a packet transmission is Lp seconds, then we have β = Li/Lp. For a fixed Li, the duration of an idle
period β will become small if we increase the packet lengths, and hence the packet transmission delay
Lp.

Given the length of an idle period β, in the following we will sometimes refer to p as the CSMA
policy.
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4.3 Achievable Rate Region of CSMA Policies

We show in [16] that a CSMA policy p has a well-defined link service rate vector µ(p), i.e. CSMA
policies are contained in the set P . Note that for a given β, the link service rate under a CSMA policy
depend only on the transmission attempt probability vector p, but not on the arrival rates λ. The
achievable rate region of CSMA policies is then given as follows.

Definition 5 (Achievable Rate Region of CSMA Policies). For a given network (N ,L) and a given
sensing period β, the achievable rate region of CSMA policies is given by the set of rate vectors λ =
{λr}r∈R for which there exists a CSMA policy p that stabilizes the network for λ, i.e. we have that
λ(i,j) < µ(i,j)(p), (i, j) ∈ L.

5 Main Result

For given network (N ,L), let Γ(β) be the achievable flow rate region of CSMA policies when the
duration of an idle period is equal to β. After providing a characterization of Γ(β), in our main result
in Section 11, we show that

lim
β↓0

Γ(β) = {λ ≥ 0 : Λi < 1, for all i ∈ N}

for networks with many small flows 3. Since it is impossible for any policy to stabilize the network if for
a node i we have that Λi ≥ 1, this results states the CSMA policies are (asymptotically) throughput-
optimal.

In fact, there is an interesting corollary to this result. It provides a simple characterization of
the capacity region for networks with many small flows, i.e. the (asymptotic) capacity region of such
networks is given by

C = {λ ≥ 0 : Λi < 1, for all i ∈ N}.
The result that the achievable rate region of CSMA policies is asymptotically equal to C (for networks

with primary interference constraints) may seem very surprising and counter-intuitive at first. And
indeed, it is important to stress that our result does not state that the achievable rate region of CSMA
policies is always equal to C, but only under the conditions that (a) β becomes small and (b) the network
resources are shared by many small flows. Let us briefly comment on these two conditions.

The fact that β needs to be small in order to obtain a large achievable rate region is rather intuitive;
clearly if β is large (let’s say close to 1) then the above result will not be true. The fact that we need
the assumption of many small flows in order to obtain our result is illustrated by the following example.

Figure 2: The pentagon network with flows r1, · · · , r5 on each link, and the five possible simultaneous
transmissions that can occur under the primary interference model. The rate λri

= (1 − ǫ)/2, i =
1, · · · , 5, for any ǫ ∈ (0, 0.1] is not achievable by any policy for this scenario.

Example 1. For the pentagon network of Figure 2, let ǫ ∈ (0, 0.1] and λri
= (1 − ǫ)/2 for each

r = 1, · · · , 5. Then, the load on each node is given by Λi = (1 − ǫ) for each i ∈ N . Although the
resulting traffic vector λ lies within C, no scheduling policy can stabilize the network for λ. This can be
seen by noting that at most two links out of five can transmit successfully at a given time, as shown in
the figure. Hence, even an optimal centralized controller cannot achieve a maximum symmetric node
activity of more than 2/5, and clearly, our result cannot hold for this network. ⋄

3We will provide a precise description of the assumption need for the derivation of this result in Section 11.
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The reason that in the pentagon network a node cannot achieve a throughput of more than 2/5 is
that under each “maximal” schedule given in Figure 2, if one of the neighboring nodes of a given node
i is busy transmitting, then node i has to wait for a duration of 1 time unit to get a chance to make
a transmission attempt. However, if we have a network where each node i has many neighbors with
which it exchanges data packets (many flows), then nodes will typically have to wait for much less than
1 time unit before it gets the chance to make start a packet transmissions. Intuitively, the larger the
number of neighbors of a node, the shorter a node has to wait until it gets a chance to start a packet
transmission. In addition to having many flows, we need the assumption that each flow is small in order
to avoid the situation where the dynamics at each node is basically determined by a small number of
large flows, essentially leading to a similar behavior as in the case where each node has only a small
numbers of neighbors. Note however that these assumptions aren’t sufficient in order to obtain our
result; we also need to show that there exists a CSMA policy under which nodes (a) don’t wait too long
before making a transmission attempt (and hence waste capacity), (b) are not too aggressive such that
a large fraction of packet transmissions result in collisions, and (c) share the available network resources
such that the resulting link service rates support the given traffic vector λ ∈ C.

6 Overview of Analysis

In this section, we provide a brief description of the different steps taken toward obtaining our main
result that CSMA policies are (asymptotically) throughput-optimal for networks with many small flows
and sufficient routing diversity.

CSMA Fixed Point Our first step is to derive a tractable way to characterize the link service rates
for a given CSMA policy. Inspired by the reduced load approximations utilized in the loss network
analysis [12], in Section 7.2 we propose a novel fixed point formulation to model the performance of a
CSMA policy p. Similar to the reduced load approximation in loss networks, the fixed point equation
is based on an independence assumption. We show that the fixed point is well-defined, i.e. there exists
a unique fixed point.

Asymptotic Accuracy of the CSMA Fixed Point We then show that the CSMA fixed point
asymptotically accurate in the sense that it accurately characterizes the link service rates of a CSMA
policy as β becomes small for large networks with many small flows. A technical issue the requires care
in the proof is the scaling of how β becomes small and the network size N becomes large. For our proof,
we use the scaling given in Assumption 1 in Section 9.

Achievable Rate Region under the CSMA Fixed Point We then use the CSMA fixed point to
characterize the achievable rate region, and show that this characterization suggests that CSMA policies
are throughput-optimal in the limit as the sensing time β becomes small. As part of the deriving the
achievable rate region using the CSMA fixed point, we obtain an algorithm that allows to compute
CSMA policy to stabilize the network for a given rate vector λ that is in the achievable rate region.

Throughput-Optimality of CSMA polices Finally, in Section 11, we derive our main result, i.e.
that CSMA policies become asymptotically throughput-optimal as β becomes small for large networks
with many small flows.

In our subsequent discussion, for ease of exposition we will typically refer to links as performing
sensing or transmission attempts. This must be understood as the transmitting node of the (directed)
link performing the action.

7 Formulation of CSMA Fixed Point Equation

In the first part of our analysis, we introduce a fixed point approximation, called the CSMA fixed point,
to characterize the link service rates under a CSMA policy p. The fixed point approximation extends
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the well-known infinite node approximation for single-hop networks (see for example [1]) to multihop
networks which we briefly review below.

In the following we will use τ to denote the services rates obtained under our analytical formulations
that we use to approximate the actual service rates µ under a CSMA policy as defined in Section 4.3.

7.1 Infinite Node Approximation for Single-Hop Networks

Consider a single-hop network where N nodes share a single communication channel, i.e. where nodes
are all within transmission range of each other. In this case, a CSMA policy is given by the vector
p = (p1, · · · , pN ) ∈ [0, 1]N where pn is the probability that node n starts a packet transmission after
an idle period of length β [1].

The network throughput, i.e. the fraction of time the channel is used to transmit packets that do
not experience a collision, can then be approximated by (see for example [1])

τ(G(p)) =
G(p)e−G(p)

β + 1 − e−G(p)
(3)

where G(p) =
∑N

n=1 pn. Note that G(p) captures the expected number of transmissions attempt after
an idle period under a CSMA policy p.

This well-known approximation is based on the assumption that a large (infinite) number of nodes
share the communication channel. It is asymptotically accurate as the number of nodes N becomes
large and each node makes a transmission attempt with a probability pn, n ∈ N that approaches zero
while the offered load G =

∑N
n=1 pn stays constant (see for example [1]).

The following results are well-known. For β > 0, one can show that

τ(G) < 1, G ≥ 0, (4)

and for G+(β) =
√

2β, β > 0, we have that

lim
β↓0

τ(G+(β)) = 1. (5)

Using (3), the service rate µn(p) of node n under a given CSMA policy p can be approximated by

τn(p) =
pne

−G(p)

1 + β − e−G(p)
, n = 1, ..., N. (6)

In the above expression, pn is the probability that node n tries to capture the channel after an idle
period and e−G(p) characterizes the probability that this attempt is successful, i.e. the attempt does
not collide with an attempt by any other node.

Similarly, the fraction of time that the channel is idle can be approximated by

ρ(p) = ρ(G(p)) =
β

β + 1 − e−G(p)
, (7)

where we have that limβ↓0 ρ(G
+(β)) = 0.

7.2 CSMA Fixed Point Approximation for Multihop Networks

We extend the above approximation for single-hop networks to multihop networks as follows.
For a given a sensing period β, we approximate the fraction of time ρi(p) that node i is idle under

the CSMA policy p by the following fixed point equation,

ρi(p) =
β

(β + 1 − e−Gi(p))
, i = 1, · · · , N, (8)

where

Gi(p) =
∑

j∈Ni

[

p(i,j) + p(j,i)

]

ρj(p), i = 1, · · · , N. (9)

9



We refer to the above fixed point equation as the CSMA fixed point equation, and to a solution ρ(p) =
(ρ1(p), · · · , ρN(p)) and G(p) = (G1(p), · · · , GN (p)) to the fixed point equation as a CSMA fixed point.

The intuition behind the CSMA fixed point equation (8) and (9) is as follows: suppose that the
fraction of time that node i is idle under the CSMA policy p is equal to ρi(p), and suppose that the
times when node i is idle are independent of the processes at all other nodes. If node i has been idle for
β time units, i.e. node i has not received or transmitted a packet for β time units, then node i can start
a transmission attempt on link (i, j), j ∈ Ni, only if node j also has been idle for an idle period of β
time units. Under the above independence assumption, this will be (roughly) the case with probability
ρj(p), and the probability that node i start a packet transmission on the link (i, j), j ∈ Ni, given that
it has been idle for β time units is (roughly) equal to p(i,j)ρj(p). Similarly, the probability that node
j ∈ Ni starts a packet transmission on the link (j, i) after node i has been idle for β time units is
(roughly) equal to p(j,i)ρj(p). Hence, the expected number of transmission attempts that node i makes
or receives, after it has been idle for β time units is (roughly) given by (9). Using (7) of Section 7.1,
the fraction of time that node i is idle under p can then be approximated by (8).

There are two important questions regarding the CSMA fixed point approximation. First, one needs
to show that the CSMA fixed point is well-defined, i.e. that there always exists a unique CSMA fixed
point. We have the following result.

Theorem 1. For every CSMA policy p ∈ [0, 1]L there exists a unique CSMA fixed point ρ(p).

We prove Theorem 1 in the next section.
Second, one would like to know how accurate the CSMA fixed point approximation is. In the next

section, we show that the CSMA fixed point approximation is asymptotically accurate for large networks
with many small flows and a small sensing period β.

For a given an sensing period β, we can then use the CSMA fixed point G(p) for a policy p to
approximate the link service rate µ(i,j)(p) under a CSMA policy p by

τ(i,j)(p) =
p(i,j)ρj(p)e−(GR

i (p)+Gj(p))

1 + β − e−Gi(p)
(10)

where
GR

i (p) :=
∑

j∈Ni

p(j,i)ρj(p).

Note that the above equation is similar to (6) where p(i,j)ρj(p) captures the probability that node i

makes an attempt to capture link (i, j) if it has been idle for β time units, and exp
[

−(GR
i (p) +Gj(p))

]

is the probability that this attempt is successful, i.e. the attempt does not overlap with an attempt by
any other node to capture a link that has an endpoint in common with link (i, j). Note that

τ(i,j)(p) ≥ p(i,j)βe
−(Gi(p)+Gj(p))

(

1 + β − e−Gi(p)
) (

1 + β − e−Gj(p)
) (11)

as Gi(p) ≥ GR
i (p).

8 Existence of a Unique CSMA Fixed Point

In this section, we prove Theorem 1 which states that there always exists a unique CSMA fixed point.
We first establish the existence of a CSMA fixed point.

Proposition 1. For every CSMA policy p, there exists a CSMA fixed point ρ(p).

Proof. The proof uses the continuity properties of the fixed point equation given (8), and is a straight-
forward application of the Brouwer’s fixed point theorem.

We next establish the uniqueness of the CSMA fixed point for any p. Unlike standard methods in
establishing the uniqueness of a fixed point, our proof method does not require additional assumptions
on the fixed point mapping, therefore may be of independent interest. The proof follows a number

10



of steps, which is outlined here for clarity: Lemma 1 shows the uniqueness of the solution under the
CSMA policy such that p(i,j) = 0, (i, j) ∈ L; Proposition 2 proves the upper-semicontinuity of the
correspondence G(p) given by (9); Proposition 3 proves that for any CSMA policy p and G ∈ G(p),
(p, G(p)) is uniquely defined in a neighborhood of (p, G(p)); finally Theorem 1 combines the preceding
results to establish global uniqueness of the CSMA fixed point for any p.

Lemma 1. Consider CSMA policy p̄ with

p̄(i,j) = 0, for all (i, j) ∈ L,

then for any β > 0 the unique CSMA fixed point ρ(p̄) is given by

ρi(p̄) = 1, i = 1, ..., N.

and
Gi((p̄) = 0, i = 1, ..., N.

