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Assignment 2

Tips:

Don’t waste time on setting the required libraries on your own
machine - use CDF!
ssh -Y <CDF User Name>@cdf.toronto.edu
Again, code must work on CDF, so make sure it does.
Start early.

Any questions?
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Pictorial Structure - Overview

A part-based modeling and recognition of objects.
A seminal paper of 2D model recognition.

Figure 8: Input image, binary image obtained by background subtraction, and match-

ing result superimposed on both images.

articulated bodies are imprecise rather than being accurate generative models.

6.1 Parts

For simplicity, we assume that the image of an object is generated by a scaled or-

thographic projection, so that parallel features in the model remain parallel in the

image. For images of human forms this is generally a reasonable assumption. We

further assume that the scale factor of the projection is known. We can easily add

an extra parameter to our search space in order to relax this latter assumption.

Suppose that objects are composed of a number of rigid parts, connected by flexi-

ble joints. If a rigid part is more or less cylindrical, its projection can be approximated

by a rectangle. The width of the rectangle comes from the diameter of the cylinder

and is fixed, while the length of the rectangle depends on the length of the cylinder

but can vary due to foreshortening. We model the projection of a part as a rectangle

parameterized by (x, y, s, θ). The center of the rectangle is given in image coordi-

nates (x, y), the length is defined by the amount of foreshortening s ∈ [0, 1], and the

orientation is given by θ. So we have a four-dimensional pose space for each part.
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Formulation

L∗ = argmin
L




n

∑
i=1

mi (li ) + ∑
(vi ,vj)∈E

dij (li , lj)



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Mismatch Potential mi

mi (li ) - the mismatch of part i in position li given an image.
Felzenswab used iconic representation - response of Gaussian
derivative filters of different orders, orientations and scales.

Figure 2: Gaussian derivative basis functions used in the iconic representation.

where F is a Gaussian filter with covariance Dij, ⊗ is the convolution operator, and

f(y) =

⎧
⎨
⎩

p(I|T−1
ji (y), uj)

∏
vc∈Cj

Sc(T
−1
ji (y)) if y ∈ range(Tji)

0 otherwise

Just like when computing the generalized distance transform, the convolution is done

over a discrete grid which specifies possible values for Tji(lj). The Gaussian filter

F is separable since the covariance matrix is diagonal. We can compute a good

approximation for the convolution in time linear in h′, the set of grid locations, using

the techniques from [41]. This gives an overall O(h′n) time algorithm for sampling a

configuration from the posterior distribution.

5 Iconic Models

The framework presented so far is general in the sense that it doesn’t fully specify

how objects are represented. A particular modeling scheme must define the pose

space for the object parts, the form of the appearance model for each part, and the

type of connections between parts. In this section we describe models that represent

objects by the appearance of local image patches and spatial relationships between

those patches. This type of model has been popular in the context of face detection

(see [16, 10]). We first describe how we model the appearance of a part, and later

describe how we model spatial relationships between parts. Learning an iconic model

involves picking labeled landmarks on a number of instances of the target object.

From these training examples both the appearance models for each part and the

spatial relationships between parts are automatically estimated, using the procedure

described in Section 3. In Section 5.3 we show some experiments with face detection.

5.1 Parts

In this class of models the location of a part is specified by its (x, y) position in

the image, so we have a two-dimensional pose space for each part. To model the

appearance of each individual part we use the iconic representation introduced in

[35]. The iconic representation is based on the response of Gaussian derivative filters

20

p (I |li ,ui ) ∝ N (α (li ) ,µi ,Σi )

What other representation of parts can we use? (hint: from
lecture)

HoG.
Also SIFT, SURF, etc.
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Deformation Potential dij
(
li , lj
)

dij (li , lj) - the deformation distance between current part
position and model part position.
Felzenswab wants to allow deformation of the model by using
a Gaussian distribution over model position.
p (li , lj |cij) = N (li − lj ,sij ,Σij)

ba

Figure 10: Two parts of an articulated object, (a) in their own coordinate system

and (b) the ideal configuration of the pair.

because the posterior probability of the true configuration is low, but because there

are configurations which have high posterior and are wrong. In our experiments, we

obtain a number of configurations which have high posterior probability by sampling

from that distribution. We then select one of the samples by computing a quality

measure that does not over-count evidence.

There is one more thing we have to take into account for sampling to work. When

p(I|L, u) over-counts evidence, it tends to create high peaks. This in turn creates high

peaks in the posterior. When a distribution has a very strong peak, sampling from

the distribution will almost always obtain the location of the peak. To ensure that

we get a number of different hypotheses from sampling we use a smoothed version of

the likelihood function, defined as

p′(I|L, u) ∝ p(I|L, u)1/T ∝
n∏

i=1

p(I|li, ui)
1/T ,

where T controls the degree of smoothing. This is a standard technique, borrowed

from the principle of annealing (see [19]). In all our experiments we used T = 10.

6.2 Spatial Relations

For the articulated objects, pairs of parts are connected by flexible joints. A pair

of connected parts is illustrated in Figure 10. The location of the joint is specified

by two points (xij, yij) and (xji, yji), one in the coordinate frame of each part, as

indicated by circles in Figure 10a. In an ideal configuration these points coincide, as

illustrated in Figure 10b. The ideal relative orientation is given by θij, the difference

between the orientation of the two parts.

Suppose li = (xi, yi, si, θi) and lj = (xj, yj, sj, θj) are the locations of two connected

parts. The joint probability for the two locations is based on the deviation between

29
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Inference

Matching a pictorial structure model to an image does not
involve making any initial decisions about locations of
individual parts, but rather an overall decision is made based
on both the part match costs and the deformation costs
together.
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