The above results follow immediately by using the CSMA policy p̄ with p̄(i,j) = 0 in (8) and (9).
We next study the continuity properties of G(p). The proof uses the continuity of the mapping

fi(G,p) = Gi −
∑

j∈Ni

β
[

p(i,j) + p(j,i)

]

(1 + β − e−Gj )
, i = 1, . . . , N. (12)

Note that for f(G,p) = [fi(G,p)]i=1,...,N we have that f(G(p),p) = 0.

Proposition 2. The correspondence G : [0, 1]L 7→ R
N
+ is upper-semicontinuous; i.e., G(p) has a closed

graph.

Proof. Note that for all p ∈ [0, 1]L, G(p) is given by

G(p) = {G ∈ R
N
+ | fi(G,p) = 0, i = 1, . . . , N}. (13)

We will show that G has a closed graph. Let {(pk, Gk)} be a sequence which satisfies Gk ∈ G(pk) for
all k and converges to some (p̄, Ḡ). Assume to arrive at a contradiction that Ḡ /∈ G(p̄). By (13), this
implies that there exists some i ∈ {1, . . . , N} such that fi(Ḡ, p̄) 6= 0. Assume without loss of generality
that there exists some ǫ > 0 such that

fi(Ḡ, p̄) > 2ǫ. (14)

By the continuity of the functions fi, we have

lim
k→∞

fi(Gk,pk) = fi(Ḡ, p̄),

which implies the existence of some K̄ such that

∣

∣

∣fi(Ḡ, p̄) − fi(Gk,pk)
∣

∣

∣ ≤ ǫ, ∀ k ≥ K̄.

Combined with (14), this yields
fi(Gk,pk) ≥ fi(Ḡ, p̄) − ǫ > ǫ,

contradicting the fact that Gk ∈ G(pk) [cf. (13)].

Recall the definition of the mapping f(G,p) = [fi(G,p)]i=1,...,N given by (12). The next proposition
establishes the local uniqueness of the correspondence G(p).

Proposition 3. For all CSMA policies p̄ and all CSMA fixed points Ḡ ∈ G(p̄), there exist neighborhoods
U ⊂ R

N
+ of Ḡ and V ⊂ [0, 1]L of p̄ such that for each p ∈ V the equation f(G,p) = 0 has a unique

solution G ∈ U . Moreover, this solution can be given by a function G = φ(p) where φ is continuously
differentiable on A.

11



Proof. We prove this statement by using the implicit function theorem.
For node i ∈ N we have

∂fi

∂Gj
=







1 i = j,
0 j /∈ Ni,
ψ(i,j)ϕj j ∈ Ni,

with

ψ(i,j) =
[

p(i,j) + p(j,i)

] β

β + (1 − e−Gj)

and

ϕj =
e−Gj

β + (1 − e−Gj)
.

Note that the function f is continuously differentiable. Therefore, in order to use the implicit function
theorem we need to show that the matrix

[

∂fi

∂Gj
|G=G(p)

]

(15)

has linearly independent rows. Before we proceed, we note that this matrix is a positive matrix.
Suppose that the rows are not linearly independent, then there exists a coefficient vector x =

(x1, ..., xN ) 6= 0 such that

N
∑

j=1

xj

(

∂fj(p)

∂Gi

)

= 0, for all i ∈ {1, . . . , N}.

Using the special structure of the Jacobian matrix, we obtain

xi + ϕi

∑

j∈Ni

ψ(j,i)xj = 0, for all i ∈ {1, . . . , N}

and
xi = −ϕi

∑

j∈Ni

ψ(j,i)xj , for all i ∈ {1, . . . , N}.

Consider node i∗ such that for all i = 1, ..., N we have

∣

∣xi∗ [β + (1 − e−Gi∗ )]
∣

∣ ≥
∣

∣xj [β + (1 − e−Gj)]
∣

∣. (16)

Then,

1 = −ϕi∗

∑

j∈Ni∗

ψ(j,i∗)
xj

xi∗

≤ ϕi∗

∑

j∈Ni∗

[

p(i∗,j) + p(j,i∗)

] β

β + (1 − e−Gi∗ )
· ...

... ·
∣

∣xj [β + (1 − e−Gj)]
∣

∣

∣

∣xi∗ [β + (1 − e−Gj )]
∣

∣

(a)

≤ ϕi∗

∑

j∈Ni∗

[

p(i∗,j) + p(j,i∗)

] β

β + (1 − e−Gj)

(b)
=

Gi∗(p)e−Gi∗ (p)

β + (1 − e−Gi∗(p))

(c)
< 1, (17)

where (a) follows from (16), (b) follows from the fact that fi∗(G,p) = 0, and (c) follows from (4). This
proves that the Jacobian matrix in (15) is non-singular. The result follows from the implicit function
theorem.

We next combine Propositions 1-3 to complete the proof of Theorem 1.
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of Theorem 1. By Proposition 1, for the policy p̄ with p̄(i,j) = 0, (i, j) ∈ L, there exists a unique fixed
point G(p̄). For a given policy p̂ define the convex combination of p̄ and p̂ as

p(t) = (1 − t)p̄ + tp̂, t ∈ [0, 1].

By Lemma 1, the set G(p̂) is nonempty, i.e., there exists at least one CSMA fixed point at p̂. We use
the following lemma to complete the proof.

Lemma 2. For every Ĝ ∈ G(p̂), there exists a continuous function h : [0, 1] → R
N
+ that satisfies

h(0) = G(p̄), and h(1) = Ĝ.

of Lemma 2. Assume, to arrive at a contradiction, that there does not exist such a continuous function.
We define the set of functions

H , {h : [0, 1] → R
N
+ | h(t) ∈ G(p(t)), h(1) = G(p̂)}.

For all h ∈ H , let Th ∈ [0, 1] denote the set of points at which h is discontinuous. We define the point
t̃ ∈ [0, 1] as

t̃ , inf
8

>

<

>

:

t∈

⋃

h∈H

Th

9

>

=

>

;

t.

Note that the set
⋃

h∈H

Th is a bounded and closed set, therefore the minimum in the preceding opti-

mization problem is attained, implying the existence of some h ∈ H such that h is discontinuous at
t̃. By the upper-semicontinuity of G(p) (cf. Proposition 2), the function h can be chosen to be right
continuous at t̃. Note also that since G(p(0)) is unique, it follows that t̃ > 0. By the definition of t̃,
there exists some δ > 0 such that for all ǫ > 0 sufficiently small,

∣

∣

∣h(t̃) −Gǫ

∣

∣

∣ > δ, ∀ Gǫ ∈ G(p(t̃− ǫ)).

This contradicts the fact that for all p̄ and Ḡ ∈ G(p̄), (p, G(p)) is uniquely defined in a neighborhood
of (p̄, Ḡ) (cf. Proposition 3), proving the claim.

Back to the Proof of Theorem 1: Assume, to arrive at a contradiction, that there exist Ĝ1 and Ĝ2

(Ĝ1 6= Ĝ2) such that Ĝ1, Ĝ2 ∈ G(p̂). By Claim 2, it follows that there exist continuous functions, h1(·)
and h2(·), such that h1(0) = h2(0) = G(p̄); h1(1) = G1(p̂) and h2(1) = G2(p̂). Then, there must exist
a τ = max{t ∈ [0, 1] : h1(t) = h2(t)}. Since we know that G(p̄) is unique, there must be a bifurcation
of the (p(t), G(p(t)) as t exceeds τ. But, this contradicts the local uniqueness result of Proposition 3.
Hence, G(p̂) [and therefore ρ(p̂)] is unique for all p̂.

The uniqueness result of Theorem 1 combined with the upper-semicontinuity of Proposition 2 directly
implies the continuity of G(p), and hence of ρ(p). This is stated in the following corollary.

Corollary 1. The fixed point ρ(p) is continuous in p.

9 Asymptotic Accuracy

Consider a sequence of networks for which the number of nodes N increases to infinity. Let L(N) be

the set of all links in the network with N nodes, and let N (N)
i be the set of neighbors of node i.

As N increases, consider a corresponding sequence of CSMA policies {p(N)}N≥1 with sensing periods
{β(N)}N≥1, where p(N) defines the CSMA policy for the network with N nodes. We make the following
assumptions.

Assumption 1. For the sequences {p(N)}N≥1 and {β(N)}N≥1 the following is true.

(a) We have that limN→∞Nβ(N) = 0.
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(b) For p
(N)
max = max

(i,j)∈L(N)
p
(N)
(i,j) we have that limN→∞

p(N)
max

β(N) = 0.

(c) There exists a constant χ and an integer N0 such that for all N ≥ N0 we have that

∑

j∈N
(N)
i

[p
(N)
(i,j) + p

(N)
(j,i)] ≤ χβ(N), i = 1, · · · , N.

These technical assumption have the following interpretation: condition (a) characterizes how fast
β(N) decreases to zero as the network size N increases, condition (b) implies that the attempt proba-
bility of each link becomes small as N becomes large, and condition (c) states that the total rate with
which links that originate or end at a given node i are captured, is upper-bounded by χ.

For the above scaling, let ρ(p(N)) = (ρ1(p
(N)), · · · , ρN (p(N))) be the CSMA fixed point for the

network of size N , and let ρ̄i(p
(N)) be the actual fraction of time that node i is idle. Furthermore, let

δ(N)
ρ = max

i=1,··· ,N
|ρi(p

(N)) − ρ̄i(p
(N))|

be the maximum approximation error of the CSMA fixed point. Similarly, let

δ(N)
τ = max

(i,j)∈L(N)

∣

∣

∣

∣

∣

1 − τ(i,j)(p
(N))

µ(i,j)(p(N))

∣

∣

∣

∣

∣

be the maximum relative approximation error of the link service rates under the CSMA fixed point.
Note that under Assumption 1 the link service rate µ(i,j)(p

(N)) will approach zero as N increases and

the error term |τ(i,j)(p(N)) − µ(i,j)(p
(N))| will trivially vanish; this is the reason why we consider the

relative error when studying the accuracy of the CSMA fixed point equation for the link service rates.
The following result states that in the limit as N approaches infinity the CSMA fixed point approx-

imation becomes asymptotically accurate.

Theorem 2. For the above defined scaling we have that

lim
N→∞

δ(N)
ρ = 0, and lim

N→∞
δ(N)
τ = 0.

We provide a proof of Theorem 2 in Appendix B.

9.1 Numerical Results

In this section we illustrate Theorem 2 using numerical results obtain for the network given in Figure 3.

. . .

. . .

N+11

2

N 2N

N+2

Figure 3: Network topology for our numerical results consists of a set ofN sender nodes NS = {1, ..., N},
and a set of N receiver nodes NR = {N + 1, ..., 2N}. The set of links L consists of all directed links
(i, j) from a sender i ∈ NS to a receiver j ∈ NR.

For this network, a CSMA policy p = (p(i,j))(i,j)∈L ∈ [0, 1]L determines the probabilities p(i,j) with
which sender i ∈ NS starts a transmission of a packet to receiver j ∈ NR, after link (i, j) has been
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sensed to be idle for sensing period of β time units. Given a sensing period β, the CSMA fixed point
for a policy p is then given by

ρi(p) =
β

(β + 1 − e−Gi(p))
, i = 1, · · · , 2N,

where
Gi(p) =

∑

j∈NR

p(i,j)ρj(p), i ∈ NS

and
Gj(p) =

∑

i∈NS

p(i,j)ρj(p), j ∈ NR.

Consider then a sequence of policies p(N) and a sequence of sensing periods β(N) as function of size
of the sender set NS , given by

β(N) = 1/(Nlog(N)) and p(i,j) = χβ(N)/(2N).

Note that this scaling satisfies Assumption 1. Furthermore, due the symmetry of the network topology
as well as the CSMA policy p(N) that we consider, the CSMA fixed point ρi(p

(N)) is symmetric and
we have that

ρi(p
(N)) = ρj(p

(N)), i, j ∈ N = NS ∪NR.

We then evaluate the performance of a CSMA policy p(N) using χ = 10 for different sizes N of the
sender set NS .
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Figure 4: Comparison of the actual fraction of idle time under the CSMA policy and the predicted
values based on the fixed point formulation.
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Figure 5: Error terms of Theorem 2 for different values of N .

Figure 4 shows the measured mean fraction of times that nodes are idle and mean node throughput,
compared with the performance predicted by the CSMA fixed point. Figure 5 shows the error terms of
Theorem 2 for the approximation error in the fraction of time that nodes are idle, and the link service
rates.

Note that the above numerical results suggest that the CSMA fixed point approximation is remark-
ably accurate even for smaller values of N . This suggest that the CSMA fixed point approximation is
not only asymptotically accurate, but is already useful to characterize the performance for networks
where each nodes has a relatively small number of neighbors. However, more simulations are needed to
verify this observation for more general network topologies.
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10 Approximate Achievable Rate Region

In this section we use the CSMA fixed point approximation to characterize the achievable rate region
of CSMA policies. In Section 11 we will show that this characterization is asymptotically accurate for
large networks with a small sensing time.

Consider a network (N ,L) with sensing time β > 0 as described in Section 3, let Γ(β) be given by

Γ(β) =
{

λ = {λ ≥ 0|Λi < τ(G+(β))e−(G+(β)), i = 1, · · · , N
}

,

where G+(β) =
√

2β and τ(G+(β) are as defined in Section 7.1 and

Λi =
∑

j∈Ni

[

λ(i,j) + λ(j,i)

]

, i ∈ N ,

is as defined in Section 3.
The next result states that for a network (N ,L) with sensing time β > 0 the achievable rate region

of CSMA policies under the CSMA fixed point approximation contains the set Γ(β).

Theorem 3. Given a network (N ,L) with sensing period β > 0, for every λ ∈ Γ(β) there exists a
CSMA policy p such that

λ(i,j) < τ(i,j)(p), (i, j) ∈ L.

Proof. By the definition, we have Λi < τ(G+(β))e−G+(β) for all i ∈ N .
For each node i = 1, ..., N , choose Gi ∈ [0, G+(β)) such that

e(Gi−G+(β))τ(Gi)e
−G+(β) = Λi

and let

ρi =
β

β + 1 − e−Gi
.

Such a Gi exists since the function

f(Gi) = e(Gi−G+(β))τ(Gi)e
−G+(β)

is continuous in Gi with f(0) = 0 and

f(G+(β)) = τ(G+(β))e−G+(β) > Λi(λ).

Using ρi = 1, ..., N as defined above, consider the CSMA policy p given by

p(i,j) =
λ(i,j)

ρiρj
βe2G+(β), (i, j) ∈ L. (18)

By applying the above definitions, at every node i = 1, ..., N we have that

∑

j∈Ni

[p(i,j) + p(j,i)]ρj =
∑

j∈Ni

λ(i,j) + λ(j,i)

ρiρj
βe2G+(β)ρj

=
βe2G+(β)

ρi

∑

j∈Ni

[λ(i,j) + λ(j,i)] =
βe2G+(β)

ρi
Λi(λ)

=
βe2G+(β)

ρi
e(Gi−G+(β))τ(Gi)e

−G+(β) = β
1

ρi
eGiτ(Gi)

= β
β + 1 − e−Gi

β
eGi

Gie
−Gi

β + 1 − e−Gi
= Gi.

This implies that the above choices of G = (G1, · · · , GN ) and ρ = (ρ1, · · · , ρN ) define the CSMA fixed
point of the static CSMA policy given by (18), i.e. we have that

ρ(p) = ρ and G(p) = G.
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Using (11), the service rate τ(i,j)(p) on link (i, j) under p is then given by

τ(i,j)(p) ≥ p(i,j)ρj(p)e−(Gi(p)+Gj(p))

1 + β − e−Gi(p)

= p(i,j)
ρje

−(Gi+Gj)

1 + β − e−Gi
=
λ(i,j)

ρiρj
βe2G+(β) ρje

−(Gi+Gj)

1 + β − e−Gi

= λ(i,j)
β

ρi(1 + β − e−Gi)
e2G+(β)−(Gi+Gj)

= λ(i,j)e
2G+(β)−(Gi+Gj) > λ(i,j),

where we used in the last inequality the fact that by construction we have Gi, Gj < G+(β). The
proposition then follows.

The proof of Theorem 3 is constructive in the sense that given a rate vector λ ∈ Γ(β), we construct
a CSMA policy p such that λ(i,j) < τ(i,j)(p), (i, j) ∈ L. We will use this construction for our numerical
results in Section 11.3.

Note that from Section 7.1, we have that

lim
β→0

G+(β) = 0, and lim
β→0

τ(G+(β)) = 1.

Using these results, we obtain that

lim
β↓0

Γ(β) = {λ ≥ 0 | Λi < 1 i = 1, · · · , N} .

Since any rate vector λ for which there exists a node i with Λi ≥ 1 cannot be stabilized, this suggests
that for network with a small sensing time the achievable rate region of static CSMA policies is equal
to the capacity region, C = {λ ≥ 0 | Λi < 1 i = 1, · · · , N}.

In the next section we show that this result is true for the limiting regime of networks with many
small flows.

11 Asymptotic Throughput-Optimality

In this section we derive our main result and show that CSMA policies are asymptotically throughput-
optimal as the sensing period β becomes small for networks with many small flows.

11.1 Many Small Flows Asymptotic

In Section 9 we introduced a sequence of networks for which the number of nodes N increases to infinity,

and let L(N) be the set of all links in the network with N nodes, and N (N)
i be the set of neighbors of

node i in the network with N nodes. In this section, we introduce a similar scaling for the rate vectors.

Let λ(N) = {λ(N)
r }r∈R(N) be the rate vector for the network with N nodes. Furthermore,

λ
(N)
(i,j) =

∑

r∈R(N):(i,j)∈r

λ(N)
r , (i, j) ∈ L(N),

be the mean packet arrival rate on link (i, j), and let

Λ
(N)
i =

∑

j∈N
(N)
i

[

λ
(N)
(i,j) + λ

(N)
(j,i)

]

, i = 1, · · · , N,

be the mean packet arrival rate at node i.

Definition 6 (Many Small Flows Asymptotic). Given a sequence of networks {N (N),L(N)}N≥1, we
define D as the set of all rate vector sequences {λ(N)}N≥1 such that

lim sup
N→∞

(

max
(i,j)∈L(N)

λ
(N)
(i,j)

)

= 0.

17



The above definition characterizes the limiting regime where as the number of nodes in the network
increases, we have that the mean arrival on each route becomes small, i.e. the network traffic consists
of many small flows.

We then define the asymptotic achievable rate region of CSMA policies under the many small flows
asymptotic as follows.

Definition 7. The asymptotic achievable rate region of static CSMA policies under the many flow
limit is the set of sequences {λ(N)}N≥1 ∈ D for which there exists a sequence of static CSMA scheduling
policies {p(N)}N≥1 such that

lim inf
N→∞



 min
(i,j)∈L(N)

µ(i,j)(p
(N))

λ
(N)
(i,j)



 > 1.

The above definition implies that every rate sequence {λ(N)}N≥1 in the asymptotic rate region can
eventually be stabilized by the sequence of CSMA policy {p(N)}N≥1.

Note that a sequence {λ(N)}N≥1 ∈ D for which there exists a node i with

lim
N→∞

Λ
(N)
i ≥ 1

can not be stabilized as service rate at each node is bounded by 1. Hence, the achievable region under
the many flow limit is contained in the set

C =

{

{λ(N)}N≥1 ∈ D| lim sup
N→∞

(

max
i=1,...,N

Λ
(N)
i

)

< 1

}

.

We refer to C as the capacity region under the many small flows asymptotic.

11.2 Asymptotic Rate Region

In this subsection we characterize the asymptotic achievable rate region of CSMA policies under the
many small flows asymptotic for networks with a small sensing period. To do this, we again consider
a sequence of sensing periods β(N), N ≥ 1, that satisfies Assumption 1. The next theorem shows that
in this case CSMA policies are throughput-optimal, i.e. the achievable rate region converges to the
capacity region C.

Theorem 4. Given a sequence of networks {N (N),L(N)}N≥1 and a sequence of sensing periods (β(N))N≥1

such that
lim

N→∞
Nβ(N) = 0,

we have that for every sequence λ(N) ∈ C there exists a sequence of CSMA policies {p(N)}N≥1 that
asymptotically stabilizes the network, i.e. we have

lim inf
N→∞



 min
(i,j)∈L(N)

µ(i,j)(p
(N))

λ
(N)
(i,j)



 > 1.

Proof. By definition, for each sequence {λ(N)}N≥1 ∈ C there exists a scalar Λ̄ < 1 and an integer N̄
such that for N ≥ N̄ we have

Λ
(N)
i ≤ Λ̄, i = 1, ..., N.

Let then Λ∗ be given by

Λ∗ = 1 − 1 − Λ̄

2
< 1

and let

γ =
Λ∗

Λ̄
> 1.
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Using this definitions, let

λ̄
(N)
(i,j) = γλ

(N)
(i,j), (i, j) ∈ L,

and
Λ̄

(N)
i =

∑

j∈N
(N)
i

[

λ̄
(N)
(i,j) + λ̄

(N)
(j,i)

]

, i ∈ N (N).

For all i ∈ N (N), we then have

Λ̄
(N)
i ≤ Λ∗, N ≥ N̄ .

As limN→∞ β(N) = 0 and limβ↓0 τ(G
+(β)) = 1 (see (5)), there exists a integer N0 such that for

N ≥ N0 we have that

Λ∗ < τ(G+(β(N)))e−(G+(β(N))), i = 1, ..., N.

Using the proof of Theorem 3, we can then construct a sequence of CSMA policies {p(N)}N≥1 such
that for N ≥ N0 we have

λ̄
(N)
(i,j) < τ(i,j)(p

(N)), (i, j) ∈ L(N).

Using Theorem 2, the approximation τ(i,j)(p
(N)) of the service rate of link (i, j) is asymptotically

accurate as N increases, if the sequence {p(N)}N≥N0 satisfies Assumption 1. In this case, the theorem
follows as we have that

lim inf
N→∞



 min
(i,j)∈L(N)

µ(i,j)(p
(N))

λ
(N)
(i,j)





= lim inf
N→∞



 min
(i,j)∈L(N)

τ(i,j)(p
(N))

λ
(N)
(i,j)

µ(i,j)(p
(N))

τ(i,j)(p(N))





= lim inf
N→∞



 min
(i,j)∈L(N)

τ(i,j)(p
(N))

λ
(N)
(i,j)





≥ lim inf
N→∞



γ min
(i,j)∈L(N)

τ(i,j)(p
(N))

λ̄
(N)
(i,j)





≥ γ > 1.

To verify Assumption 1, recall that by using the proof of Theorem 3 we obtain a sequence of CSMA
policies {p(N)}N≥1 such that for N ≥ N0 we have

λ̄
(N)
(i,j) < τ(i,j)(p

(N)), (i, j) ∈ L(N),

we follows.
For a given network size N the value let G

(N)
i ∈ [0, G+(β(N))) such that

e(G
(N)
i

−G+(β))τ(G
(N)
i )e−G+(β) = Λ̄

(N)
i

and let

ρ
(N)
i =

β(N)

β(N) + 1 − e−G
(N)
i

.

Such a G
(N)
i exists as shown in the proof of Proposition 3.

Consider then the CSMA policy p(N) given by

p
(N)
(i,j) =

λ̄
(N)
(i,j)

ρ
(N)
i ρ

(N)
j

β(N)e2G+(β(N)), (i, j) ∈ L;
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using the proof of Theorem 3 we then have that

λ̄
(N)
(i,j) < τ(i,j)(p

(N)), (i, j) ∈ L(N).

To verify Assumption 1 for the resulting sequence {p(N)}N≥N0, we first show that for

p(N)
max = max

(i,j)∈L(N)
p
(N)
(i,j)

we have that

lim
N→∞

p
(N)
max

β(N)
= 0.

To see this, note that for ρ
(N)
i as given above, we have that

ρ
(N)
i =

β(N)

β(N) + 1 − e−G
(N)
i

≥ β(N)

β(N) + 1 − e−G+(β(N)
, i ∈ N (N).

It then follows that

p
(N)
(i,j)

β(N)
≤ λ̄

(N)
(i,j)

β(N) + 1 − e−G+(β(N)

(β(N))2
e2G+(β(N)), (i, j) ∈ L.

Note that by definition we have

lim
N→∞

e2G+(β(N)) = 1.

Furthermore, we have that

lim
N→∞

β(N) + 1 − e−G+(β(N)

(β(N))2
=

4

3
.

Combining the above results with the fact that for {λ(N)}N≥1 ∈ D we have

lim sup
N→∞

(

max
(i,j)∈L(N)

λ
(N)
(i,j)

)

= 0,

it follows that

lim
N→∞

p
(N)
max

β(N)
= 0.

In addition, using the results that

lim
N→∞

β(N) + 1 − e−G+(β(N)

(β(N))2
e2G+(β(N)) =

4

3
,

and
p
(N)
(i,j)

β(N)
≤ λ̄

(N)
(i,j)

β(N) + 1 − e−G+(β(N)

(β(N))2
e2G+(β(N)), (i, j) ∈ L,

we obtain that there exists a constant B such that for N ≥ N0 we have that

β(N) + 1 − e−G+(β(N)

(β(N))2
e2G+(β(N)) ≤ B

∑

j∈N
(N)
i

[p
(N)
(i,j) + p

(N)
(j,i)]

β(N)
≤ BΛ∗, i = 1, · · · , N.

Hence the sequence {p(N)}N≥N0 satisfies Assumption 1 and the theorem follows.
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11.3 Numerical Results

In this section, we illustrate Theorem 2 using the network topology as the one that we used for the
numerical results in Section 9.1 (see also Figure 3).

As the network size increases, we consider a sequence of rate vectors idle periods β(N) and traffic
vectors λ(N) given by

β(N) = 0.1/(Nlog(N))

and

λ
(N)
(i,j) =

0.95

N
e−G+(β(N))τ(G+(β(N))), i ∈ NS , j ∈ NR.

We then have

Λ
(N)
i =

0.95

N
e−G+(β(N))τ(G+(β(N))), i ∈ N = NS ∪ NR,

and the rate vector is within approximate rate region Γ(β(N) that we obtained using CSMA fixed point
approximation.

In the proof for Theorem 3, we derive the following construction for obtaining a policy p(N) that
supports a given traffic vector λ ∈ Γ(β(N)). Let G(N) ∈ [0, G+(β(N))) be such that

e(G
(N)−G+(β(N)))τ(G(N))e−G+(β(N)) =

0.95

N
e−G+(β(N))τ(G+(β(N))).

In the proof, we also showed that such a G(N) exists. Furthermore, let

ρ(N) =
β(N)

β(N) + 1 − e−G(N)
.

Then the CSMA policies p(N) with

p(i,j) =
λ(N)

(ρ(N))2
β(N)e2G+(β(N)), (i, j) ∈ L(N)

will support the traffic vector λ(N) under the CSMA fixed point approximation.
Theorem 4 then states that for the above sequence of CSMA policies we have for a large enough N

that
µ

(N)
(i,j) > λ

(N)
(i,j), (i, j) ∈ L(N),

as well as
lim

N→∞

∑

j∈NR

µ
(N)
(i,j) > 0.95, i ∈ NS ,

and
lim

N→∞

∑

i∈NS

µ
(N)
(i,j) > 0.95, j ∈ NR.

We simulate the network to measure the true link service rates for different values of N . Figure 6
shows the average node throughput that we obtained. Note that the average node throughput indeed
is above the value Λ(N) for which we designed the CSMA policy p(N). Furthermore, as N increases the
average node throughput becomes larger then 0.95 as predicted by our theoretical result. This example
suggests that CSMA policy can be close to throughput optimal even if the number of neighbors of each
node is relatively small.

Figure 7 shows the distribution of the ratio of link service rates to link throughputs. We know from
Theorem 4 that this ratio will eventually exceed 1 for all links as N tends to infinity. We observe in
Figure 7 that already at a moderate value of N = 20, more than 95% of the links exceed 1 and the rest
of the links achieve rates close to 1. This simulation also reveals the fair nature of our CSMA policy by
demonstrating that link rates are closely located.

It is interesting to contrast the measurements shown in Figure 7 with results obtained for other
random access policies where a high throughput comes at the expense of severe (short) term unfairness
(see for example [4]). The above constructed CSMA policy prevents such unfairness by selecting the
transmission attempts carefully so that they are locally balanced.
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Figure 6: Performance of the CSMA policy for the network in Figure 3 with symmetric load. The policy
achieves rates close to the aimed value of 0.95 per sender node even for moderate values of N.
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12 Conclusions

For our analysis, we consider CSMA policies where links make a transmission attempt with a fixed
probability after the channel has been sensed to be idle, independent of the current backlog of the link.
This may seem unreasonable scenario as it implies that a link might make a transmission attempt even
if there is no packet to be transmitted. However, there are at least two reasons why this situation
is of interest. First, such a policy could indeed be implemented (where links send dummy packets
once in a while) and if we can show that it is able to achieve throughput-optimality, then it might be
considered to be practical. Second, and more importantly, being able to characterize the throughput
of such a policy opens up the possibility of studying more complex, dynamic CSMA policies where
the attempt probabilities depend on the current backlog. In particular, the results of our analysis
can be used to formulate a fluid-flow model for backlog-dependent policies, where the instantaneous
throughput at a given state (backlog vector) is given by the expected throughput obtained in our
analysis. Besides showing that the CSMA policies are (asymptotically) throughput-optimal, our work
also provides a framework for the analysis of CSMA policies where the transmission probabilities for
a given link depend on the backlog at the link. Such policies are of interest as they might allow for
dynamic adaptation of the traffic load in the network. An example of such a policy, combined with rate
control, is given in [14]. We are currently investigating this approach.
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A Detailed Description of CSMA Policies

In this section, we provide a detailed description of the CSMA policies that we consider.
Recall that a CSMA policy is given by a transmission attempt probability vector p = (p(i,j))(i,j)∈L ∈

[0, 1]L and a sensing period (or idle period) β > 0. The policy works as follows: each node, say i, senses
the activity on its outgoing links l ∈ Li. We say that i has sensed link (i, j) ∈ Li to be idle for a
duration of an idle period β if for the duration of β time units we have that (a) node i has not sent
or received a packet and (b) node i has sensed that node j have not sent or received a packet. If node
i has sensed link (i, j) ∈ Li to be idle for a duration of an idle period β, then i starts a transmission
of a single packet on link (i, j) with probability p(i,j), independent of all other events in the network.
If node i does not start a packet transmission, then link (i, j) has to remain idle for another period of
β time units before i again has the chance to start a packet transmission. Thus, the epochs at which
node i has the chance to transmit a packet on link (i, j) are separated by periods of length β during
which link (i, j) is idle, and the probability that i starts a transmission on link (i, j) after the link has
been idle for β time units is equal to p(i,j),

We assume that packet transmission attempts are made according to above description regardless
of the availability of packets at the transmitter. In the event of a transmission decision in the absence
of packets, the transmitting node transmits a dummy packet, which is discarded at the receiving end
of the transmission.

Below we describe more precisely the channel sensing, as well as the scheduling, mechanism of a
CSMA policy.
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A.1 Sensing Delay and Idle Periods

When a link l′ in the interference region of a link l ∈ Li becomes idle (or busy), then node i will be not
be able to detect this instantaneously, but only after some delay, to which we refer to as the sensing
delay.

Definition 8 (Sensing Delay βi(l)). We let βl(l
′) denote the time it takes for node i to sense the state

(active or idle) of a link l′ in the interference region of a link l ∈ Li. ⋄
Note that a the sensing delay a given in the above definition is lower-bounded by the propagation

delay between node i and i′. The exact length of the sensing delay will depend on the specifics of the
sensing mechanism deployed. We describe two possible sensing mechanisms in Appendix A.2. In the
following we assume that all sensing delays are bounded by the length of an idle period β.

Assumption 2. For all links l ∈ L we have that

βl(l
′) ≤ β, l′ ∈ Il.

In our subsequent discussion, for ease of exposition we will typically refer to links as performing
sensing or transmission attempts. This must be understood as the transmitting node of the (directed)
link performing the action.

A.2 Channel Sensing

The exact length of the sensing delay will depend on the specifics of the sensing mechanism deployed.
Here we describe two possible approaches how channel sensing could be done for networks with primary
interference constraints.

Suppose that each node i ∈ N is assigned a channel ci over which it receives data packets, and
suppose that the sensing radius and transmission radius of the nodes are different. The channel ci could
either be a frequency range, or a code, if a FDMA-based, or a CDMA-based, approach respectively is
used to implement to obtain a network with primary interference constraints (see also our discussion
in Section 3). Nodes that are within the transmission radius of a node can successfully receive its
packet transmission if there are no collisions by another transmission within the transmission radius
of the receiver. Nodes that are within the sensing radius of the transmitting node can only detect the
presence or absence of activity together with its destination. The activity within the sensing radius
does not cause collisions, but it signals the presence of activity. In this setting, a node j ∈ Ni can sense
whether node i is currently sending a packet by scanning the channels ck used by node i for transmission
on its outgoing links (i, k) ∈ Li. Furthermore, if the sensing radius is at least twice the transmission
radius, then a node j ∈ Ni can sense whether node i is currently receiving a packet by scanning channel
ci. Note that the time (measured in seconds) that it takes a node to detect whether a neighboring node
is busy, will increase as the number of neighbors of a node increases; however, the sensing delay βl(l

′)
measured relative to the time it takes to transmit a packet can still kept low by increasing the size of a
packet, and hence increase the time Lp it takes to transmit a packet.

Again, suppose that each node i ∈ N is assigned a communication channel ci over which it receives
data packets, and that in addition it is assigned a control channel c̄i, where the bandwidth of the
communication channel ci is much larger than the one of the control channel c̄i. Then, if node i is
currently receiving a packet transmission on its communication channel ci, then it can send out a busy
signal on the control channel c̄i. In this setting, a node j ∈ Ni can sense whether node i is currently
sending a packet by scanning the channels ck used by node i for transmission on its outgoing links
(i, k) ∈ Li. Furthermore, a node j ∈ Ni can sense whether node i is currently receiving a packet by
scanning the control channel c̄i. Again, the time (measured in seconds) that it takes a node to detect
whether a neighboring node is busy, will increase as the number of neighbors of a node increases; but
the sensing delay βl(l

′) measured relative to the time it takes to transmit a packet can still kept low by
increasing the size of a packet. Figure 8 gives a timing-diagram for this case.

A.3 Scheduling

One additional issue that we have to account for is the event that the idle periods of two links l and
l′ that both originate at node i end at the same time. To prevent the possibility that node i starts
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Figure 8: Nodes m, i, j, and k are connected as shown on the left. Node i starts a packet transmission
to node j at t0, which is overheard starting at t1 by node m. Thus, the sensing delay βm(i, j) is equal to
(t1− t0). Node j starts reception of the packet at t2 (hence its sensing delay satisfies βj(i, j) = (t2− t0))
and generates a signal over its control channelc̄j to indicate the activity of link (i, j). Node k senses the
control signal of node j at time t3 (hence its sensing delay is βk(i, j) = (t3 − t0). The transmission of
the packet ends at time t4 which equals (t0 + 1) since the packet transmission duration is normalized
to one. Nodes m, j, and k sense the end of the activity at t5, t6, and t7, respectively.

in this case a transmission on both links l and l′ simultaneously (leading to sure collision), we use the
following mechanism.

At a given time t ≥ 0, let Li(t) be the set of links in Li for which an idle period ends at time t. If
link l = (i, j) belongs to the set Li(t) then the probability that node i starts a transmission on link l at
time t is given by

p(i,j)
∑

{j′:(i,j′)∈Li(t)}

p(i,j′)

,

independently of all other attempts by any node in the network.

B Proof of Theorem 2

Recall the setting for Theorem 2. We consider a sequence of networks for which the number of nodes

N increases to infinity. Let L(N) be the set of all links in the network with N nodes, and let N (N)
i be

the set of neighbours of node i. Furthermore, let {p(N)}N≥1 be a sequence of CSMA policies where
p(N) defines a CSMA policies for the network with N nodes, and let {β(N)}N≥1 be the corresponding
sequence of sensing periods. By Assumption 1, the following conditions hold.

(a) For the sequence {β(N)}N≥1 we have

lim
N→∞

Nβ(N) = 0.

(b) For p
(N)
max = max

(i,j)∈L(N)
p
(N)
(i,j) we have that

lim
N→∞

p
(N)
max

β(N)
= 0.
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(c) There exists a constant χ and an integer N0 such that for all N ≥ N0 we have that

∑

j∈N (N)

[p
(N)
(i,j) + p

(N)
(j,i)] ≤ χβ(N), i = 1, ..., N.

For this setup, Theorem 2 states that

lim
N→∞

δ(N)
ρ = 0, and lim

N→∞
δ(N)
τ = 0,

where δ
(N)
ρ and δ

(N)
ρ are as defined in Section 9.

To prove Theorem 2, we uses techniques and results presented by Hajek and Krishna in [9] for their
analysis of blocking probabilities in loss networks. Before we start we the analysis, we provide in the
next section a brief summary of the work by Hajek and Krishna in [9]. In Section B.2, we provide an
overview of the proof.

B.1 Result by Hajek and Krishna

Here we provide a brief summary of the work by Hajek and Krishna, we refer to [9] for a more detailed
description.

Consider a wired (loss) network consisting of a set of undirected links L, where each link i ∈ L has
capacity 1. The network serves connections (calls) where each connection uses 1 unit of the capacity
at each link it traverses, i.e. each link can accommodate at most 1 connection. Furthermore, suppose
that all connections use routes that consist of exactly two links. Connection requests arrive according
to independent Poisson processes where νij = νji denotes the arrival rate for connections that use link i
and j. Once a connection is accepted, it stays in the system for an amount of time that is exponentially
distributed time with mean one. If a new connection using links i and j as a route, and one these
links is already serving another connection, then the newly arrived connection is blocked and lost. The
Erlang fixed point equation for this loss network is then given by (see also [9])

Bi

1 −Bi
=

∑

j∈L

νij(1 −Bj), i ∈ N , (19)

where Bi approximates the probability that link i is busy, i.e. serving a connection. In [9], Hajek and
Krishna obtain the following result.

Proposition 4. Consider a loss network as defined above and let

rv = max
i,j∈L

νij

and
χ = max

i∈L

∑

j∈L

νij .

For the actual steady-state probability B̄i, i ∈ L, that link i is busy we have that

(1 − B̂i)e
−χ(rv+r2

v/2) ≤ 1 − B̄i ≤ (1 − B̂i)e
χ(rv+r2

v/2),

where B̂i, i ∈ L, is the solution to the Erlang fixed point equation given by Eq. (19).

The above proposition implies that for small χ and rv the solution to the Erlang fixed point equation
approximates well the actual steady-state probability of a link being busy.

B.2 Overview of the Proof for Theorem 2

To prove Theorem 2, we will proceed as follows.

1. We relate the CSMA fixed point to the Erlang fixed point given by Eq. (19). To do this, we derive
and analyze in Section B.3 and B.4 an alternative formulation of the CSMA fixed point.
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2. We show that the steady-steady probabilities of nodes being idle under CSMA policy p are
asymptotically independent. More precisely, we will first derive in Section B.6 and B.7 several
properties for the the steady-steady probabilities of nodes being idle under a CSMA policy p,
which we then use to show in Section B.8 that the steady-state probabilities of nodes being idle
become asymptotically independent.

3. Combining the results from step 1 and 2, we show in Section B.9 that that under Assumption 1
the solution to the CSMA fixed point equation is asymptotically accurate. In particular, we derive
the following result.

Proposition 5. Consider a CSMA policy p(N) for a wireless network consisting of N nodes and
let

p(N)
max = max

(i,j)∈L
p
(N)
(i,j)

and let χ be as defined in Assumption 1. Then there exist constants κ and κs that do not depend
on N , such that the actual steady-state probabilities ρ̄i(p

(N)), i ∈ N , that node i is idle under the
CSMA policy p(N) satisfy

ρi(p
(N))e−χ(r+r2/2)e−χ(κβ+(κβ)2/2) ≤ ρ̄i(p

(N))

≤ ρi(p
(N))eχ(r+r2/2)eχ(κβ+(κβ)2/2),

where ρi(p
(N)) is the solution to the CSMA fixed point equation for p(N), and

r = (2N + 1)(κsβ
(N)) + 2rp

with

rp =
p
(N)
max

β(N)
.

Using Proposition 5, we can prove Theorem 2 as follows.

Proof of Theorem 2: Consider a sequence of CSMA policies p(N) that satisfies Assumption 1.

To keep the notation light, we use in the following only p instead of p(N), pij instead of p
(N)
(i,j), ρ̄i

instead of ρ̄i(p
(N)), ρi instead of ρi(p

(N)), and β instead of β(N). Furthermore, we use µ(i,j) instead of

µ(i,j)(p
(N)) to denote the link service rate for link (i, j) under the CSMA policy p(N), and τ(i,j) instead

of τ(i,j)(p
(N)) to denote the approximation of link service rate for link (i, j) under the CSMA fixed

point approximation for the CSMA policy p(N).
We first show that

lim
N→∞

δ(N)
ρ = 0.

This result follows immediately from Proposition 5 which states that the steady-state probabilities
asymptotically converge to the solution of the CSMA fixed point equation if

lim
N→∞

(

(2N + 1)(κsβ) + 2rp
)

= 0,

or
lim

N→∞
Nβ = 0

and

lim
N→∞

p
(N)
max

β
= 0.

And indeed, these conditions hold by Assumption 1.
The proof that

lim
N→∞

δ(N)
τ = 0

requires results that we obtain in Section B.7 and B.8; we will provide references to these results in the
derivations below.
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We are going to use the following convention. We say that a node i is idle if node i is currently
neither sending, nor receiving, a data packet. We say that a link l = (i, j) is idle if both node i and j
are idle. Otherwise, we say that node i (link (i, j)) is busy.

Let yi be the indicator whether node i is idle (yi = 0) or busy (yi = 1), and let P (yi = 0, yj = 0) be
the steady-state probabilities that node i and j are jointly idle. In Section B.6, we show this steady-
state probability exists. Using the same argument as we give in Section B.7 to prove Lemma 20, one
can show that

P (yi = 0, yj = 0)p(i,j)(1 − 4χβ)2 ≤ µ(i,j)β ≤ P (yi = 0, yj = 0)p(i,j)
1

1 − 4χβ
,

where (1 − 4χβ) is a lower-bounded (see Section B.7) on the probability that a packet transmission on
link (i, j) is successful, i.e. does not experience a collision.

By Proposition 8 in Section B.8, we have that

1

1 + 2rp

(

1

1 + κsβ

)2N

≤ P (yi = 0, yj = 0)

ρ̄iρ̄j
≤ (1 + κsβ)2N (1 + 2rp),

and it follows that

1

1 + 2rp

(

1

1 + κsβ

)2N

ρ̄iρ̄jp(i,j)(1 − 4χβ)2

≤ µ(i,j)β

≤ (1 + κsβ)
2N

(1 + 2rp)ρ̄iρ̄jp(i,j)
1

1 − 4χβ
.

Combining this result with Proposition 5, we obtain that

1

1 + 2rp

(

1

1 + κsβ

)2N

e−2χ(r+r2/2)e−2χ(κβ+(κβ)2/2)ρiρjp(i,j)(1 − 4χβ)2

≤ µ(i,j)β

≤ (1 + κsβ)
2N

(1 + 2rp)e
2χ(r+r2/2)e2χ(κβ+(κβ)2/2)ρiρjp(i,j)

1

1 − 4χβ
,

where ρi and ρj are the solutions to the CSMA fixed point equation for the CSMA policy p.
As we have that (see Section 7.2)

ρjp(i,j)e
−2χβ

1 + β − e−(Gi(p)
≤ ρjp(i,j)e

−(Gi(p)+Gj(p))

1 + β − e−Gi(p)
≤ τ(i,j) ≤

ρjp(i,j)

1 + β − e−Gi(p)

or
ρiρjp(i,j)e

−2χβ

β
≤ τ(i,j) ≤

ρiρjp(i,j)

β
,

it follows that

1

1 + 2rp

(

1

1 + κsβ

)2N

e−2χ(r+r2/2)e−2χ(κβ+(κβ)2/2)(1 − 4χβ)e−2χβ

≤ τ(i,j)

µ(i,j)
≤ (1 + κsβ)

2N
(1 + 2rp)e

2χ(r+r2/2)e2χ(κβ+(κβ)2/2) 1

(1 − 4χβ)2
.

Note that under Assumption 1, we have that

lim
N→∞

1

1 + 2rp

(

1

1 + κsβ

)2N

e−2χ(r+r2/2)e−2χ(κβ+(κβ)2/2)(1 − 4χβ)e−2χβ = 1

and

lim
N→∞

(1 + κsβ)
2N

(1 + 2rp)e
2χ(r+r2/2)e2χ(κβ+(κβ)2/2) 1

1 − 4χβ
= 1,

and it follows that
lim

N→∞
δ(N)
τ = 0.
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B.3 Alternative Formulation of the CSMA Fixed Point

In this section, we derive an alternative formulation for the CSMA fixed point for a CSMA policy p,
which we will use to related the CSMA fixed point to the Erlang fixed point for loss networks. To keep

the notation light, we use in the following p(i,j) instead of p
(N)
(i,j , β instead of β(N), Gi instead of G

(N)
i ,

and Ni instead of N (N)
i .

Recall that for a CSMA policy p with sensing period β, the CSMA fixed point equation is given by

ρi =
β

β + 1 − e−Gi
, i = 1, ..., N,

where
Gi =

∑

j∈Ni

(p(i,j) + p(j,i))ρj .

First we observe that for large N the offered load Gi becomes small at all nodes i.

Lemma 3. We have that
lim

N→∞
Gi = 0, i = 1, ..., N.

Proof. By Assumption 1, we have that

lim
N→∞

Gi = lim
N→∞

∑

j∈Ni

(p(i,j) + p(j,i))ρj ≤ lim
N→∞

∑

j∈Ni

(p(i,j) + p(j,i)) ≤ lim
N→∞

χβ = 0.

Let
Bi = 1 − ρi.

The corresponding fixed point equation is given by

Bi = 1 − β

β + 1 − e−Gi
, i = 1, ..., N, (20)

where
Gi =

∑

j∈Ni

(p(i,j) + p(j,i))(1 −Bj). (21)

Note that we can rewrite the expression for Bi as

Bi =
β

β + 1 − e−Gi

1

β
(1 − e−Gi) = ρi

1

β
(1 − e−Gi) = (1 −Bi)

1

β
(1 − e−Gi).

We then have the following result.

Lemma 4. Given a CSMA policy p for a network with N nodes, let

νij =
p(i,j) + p(j,i)

β
, i, j = 1, ..., N

and let χ be given as in Assumption 1. Let Bi, i = 1, ..., N , be the CSMA fixed point for p as given by
Eq. (20) and (21). Then for κ ≥ (e− 1)−1χ we have

Bi =
∑

j∈Ni

ν̂ij(1 −Bi)(1 −Bj), i ∈ N ,

where ν̂ij ≥ 0 is such that
1

1 + κβ
≤ ν̂ij

νij
≤ 1 + κβ, (i, j) ∈ L,

and ν̂i,j = 0 if (i, j) /∈ L.
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The above lemma states that the CSMA fixed point Bi, i = 1, ..., N , as given by Eq. (20) and (21)
can be expressed as a solution to the fixed point equation

Bi =
∑

j∈Ni

ν̂ij(1 −Bi)(1 −Bj), i ∈ N ,

where the true transmission rates νij are replaced by “approximate transmission rates” ν̂ij . Further-
more, we note that the above fixed point equation is the same as the Erlang fixed point equation given
by Eq. (19), except that we allow that ν̂ij 6= ν̂ji. We use this fact in the following to related the CSMA
fixed point to the Erlang fixed point considered by Hajek and Krishna.

Proof. For Gi ∈ [0, 1], i ∈ N , we have

Gi(1 − e−1Gi) ≤ 1 − e−Gi ≤ Gi(1 + e−1Gi).

Furthermore, for κ′ ≥ (e− 1)−1 we obtain that

Gi

1 + κ′Gi
≤ 1 − e−Gi ≤ Gi(1 + κ′Gi), Gi ∈ [0, 1].

As by Assumption 1 we have that Gi ≤ χβ, it follows that for

κ ≥ (e− 1)−1χ,

we obtain
Gi

1 + κβ
≤ 1 − e−Gi ≤ Gi(1 + κβ)), Gi ∈ [0, 1].

Combining the above results, for κ ≥ (e− 1)−1χ we have that

1

1 + κβ

∑

j∈Ni

νij(1 −Bi)(1 −Bj) ≤ Bi ≤ (1 + κβ)
∑

j∈Ni

νij(1 −Bi)(1 −Bj),

where

νij =
p(i,j) + p(j,i)

β
.

The result then follows.

B.4 Existence and Uniqueness of a Fixed Point

Consider the fixed point equation of Lemma 4 that is given by

Bi =
∑

j∈Ni

ν̂ij(1 −Bi)(1 −Bj), i ∈ N ,

with
ν̂ij ≥ 0, (i, j) ∈ L,

where we allow that
ν̂ij 6= ν̂ji.

In this section, we will show that there exists a unique fixed point by using an argument that is similar
to the one in Section 8 that we used to prove the existence and uniqueness of the CSMA fixed point.

We first rewrite the above fixed point equation as

Bi

1 −Bi
=

∑

j∈Ni

ν̂ij(1 −Bj), i ∈ N , (22)

where ν̂ij ≥ 0, (i, j) ∈ L.
Given vector ν̂ = (ν̂ij)(i,j)∈L with ν̂ij ≥ 0, (i, j) ∈ L, let B(ν̂) be the set of fixed points for Eq. (22).

Then we have the following result.
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Lemma 5. For all fixed points B̄ ∈ B(ν̂), there exist neighbourhoods U ⊂ R
N
+ of B̄ and V ⊂ [0, 1]L of

ν̂ such that for each ν ∈ V the equation F (B, ν) = (Fi(B, ν))i∈N = 0 where

Fi(B, ν) =
Bi

1 −Bi
−

∑

j∈Ni

νij(1 −Bj),

has a unique solution B ∈ U . Moreover, this solution can be given by a function B = φ(ν) where φ is
continuously differentiable on V .

Proof. For i ∈ N , we have

∂Fi

∂Bj
=







1
(1−Bi)2

, i = j,

νij , j ∈ Ni

0, otherwise.

Note that the function F is continuously differentiable. Next we show that the Jacobain matrix

[

∂Fi

∂Bj
|G=G(ν)

]

has linearly independent rows. Having established this result, the lemma then follows from the implicit
function theorem. Before we proceed, we note that this matrix has non-negative entries.

Suppose that the rows are not linearly independent, then there exists a coefficient vector x =
(x1, ..., xN ) 6= 0 such that

N
∑

j=1

xj

(

∂Fi(p)

∂Bj

)

= 0, for all i ∈ {1, . . . , N}.

Using the special structure of the Jacobian matrix, we obtain

xi

(1 − Bi)2
+

∑

j∈Ni

xjνij = 0, i ∈ N ,

or
1 +

∑

j∈Ni

νij
xj

xi
(1 −Bi)

2 = 0, i ∈ N .

Consider a node i∗ such that
∣

∣

∣

∣

xi∗

1 −Bi∗

∣

∣

∣

∣

≥
∣

∣

∣

∣

xi

1 −Bi

∣

∣

∣

∣

, i ∈ N .

Then,

1 = −
∑

j∈Ni∗

νi∗j(1 −Bi∗)(1 −Bj)
xj

xi∗

1 −Bi∗

1 −Bj

≤
∑

j∈Ni∗

νi∗j(1 −Bi∗)(1 −Bj)

∣

∣

∣

∣

xj

xi∗

1 −Bi∗

1 −Bj

∣

∣

∣

∣

≤
∑

j∈Ni∗

νi∗j(1 −Bi∗)(1 −Bj) = Bi∗ < 1.

Hence, we obtain a contradiction and the result follows.

The following result we then obtain by the same argument as given for the uniqueness of the CSMA
fixed point.

Lemma 6. There exists a unique fixed point to Eq. (22).
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B.5 Sensitivity Analysis

In this section we show that asymptotically (as N becomes large) the solution to the CSMA fixed point
equation converges to the solution of the Erlang fixed point equation given by Eq. (19). To show this, we
use the sensitivity analysis as given by Hajek and Krishna in Section 4 of [9] with only minor notational
changes. For convenience, we provide below the analysis of Hajek and Krishna applied to our setting.

Given vector ν = (νij)(i,j)∈L with νij ≥ 0, (i, j) ∈ L, let B = (B1, ..., BN ) be the the fixed point to
the equation

Bi

1 −Bi
=

∑

j∈Ni

νij(1 −Bj), i ∈ N , (23)

where we allow that νij 6= νji. Furthermore, let the links l = (i, j) ∈ L be indexed with numbers 1, ..., L.
Consider then F (B, v) = (F1(B, v), ..., FN (B, v)) where the function Fi(B, v) is given by

Fi(B, ν) =
Bi

1 −Bi
−

∑

j∈Ni

νij(1 −Bj), i ∈ N .

with νij ≥ 0, (i, j) ∈ L.
We then have

∂Fi

∂Bj
=

1

(1 −Bi)2
Ij=i + νij , i, j ∈ N ,

and
∂Fi

∂νij
= −(1 −Bj), i ∈ L, j ∈ Ni.

Let b be the N ×N diagonal matrix with

bi,i = (1 −Bi).

Furthermore, let R be the N ×N matrix given by

Ri,j =

{

νij , j ∈ Ni,
0, otherwise,

and let T be the N × |L| matrix given by

Ti,l =

{

(1 −Bi)(1 −Bj), l = (i, j), j ∈ Ni,
0, otherwise.

Using the above definitions, we then have that

∂F

∂B
= b−2 + R

and
∂F

∂v
= −b−1T.

Finally, let let
Λ = (I + bRb)−1.

Then we have the following result.

Lemma 7. The matrix Λ is well-defined and

∑

j∈N

|Λij | ≤
1

1 −B∗
, i ∈ N ,

where B∗ = maxi∈N Bi.
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Proof. Recall that
∂F

∂B
= b−2 + R

which we can rewrite as
∂F

∂B
= b−1(I + bRb)b−1.

By Lemma 5, the matrix ∂F
∂B is invertible. It follows that (I + bRb) is invertible and Λ is well defined.

To show that
∑

j∈N

|Λij | ≤
1

1 −B∗
, i ∈ N ,

we can use the same argument as given to prove Lemma 1 in [9]. That is, let M = bRb, so the diagonal
elements of Mi,i are all equal to zero and the off-diagonal elements are given by

Mi,j = (1 −Bi)(1 −Bj)νij .

Note that the elements of M are all non-negative and that

∑

j∈N

Mi,j = (1 − Bi)
∑

j∈Ni

νij(1 −Bj) = Bi.

Let e denote the vector with all elements being equal to 1. Then we have that

Me ≤ B∗,

where the inequality is understood to be coordinate-by-coordinate. By induction, we obtain for n ≥ 0
that

Mne ≤ Bn
∗ ,

and Λ is given by the absolute convergent series

Λ =

∞
∑

n=0

(−1)nMn.

Moreover, for |Λ| given by
|Λ|i,j = |Λi,j |

we have

|Λ|e ≤
∞
∑

n=0

Mne ≤
∞
∑

n=0

Bn
∗ e =

1

1 −B∗
e,

and the lemma follows.

Using the above result, we have that

∂B

∂ν
= (b−2 +R)−1b−1T = bΛT.

Recall that the solution (Bi)i∈N to the CSMA fixed point equation is also the solution of the fixed
point equation given by

Bi

1 −Bi
=

∑

j∈Ni

ν̂ij(1 −Bj), i ∈ N ,

where for the constant χ as given in Assumption 1 and for κ = (e− 1)−1χ we have

1

1 + κβ
≤ ν̂ij

νij
≤ 1 + κβ

with

νij =
p(i,j) + p(j,i)

β
, (i, j) ∈ L.
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We use this fact as follows. Let B(s) be the solution to the fixed point equation

Bi

1 −Bi
=

∑

j∈Ni

ν̂ij(s)(1 −Bj), i ∈ N , (24)

with
ν̂ij(s) = νij(1 + δijs), −1/(1 + κβ) ≤ δij ≤ 1.

Note that as we vary δij in the interval [−1/(1+κβ), 1] and s in the interval [0, κβ], ν̂ij will vary in the
interval [1/(1 − κβ), 1 + κβ].

Using the chain rule and the fact that

∂B

∂ν
= bΛT,

we obtain for Bk(s), k = 1, .., N , that

∣

∣

∣

∣

dBk

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i∈N

∑

j∈Ni

dBk

dν̂ij
νijδij

∣

∣

∣

∣

∣

∣

≤
∑

i∈N

∑

j∈Ni

∣

∣

∣

∣

dBk

dν̂ij
νijδij

∣

∣

∣

∣

≤ (1 −Bk)
∑

i∈N

|Λki|
∑

j∈Ni

Ti,(i,j)|νijδji|

= (1 −Bk)
∑

i∈N

|Λki|
∑

j∈Ni

(1 −Bi)(1 −Bj)νij |δij |

As we have that νij = 0 for j /∈ Ni, we obtain that
∣

∣

∣

∣

dBk

ds

∣

∣

∣

∣

≤ (1 −Bk)
∑

i∈N

|Λki|
∑

j∈Ni

(1 −Bi)(1 −Bj)νij |δij |

= (1 −Bk)
∑

i∈N

|Λki|(1 −Bi)
∑

j∈N

ν̂ij

∣

∣

∣

∣

δij
1 + sδij

∣

∣

∣

∣

(1 −Bj).

We then have the following result.

Proposition 6. Let κ = (e− 1)−1χ and let B(s) be the solution to the fixed point equation

Bi

1 − Bi
=

∑

j∈Ni

ν̂ij(s)(1 −Bj), i ∈ N ,

with
ν̂ij(s) = νij(1 + δijs), −1/(1 + κβ) ≤ δij ≤ 1.

Then for 0 ≤ s ≤ κβ, we have that

(1 −Bi(0))e−χ(s+s2/2) ≤ 1 −Bi(s) ≤ (1 −Bi(0))eχ(s+s2/2), i ∈ N .

Proof. For the proof, we use the same analysis as given to prove Theorem 2 and Corollary 2 in [9].
That is, for s ∈ [0, κβ] and δij ∈ [−1/(1 + κβ), 1] we have

−1 ≤ δij
1 + sδij

≤ 1.

Combining this bound with the fact that Bj(s) is the solution to Eq. (24), we have that

∑

j∈N

ν̂ij

∣

∣

∣

∣

δij
1 + sδij

∣

∣

∣

∣

(1 −Bj) ≤
Bi

1 −Bi
.
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Combining the above result with Lemma 7, it then follows that
∣

∣

∣

∣

dBk

ds

∣

∣

∣

∣

≤ (1 −Bk)
∑

i∈N

|Λki|Bi ≤ (1 −Bk)
B∗

1 −B∗
. (25)

Recall that Bi(s) is the solution to

Bi(s)

1 −Bi(s)
=

∑

j∈N

ν̂ij(s)(1 −Bj(s)), s ∈ [0, κβ],

with
ν̂ij(s) = νij(1 + δijs), −1/(1 + κβ) ≤ δij ≤ 1.

As
ν̂ij(s) ≤ νij(1 + s), −1/(1 + κβ) ≤ δij ≤ 1

and by Assumption 1 we have that
∑

j∈Ni

νij ≤ χ,

it follows that
B∗

1 −B∗
< χ(1 + s).

Combining this result with Eq. (25), we obtain that
∣

∣

∣

∣

dBk

ds

∣

∣

∣

∣

≤ (1 −Bk)χ(1 + s), s ∈ [0, κβ],

and the proposition follows.

We have the following corollary.

Corollary 2. The solution Bi, i ∈ N , to the CSMA fixed point equation given by Eq.(20) and (21)
satisfies

(1 −Bi)e
−χ(κβ+(κβ)2/2) ≤ 1 − B̂i ≤ (1 −Bi)e

χ(κβ+(κβ)2/2),

where B̂i is the solution to the Erlang fixed point equation

Bi

1 −Bi
=

∑

j∈Ni

νij(1 −Bj), i ∈ N ,

with

νij =
p(i,j) + p(j,i)

β
.

Proof. Recall that if we vary δij in the interval [−1/(1 + κβ), 1] and s in the interval [0, κβ], ν̂ij , then

ν̂ij(s) = νij(1 + δijs), −1/(1 + κβ) ≤ δij ≤ 1.

will vary in the interval [1/(1 − κβ), 1 + κβ].
The corollary then follows immediately from Proposition 6 and from the fact that CSMA fixed point

is a solution to the fixed point equation

Bi =
∑

j∈Ni

ν̂ij(1 −Bi)(1 −Bj), i ∈ N ,

where ν̂ij ≥ 0 is such that
1

1 + κβ
≤ ν̂ij

νij
≤ 1 + κβ, (i, j) ∈ L,

and ν̂ij = 0 if (i, j) /∈ L.
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The above corollary states that the solution to the CSMA fixed point equation given by Eq.(20) and (21)
and the solution to the e Erlang fixed point equation

Bi

1 −Bi
=

∑

j∈Ni

νij(1 −Bj), i ∈ N ,

with

νij =
p(i,j) + p(j,i)

β
,

become (asymptotically) identical for large N , as by Assumption 1 we have hat β approaches 0 as N
increases. We are going to use this result in Section B.9 to prove Proposition 5.

B.6 Existence of Steady-State Probabilities

In this section, we show that the family of CSMA policies p is contained in the set P of all policies that
have well-define link service rates.

Consider a CSMA policy p with sensing period β. Furthermore, recall that βl(l
′) is the amount of

time link l requires to detect that link l′ has finished transmitting a packet, i.e. βl(l
′) is the sensing

delay of link l for link l′ (see also Appendix A).
We then use the following convention. We say that a node i is idle if node i is currently neither

sending, nor receiving, a data packet. We say that a link l = (i, j) is idle if both node i and j are idle.
Otherwise, we say that node i (link (i, j)) is busy.

For a given directed link l = (i, j), we refer to node i as the source node of link l. We then say that
link l = (i, j) is sensed to be idle by its source node, if node i is (a) currently idle and (b) senses node
j to be idle. Otherwise, we say that node i senses link l to be busy.

Suppose that at time t0 node i has sensed link l = (i, j) to be idle for exactly the duration of a
sensing period β, i.e. node i first detect that link l is idle at time t0 − β. Furthermore, suppose that at
time t0 node i starts a packet transmission on link l. Then we say that link l has been been idle in the
interval [t0 − β, t0).

If at time t0, link l = (i, j) just became busy (either because node i started a packet transmission
on link l, or because a link l′ ∈ Il that interferes with link l started a packet transmission) and that
time t1 is the first time after time t that link l is idle again, then we refer to the interval [t0, t1) as a
busy period of link l.

Let yl(t) indicate whether link l is busy (yl(t) = 1) or idle (yl(t) = 0). In this section we show that
then the steady-state probabilities

P (yi = 0) = lim
k→∞

P (yi(kβ) = 0), i ∈ L,

and
P (yi = 0, yj = 0) = lim

k→∞
P (yi(kβ) = 0, yj(kβ) = 0), i, j ∈ L,

exist.
Note that the state of the system at time t can be characterized by the vector (y(t), z(t)) where

y(t) = (yl(t))l∈L,

indicates for each link l ∈ L whether l is busy (yl(t) = 1) or not (yl(t) = 0), and

z(t) = (zl(t))l∈L,

indicates the remaining time until node i has the chance to start a packet transmission on link l (if link
l is currently idle), or the time until link l becomes idle again (if link l is currently busy).

The existence of the steady-state probabilities p(yi = 0) and p(yi = 0, yi = 0), i, j ∈ N , can easily
be established for the special case where (a) all sensing delays are equal to β, i.e. we have

βl(l
′) = β, l, l′ ∈ L,
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and (b) the sensing times of all nodes are aligned, i.e. all nodes are initial idle and start sensing links
at time t0 = 0. In this case, the system dynamics are given by a finite-state Markov chain (y(k), z(k),
k ≥ 0, such that

(yl(k), z(k)) = (yl(kβ), zl(kβ)),

where yl(k) ∈ {0, 1} and

zl(k) ∈ {β, 2β, ...., 1, 1 + β}, l ∈ L, k ≥ 0.

Furthermore, the Markov chain has a single-recurrent class containing the state (y∗, z∗) given by

y∗l = 0 and z∗l = β, l ∈ L,

and is aperiodic as the recurrent state (y∗, z∗) has a self-transition. It then follows that the above
steady-state probabilities exist.

For the general case where not all sensing times are equal to β, or perfectly aligned, we define a
renewal process [7] to establish the existence of the above steady-state probabilities.

Without loss of generality we assume for the rest of this section that

(a) for all links (i, j) ∈ L we have that p(i,j) > 0, and

(b) the interference graph consists of one connected component, where the vertex set of the interference
graph is equal to L and there exists an edge between two vertices l, l′ in the interference graph if
link l and l′ interfere with each other.

B.6.1 Recurrent State (y∗, z∗)

In the following, we construct a recurrent state (y∗, z∗) that we use to define a renewal process for
the general case where not all sensing times are equal to β, or perfectly aligned, . To do this, we first
iteratively number the links in the following way. At step 1, let l1 be an arbitrary link in L and let S1

be the set of links that have an interference constraint with link l1, i.e. we have

S1 = Il1 .

In addition set B1 = {l1}, set A1 = S1, and set C1 = L\(S1 ∪ {l1}), i.e. set C1 contains all links except
for link l1 and the links that interfere with l1. We then apply this procedure recursively as follows.
Suppose that we are given the sets Ak, Bk, and Ck, of step k. Then we proceed as follows at step k+1.
If the set Ak is empty, then we stop. Otherwise, we pick an arbitrary link from the set Ak and label it
as lk+1. Let Sk+1 be the set of links in set Ck that interfere with link lk+1, i.e. we have

Sk+1 = Ck ∩ Ilk+1
.

Set Bk+1 = Bk ∪ {lk+1}, set Ak+1 = (Ak ∪ Sk+1)\{lk+1}, and set Ck+1 = Ck\Sk+1.
Without loss of generality, we assumed that the interference graph is connected, and the above

procedure will terminate after L steps with AL = CL = ∅.
Having labeled the links as given above, we then construct the following sample path of the system

to which we will refer to as sample path SP ∗.

Sample Path SP ∗: Suppose that during in the interval [t0, t0 + β) are idle. Then let time

t′0 = t0 + β,

and let link l1 starts a packet transmission at time t′0+zl1(t
′
0) and all other links to remain idle during in

the interval [t′0, t
′
0 + 2β)). In this case, the packet transmission of link l1 will not experience a collision.

Let t1 = t′0 + zl1(t
′
0) + 1 be the time when l1 finishes its transmission and let all other links remain idle

during the interval [t′0 + 2β, t1).
Then proceed iteratively as follows. Let tk, k = 1, ..., N , be the time when link lk finishes its packet

transmission, and let all links to be idle in the interval [tk, tk + β). Then set

t′k = tk + β,
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and let link lk+1 start a packet transmission at time t′k + zlk(t′k) and all other links to remain idle
during in the interval [t′k, t

′
k + 2β). Let tk+1 = t′k + zlk(t′k) + 1 be the time when link lk+1 finishes its

transmission and let all other links remain idle during the interval [t′k + 2β, tk+1).
Let time tL be the time when link lL finished its packet transmission and let all links to remain idle

in the interval [tL, tL + β). Finally, let

tr = tL + β + zl1(tL)

be the time when link l1 has a chance to start a packet transmission in the interval [tL + β, tL + 2β),
given that the source node of link l1 continues to sense link l1 to be idle during the interval [tr − β, tr).

Having defined the sample path SP ∗, we show next that the state variable z(tr) = (zl(tr))lıL at the
end of the sample path SP ∗ does not depend on the state z(t′0) at time t′0, but is uniquely determined
by the sequence of how all links make their transmission attempts and the fact that all links were idle
at time t′0. To do this, let

ẑl(t) = mod β

[

zl1(t) − zl(t)
]

.

be the difference (offset) between the time when the current active period ends for link l1 and l. We
have the following result.

Lemma 8. Let the time t′k, k = 1, ..., L be as given in the definition of the sample path SP ∗. Then at
time t′k, k = 1, ..., L, for all links l in the set Ak ∪ Bk the offset ẑl(t

′
k) is given by a function that does

not depend on z(t′0), but depends only on the constants βl(l
′), l, l′ ∈ L, and the sequence of the first k

links that are activated in the sample path SP ∗.

Proof. As we do not require the transmission time 1 to be divisible by β, let ∆t be given by

∆t = mod β(1).

We prove the lemma by induction. For the sample path SP ∗, note that at time t′1 we have for all links
l in the set A1 ∪B1 that

ẑl(t
′
1) = βl(l1)

where βl(l1) is the time link l requires to sense that link l1 has finished a packet transmission. Hence
the conditions given in the lemma are true for k = 1.

Suppose that the lemma is correct for k − 1 ≥ 1, and let lk be the link kth link that is activated in
the sample path SP ∗. We consider the following two cases. First suppose that l1 /∈ Ilk . Then for all
links l ∈ Ak ∪Bk such that l /∈ Ilk , we have that

ẑl(t
′
k) = ẑl(t

′
k−1).

For link lk we have that

ẑlk(t′k) = mod β

[

ẑlk(t′k−1) + ∆t
]

.

Finally, for all links l ∈ Ak ∪Bk such that l ∈ Ilk , we have that

ẑl(t
′
k) = mod β

[

ẑlk(t′k−1) + ∆t+ βl(lk)
]

.

Next suppose that l1 ∈ Ilk . Then for link lk we have that

ẑlk(t′k) = β − βl1(lk).

For all links l ∈ Ak ∪Bk such that l /∈ Ilk , we have that

ẑl(t
′
k) = mod β

[

β − βl1(lk) + ẑlk(t′k−1) − ẑl(t
′
k−1) + ∆t

]

.

Finally, for all links l ∈ Ak ∪Bk such that l ∈ Ilk , we have that

ẑl(t
′
k) = mod β

[

βl1(lk) − βl(lk)
]

.

As by the induction hypothesis ẑl(t
′
k) does not depend on z(t′0) but only on the constants βl(l

′),
l, l′ ∈ L, and the sequence of the first k links that activated in the sample path SP ∗, the statement of
the lemma is true for step k. The results then follows.
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We then have the following lemma.

Lemma 9. Let t′0 and tr be as given in the definition of the sample path SP ∗. The state (y∗, z∗) =
(y(tr), z(tr)) in the sample path SP ∗ is given by a function that does not depend on (y(t′0), z(t

′
0)), but

only on the constants βl(l
′), l, l′ ∈ L, and the sequence of links activated in the sample path SP ∗

Proof. This result follows immediately from Lemma 8 and the fact that

zl1(tr) = 0

and
zl(tr) = ẑl(t

′
L), l 6= l1.

Next we show that there exists a positive constant p0 such that the probability that the above
sample path reaches state (y∗, z∗) within at most (1 + L)(1 + 2β) time units is lower-bounded by p0.

Lemma 10. Let
pmax = max

(i,j)∈L
p(i,j)

and
pmin = min

(i,j)∈L
p(i,j).

Then the probability that we reach the state (y∗, z∗) within (1 + L)(1 + 2β) time units from any given
initial state (y(t0), z(t0) is lower-bounded by

p0 = (1 − pmax)
L(⌈1/β⌉+2)

[

pmin(1 − pmax)
L(2+⌈1/β⌉

]L

.

Proof. Note that from any initial state (y(t0), z(t0), with probability at least

(1 − pmax)
L(⌈1/β⌉+2)

we have for
t′0 = t0 + 1 + 2β

that all links are idle during the interval [t′0 − β, t′0).
Consider the sample path SP ∗. The probability that link l1 starts a packet transmission in the

interval [t′0, t
′
0 + β) and all other links remain idle in the interval [t′0, t

′
0 + 2β), is lower-bounded by

pmin(1 − pmax)
2L.

The probability that no other link starts a packet transmission in the interval [t′0 + 2β, t′0 + 1 + 2β) is
lower-bounded by

(1 − pmax)
L⌈1/β⌉

Let t1 be the time when link l1 finishes its packet transmission; note that

t1 < t′0 + β + 1.

If all other links remain idle during the interval [t′0, t
′
0 +1+2β), then all links are idle during the interval

[t1, t1 + β).
The result follows by applying the above argument iteratively to the case where link lk, k = 2, ..., L,

start a packet transmission under the sample path SP ∗.
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B.6.2 Renewal Process

Using Lemma 10, we can define a renewal process where renewal epochs are marked by visits to the
recurrent state (y∗, z∗).

Lemma 11. The expected length of the interval between visits to state (y∗, z∗) is bounded, and the visits
to the state (y∗, z∗) define a renewal process.

We have the following result for the resulting renewal process.

Lemma 12. The renewal process defined by visits to the state (y∗, z∗) is either aperiodic, or has a
period β/c where c is a positive integer.

Proof. The lemma follows immediately from the fact that if (y(t0), z(t0)) = (y∗, z∗) then with proba-
bility at least (1 − pmax)L we have that

(y(t0 + β), z(t0 + β)) = (y∗, z∗).

Combining the above lemmas, we obtain the following result.

Proposition 7. For every sensing period β > 0, the family of CSMA policies p is contained in the set
P of all policies that have well-define link service rates.

Proof. Let I(i,j)(t) be the in indicator function for whether link (i, j) is transmitting at time t a packet
that does not experience a collision during its entire transmission time. Using Lemma 12, we then we
have that (see for example [7])

lim
t→∞

1

t

∫ t

0

I(i,j)(τ)dτ = lim
k→∞

P (I(i,j)(kβ) = 1).

B.7 Properties of Balance Equations

In this section, we characterize the balance equations for the steady-state probabilities

P (yi = 0) = lim
k→∞

P (yi(kβ) = 0), i ∈ L,

and
P (yi = 0, yj = 0) = lim

k→∞
P (yi(kβ) = 0, yj(t) = 0), i, j ∈ L,

under a CSMA policy p with sensing period β.
We are going to use the following notation. If node i is busy at time t, i.e. if y(t) = 1, let xi(t),

i ∈ N , denote the time until node i becomes idle again, i.e. until i stops sending, or receiving, the
current packet transmission. Furthermore, if node i and j are jointly idle at time t, i.e. we have that
yi(t) = yj(t) = 0, then let xij(t) = xji)(t) be the amount of time that node i and j haven been jointly
idle. Note that if node i and j have to be jointly idle for at least the duration of sensing period β before
node i can potentially start a packet transmission on link (i, j).

B.7.1 Preliminary Lemmas

For a given link l = (i, j), recall that Il be the set of links that interfere with l. Suppose that at time
t node i and j have been jointly idle for at least β time units, i.e. we have that yi(t) = yj(t) = 0 and
xij(t) ≥ β. Given a CSMA policy p, the probability that node i starts a packet transmission on link l
during the interval (t, t+ β] is then lower-bounded by

p(i,j)

∏

l′∈Nl

(1 − pl′),
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upper bounded by p(i,j).
Note that from the definition of a CSMA policy, it immediately follows that p(i,j) is an upper-bound

on the probability that node i starts a packet transmission on link l during the interval (t, t + β]. To
see that p(i,j)

∏

l′∈Nl
(1− pl′) is lower-bound, we observe the following. Given that at time t node i and

j have been jointly idle for at least β time units, let t0 be the earliest time after t when node i has the
chance to start a packet transmission on link l, if link l remains idle in the interval (t, t0). Note that

t0 ≤ t+ β.

In the worst case, all links l′ ∈ Il have an opportunities to start a packet transmission in the interval
[t0 − β, t0). In this case, the probability that that no link l′ ∈ Il starts a packet transmission during
the interval [t0 − β, t0), and link l has the opportunity to start a packet transmission at time t0 is
lower-bounded by

∏

l′∈Il

(1 − pl′)

and the probability that that link l starts a packet transmission in the interval (t, t+β] is lower-bounded
by p(i,j)

∏

l′∈Il
(1 − pl′).

We have the following result.

Lemma 13. Suppose that at time t node i and j have been jointly idle for at least β time units, i.e.
we have that yi(t) = yj(t) = 0 and xij(t) ≥ β. Then there exists a constant κp such that the probability
that the link starts a packet transmission in the interval (t, t+ β] is lower-bounded by

1

1 + κpβ
p(i,j), β ∈ [0, (4χ)−1]

and upper-bounded by
(1 + κpβ)p(i,j).

Proof. For k ∈ Il we have that
∣

∣

∣

∣

∣

d

dpk
p(i,j)

∏

l′∈Il

(1 − pl′)

∣

∣

∣

∣

∣

≤ p(i,j).

From the mean value theorem, in then follows that

p(i,j)(1 −
∑

l′∈Il

pl′) ≤ p(i,j)

∏

l′∈Il

(1 − pl′).

By Assumption 1 we have that
∑

l′∈Il

pl′ ≤ 2χβ,

and it follows that
p(i,j)(1 − 2χβ) ≤ p(i,j)

∏

l′∈Il

(1 − pl′).

Note that for
κp ≥ 4χ

we have that
1

1 + κpβ
≤ (1 − 2χβ), β ∈ [0, (4χ)−1].

The result then follows.

Below, we derive additional lemmas that we are going to use in Section B.7.2.

Lemma 14. The probability that a packet transmission experiences a collision is upper-bounded by 4χ.
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Proof. Suppose that node i starts a packet transmission on link l = (i, j) at time t. Then this packet
transmission will experience a collision only if another node starts a packet transmission on a link l′ ∈ Il

in the interval (t − β, t + β). This is because by Assumption 2, we have that for links l′ ∈ Il we have
that the sensing delay βl(l

′) and βl′(l) is bounded by β. Furthermore, by Assumption 1 we have that
∑

l′∈Il

pl′ ≤ 2χ,

and the lemma follows.

Lemma 15. We have

P (yi = 1, xi ∈ (0, β]) = P (yi = 1, xi ∈ (1 − β), 1]).

Proof. The above lemma follows immediately from the fact that a packet transmission takes 1 time
unit.

Lemma 16. We have

P (yi = 1, xi ∈ (0, β])
1

β
≤ P (yi = 1) ≤ P (yi = 1, xi ∈ (0, β])

1 + 2β

β
.

Proof. The results follows immediately from the fact that the length of a busy period is bounded
between 1 (the length of a successful transmission) and 1 + 2β (the maximal length of a collision).

Lemma 17. We have

P (yi = 1, xi ∈ (1, 1 + β]) ≤ P (yi = 1, xi ∈ (1 − β, 1])4χ.

Proof. Note that the event {yi = 1, xi ∈ (1, 1 + β]} indicates that a packet transmission resulted in
a collision. By Lemma 14, the probability of this happening is upper-bounded by 4χ, and the lemma
follows.

Lemma 18. We have

P (yi = 0, yj = 0, xij ≥ β)

P (yi = 0, yj = 0)
≥ (1 − 4χβ), i, j ∈ N .

Proof. Suppose that that at time t node i and j have just become jointly idle, and let Tt the time it
takes starting from t until either node i or j become busy. Note that by Assumption 1, we have that

E[Tt] ≥ β
1

2χβ
− β.

It then follows that

P (yi = 0, yj = 0, xij ≥ β)

P (yi = 0, yj = 0)
≥ β/2χβ − 2β

β/2χβ − β
=

1 − 4χβ

1 − 2χβ
≥ 1 − 4χβ.

B.7.2 Bounds on the Steady-State Probabilities

In the following, we derive bounds on the steady-state probability P (yi = 1), i ∈ N . We start with the
following lemma.

Lemma 19. For
β ∈ [0, (16χ)−1]

there exists a constant κ′p such that

1

1 + κ′pβ

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i))

≤ P (yi = 1, xi ∈ (1 − β, 1]) ≤
(1 + κ′pβ)

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i)).
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Proof. Suppose that the system is in steady-state at time t0 and that we observe the evolution of the
system from time t0 to t0 +β. Using lemma 12 which states that the renewal process is either aperiodic,
or has a period of β/c where c is a positive integer, it follows that at time t0 + β the system is again in
steady-state. Furthermore, suppose that at time t0 nodes i and j have been jointly idle for at least β time
units, i.e. we have that yi(t0) = yj(t0) = 0 and xij(t0) ≥ β. Then by Lemma 13, for β ∈ [0, ((4χβ)−1)
there exists a constant κp such that the probability that link (i, j) starts a packet transmission during
the interval (t0, t0 +β] is bounded between 1

(1+κpβ)p(i,j) and (1+κpβ)p(i,j). Furthermore, by Lemma 14

the probability that this transmission will result in a collision is upper-bounded by 4χβ. When the
transmission does not result in a collision, then at t0 + β the remaining time until node i finishes the
packet transmission will be in the interval (1 − β, 1], i.e. we have xi(t0 + β) ∈ (1 − β, 1].

Combining the above results, we obtain the following inequality

1 − 4χβ

1 + κpβ

∑

j∈Ni

P (yi = 0, yj = 0, xij ≥ β)(p(i,j) + p(j,i)) ≤ P (yi = 1, xi ∈ (1 − β, 1])

and

P (yi = 1, xi ∈ (1 − β, 1]) ≤ 1 + κpβ)
∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i)) + ...

+P (yi = 1, xi ∈ (1, 1 + β]).

Using Lemma 18, we obtain for the first inequality that

(1 − 4χβ)2

1 + κpβ

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i)) ≤ P (yi = 1, xi ∈ (1 − β, 1])

Furthermore, using Lemma 17 we obtain that

P (yi = 1, xi ∈ (1 − β, 1]) ≤ 1 + κpβ)
∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i)) + ...

+P (yi = 1, xi ∈ (1 − β, 1])4χβ,

or

P (yi = 1, xi ∈ (1 − β, 1]) ≤ 1 + κpβ

1 − 4χ

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i)).

Note that for β ∈ [0, (16χ)−1] and κ′p ≥ 2(κp + 8χ) we have that

1

1 + κ′pβ
≤ 1 − 8χβ

1 + κpβ
≤ (1 − 4χβ)2

1 + κpβ
.

The lemma then follows.

Using Lemma 19, we obtain the following bound for the steady-state probability P (yi = 1), i ∈ N .

Lemma 20. For
β ∈ [0, (16χ)−1]

there exists a constant κs such that

1

1 + κsβ

∑

j∈Ni

P (yi = 0, yj = 0)νij ≤ P (yi = 1) ≤ (1 + κsβ)
∑

j∈Ni

P (yi = 0, yj = 0)νij ,

where

νij =
p(i,j) + p(j,i)

β
.
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Proof. Using Lemma 15-19, for β ∈ [0, (16χ)−1] we have

P (yi = 1, xi ∈ (1 − β, 1])
1

β
≤ P (yi = 1) ≤ P (yi = 1, xi ∈ (1 − β, 1])

1 + 2β

β
,

and there exists a constant κ′p such that

1

1 + κ′pβ

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i))

≤ P (yi = 1, xi ∈ (1 − β, 1]) ≤
(1 + κ′pβ)

∑

j∈Ni

P (yi = 0, yj = 0)(p(i,j) + p(j,i)).

Combing the above results, we have that

1

1 + κ′pβ

∑

j∈Ni

P (yi = 0, yj = 0)νij

≤ P (yi = 1)

≤ (1 + κ′pβ)(1 + 2β)
∑

j∈Ni

P (yi = 0, yj = 0)νij ,

where

νij =
p(i,j) + p(j,i)

β
.

Note that for β ∈ [0, (16χ)−1] and

κs ≥ κ′p + 2 +
κ′p
8χ

we have that
(1 + κ′pβ)(1 + 2β) ≤ 1 + κsβ.

The lemma then follows.

B.8 Characterization of the steady-state probabilities

In this section, we characterize the steady-state probabilities

B̄i = 1 − P (yi = 0), i ∈ N ,

that a node i is busy under a CSMA policy p with sensing period β, using the same analysis as given
by Hajek and Krishna in Section 3 and 4 of the reference [9] with only minor changes.

Throughout this section, we set

νij =
p(i,j) + p(j,i)

β
, i, j ∈ N ,

with νij = 0 if (i, j) /∈ L and (j, i) /∈ L.
Note that by Lemma 20 there exists a constant κs such that

1

1 + κsβ

∑

j∈Ni

P (yi = 0, yj = 0)νij

≤ P (yi = 1)

≤ (1 + κsβ)
∑

j∈Ni

P (yi = 0, yj = 0)νij .

We have the the following result.
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Lemma 21. Let κs be the constant of Lemma 20. Then we have that

1

1 + κsβ

∑

j 6=k,l

P (yk = 0, yj = 0, yl = 0)νkj ≤

P (yk = 1, yl = 0) ≤
(1 + κsβ)

∑

j 6=k,l

P (yk = 0, yj = 0, yl = 0)νkj .

Proof. Note that we have

P (yk = 1, yl = 0) = P (yk = 1|yl = 0)P (yl = 0)

and
P (yk = 0, yj = 0, yl = 0) = P (yk = 0, yj = 0|yl = 0)P (yl = 0).

Therefore, in order to obtain the result if suffices to show that

1

1 + κsβ

∑

j 6=k,l

P (yk = 0, yj = 0|yl = 0)νkj ≤

P (yk = 1|yl = 0) ≤
(1 + κsβ)

∑

j 6=k,l

P (yk = 0, yj = 0|yl = 0)νkj .

The above inequalities are obtained by the same argument as given in the proof for Lemma 20.

We then have the following result.

Proposition 8. Let κs be the constant of Lemma 20. We then have that

1

1 + 2rp

(

1

1 + κsβ

)2N

≤ P (yi = 0, yj = 0)

P (yi = 0)P (yj = 0)
≤ (1 + κsβ)

2N
(1 + 2rp),

where
rp =

pmax

β

and pmax is as given in Assumption 1.

Proof. Let Zi be the steady-stated probability P (yi = 0) that node i is idle, let Zij be the steady-stated
probability P (yi = 0, yj = 0) that nodes i and j are jointly idle, and let Zijk be the steady-stated
probability P (yi = 0, yj = 0, yk = 0) that nodes i, j, and k, are jointly idle

We use a proof by induction on the number of nodes in the network, as given in [9]. For a network
with N = 1 node the proposition is trivially true, and suppose that N ≥ 2.

Using Lemma 21, we have that

1

1 + κsβ

(

Zkl +
∑

j 6=k,l

Zjklνjk

)

≤ Zl ≤ (1 + κsβ)
(

Zkl +
∑

j 6=k,l

Zjklνjk

)

.

Furthermore, starting with the equation

1 = P (yk = 0) + P (yk = 1)

and using the result from Lemma 20 which states that

1

1 + κsβ

(

∑

j∈Nk

P (yk = 0, yj = 0)νkj

)

≤ P (yk = 1) ≤ (1 + κsβ)
(

∑

j∈Nk

P (yk = 0, yj = 0)νkj

)

,
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we obtain that

1

1 + κsβ

(

P (yk = 0) +
∑

j∈Nk

P (yk = 0, yj = 0)νkj

)

≤ 1

≤ (1 + κsβ)
(

P (yk = 0) +
∑

j∈Nk

P (yk = 0, yj = 0)νkj

)

.

Combining the above inequalities, we obtain by the same approach as in [9] that

1

(1 + κsβ)2
(Zk + Zklνkl)Zkl +

∑

j 6=k,l ZjkZklνjk

ZkZkl +
∑

j 6=k,l ZkZjklνjk

≤ P (yi = 0, yj = 0)

P (yi = 0)P (yj = 0)
≤

(1 + κsβ)2
(Zk + Zklνkl)Zkl +

∑

j 6=k,l ZjkZklνjk

ZkZkl +
∑

j 6=k,l ZkZjklνjk
.

Using the fact that Zkl ≤ Zk and by Assumption 1 we have

0 ≤ νij ≤ 2rp,

it follows that

1 ≤ Zk + Zklνkl

Zk
≤ 1 + 2rp.

Furthermore, by the induction hypotheses applied to the network with N − 1 nodes that we obtain by
deleting node k, we have that

1

1 + 2rp

(

1

1 + κsβ

)2(N−1)

≤ ZjkZkl

ZkZjkl
≤ (1 + κsβ)2(N−1) (1 + 2rp).

Combining the above results, we obtain that

1

1 + 2rp

(

1

1 + κsβ

)2N

≤ P (yi = 0, yj = 0)

P (yi = 0)P (yj = 0)
≤ (1 + κsβ)

2N
(1 + 2rp),

and the result follows.

We then obtain the following corollary.

Corollary 3. Let κs be the constant of Lemma 20, and let B̄i be the actual steady-state probability that
node i is busy. Then

B̄i

1 − B̄i
=

∑

j∈Ni

ν̃ij(1 − B̄j)

where ν̃ij is such that

1

1 + 2rp

(

1

1 + κsβ

)2N+1

≤ ν̃ij

νij
≤ (1 + κsβ)

2N+1
(1 + 2rp),

where rp is as given in Proposition 8.

The above results follows immediately from Proposition 8 and Lemma 20. Combining the above
corollary with Proposition 6 from Section B.5, we obtain the following result.

Corollary 4. Let κs be the constant of Lemma 20. The actual steady-state probability B̄i, i ∈ N that
node i is busy satisfies

(1 − B̂i)e
−χ(r+r2/2) ≤ 1 − B̄i ≤ (1 − B̂i)e

χ(r+r2/2),
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where B̂i is the solution to the Erlang fixed point equation given by

Bi

1 −Bi
=

∑

j∈Ni

νij(1 −Bj), i ∈ N ,

where
r = (2N + 1)(κsβ) + 2rp

and rp is as given in Proposition 8.

B.9 Proof of Proposition 5

In this section, we combine the results of Sections B.5 and B.8 to prove Proposition 5.
Consider a CSMA policy p for a wireless network consisting of N nodes and set

νij =
p(i,j) + p(j,i)

β
, i, j ∈ N .

Let Bi, i = 1, ..., N , be the CSMA fixed point given by Eq. (20) and (21), and let B̄i be the actual
steady-state probability that node i is busy. Then by Corollary 4, we have that steady-state probabilities
B̄i, i ∈ N , satisfy

(1 − B̂i)e
−χ(r+r2/2) ≤ 1 − B̄i ≤ (1 − B̂i)e

χ(r+r2/2),

where B̂i is the solution to the Erlang fixed point

Bi

1 −Bi
=

∑

j∈Ni

νij(1 −Bj), i ∈ N ,

where
r = (2N + 1)(κsβ) + 2rp

and rp is as given in is as given in Proposition 8.
Furthermore, by Proposition 6 we have that there exists a constant κ such that

(1 − B̂i)e
−χ(κβ+(κβ)2/2) ≤ 1 −Bi ≤ (1 − B̂i)e

χ(κβ+(κβ)2/2).

Combining these two results, we immediately obtain Proposition 5.
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