Topic 10:

Feature Detection & Image Matching

- Introduction to the image matching problem
- Image matching using SIFT features
- The SIFT feature detector
- The SIFT descriptor

Goal

- •To identify distinctive image locations (keypoints).
- •Assign a scale and orientation associated to each keypoint.
- •Make keypoints invariant to magnification, brightness, etc.

Keypoints: Contrasting Blobs at Different Scales

Keypoints: Contrasting Blobs at Different Scales

Why are these features good?

Keypoints: Contrasting Blobs at Different Scales

SIFT

SIFT is an algorithm that finds contrasting blobs at different scales

Original signal

Difference of Gaussians Template

This will find a blob

SIFT: Scale Detection Example

SIFT is an algorithm that finds contrasting blobs at different scales

And these will do so at different scales

Computing SIFT Keypoints: Basic Steps

Source Image I Gauss-Pyramid pyramid DOG extrema DOG Step la Step 16 Step 1c Locate extrema Build pyramid Buid DOG \Rightarrow of Gausspyramid of DOG smoothed pyramid images (x_i, y_i, ϱ_i) Step le Step 1f step Id Refine location Prune set of Assign E E orientation of DOG extrema to extrema Keypoints = } ex+rema all remaining $P_{i}=(x_{i},y_{i},\rho_{i}^{\prime},\vartheta_{i})$ (xi, yi, pi) -> (xi,yi,ei) { (xb ybed) Extremum pruning Location refinement Orientation assign

Step 1a: Construct a Gauss-like Pyramid

Gaussian

Each image is smoothed by a factor of k more than the image below

Step 1a: Construct a Gauss-like Pyramid

Each image is smoothed by a factor of k more than the image below

Step 1a: Construct a Gauss-like Pyramid

Images in the next octave are subsampled and stored at ½ the resolution of the previous octave.

Computing SIFT Keypoints: Basic Steps

Source image I Gauss-Pyramid pyramid DOG extrema DOG Step la Step 16 Step 10 OF THE HEDGE FUND WORLD Locate extrema Build pyramid Buid DOG \Rightarrow of Gausspyramid of DOG smoothed pyramid images (x_i, y_i, ρ_i) Step le step Id Step 14 Refine location Prune set of Assign (_____ E orientation of DOG extrema to extrema Keypoints = } ex+rema all remaining $P_{i}=(x_{i},y_{i},\rho_{i}',\theta_{i})$ (Xi, yi, Pi) -> (xi,yi,ei) { (x6 46 86) Extremum pruning Orientation assign Location refinement

Sure, because it approximates the Laplacian.

but what is interesting about the Laplacian?

Sure, because it approximates the Laplacian.

but what is interesting about the Laplacian?

Sure, because it approximates the Laplacian.

The Laplacian looks for coherent contrast variations in all directions

Step 1b: Compute Pyramid of DOG Images

How do we do this efficiently at multiple scales

$$D(x, y, \rho) = I(x, y) * (G(x, y, k\rho) - G(x, y, \rho))$$

for $\rho = \{\sigma, k\sigma, k^2\sigma, \dots, k^{s-1}\sigma\}$

Step 1b: Compute Pyramid of DOG Images

And do so for all octaves

Reminder: Difference-of-Gaussian Filtering

I * Gp

o

Reminder: Difference-of-Gaussian Filtering

I*G_{Kp}

Reminder: Difference-of-Gaussian Filtering

Difference of D(x,y,p) is just a sealed version But we know of the haplacian of a smoothed I two Gaussian that smoothed versions $G_{KP} - G_P =$ of I: I*G $kp(kp-p)\nabla^2_{G_0}$ $I * G_{\rho} =$ 0 $I * (G_{kp} - G_{p})$ (just the difference between two Gaussian masks) $\overline{D}(x,y,\varrho) = \left[\nabla^2 (I * G_{\varrho}) \right] \cdot \frac{1}{\varrho^2 \kappa(\kappa-1)}$

Computing SIFT Keypoints: Basic Steps

Source image I Gauss-Pyramid pyramid DOG extrema DOG Step la Step 16 Step 1c **OF THE HEDGE FUND WORL** Build pyramid Locate extrema Buid DOG \Rightarrow of Gausspyramid of DOG smoothed pyramid images (x_i, y_i, ϱ_i) Step le step Id Step 14 Refine location Prune set of Assign E (_____ orientation of DOG extrema to extrema Keypoints = } ex+rema all remaining $P_{i}=(x_{i},y_{i},\rho_{i}',\theta_{i})$ (Xi, yi, Pi) -> (xi,yi,ei) { (x6 46 86) Extremum pruning Orientation assign Location refinement

Finding Extrema In A Single Image

Finding Extrema In A Single Image

Minimum at (x,y) if D(x,y,r) > all neighbors

Minimum at (x,y) if D(x,y,ρ) > all neighbors

Finding Extrema In A Single Image

It is a local operation

Minimum at (x,y) if D(x,y,r) > all neighbors

Minimum at (x,y) if D(x,y,ρ) > all neighbors

Step 1c: Detecting DOG Extrema

But because we want the extrema in the three dimensions x, y and ρ we look at the values of the adjacent scales too

x must also be bigger (or smaller) than all the neighbors in the adjacent scales

Still a local operation

There is usually a few (thousand) points that satisfy this in an image pyramid Algorithm:

For each (x,y,ρ) , check whether $D(x,y,\rho)$ is greater (or smaller than) all of its neighbours in the current scale and in the adjacent scales above and below.

Step 1c: SIFT Keypoints = DOG Extrema

An extremum that is detected at $D(x,y,\rho)$ defines the keypoint (x, y, ρ) .

Computing SIFT Keypoints: Basic Steps

Source image I Gauss-Pyramid pyramid DOG extrema DOG Step la Step 16 Step 1c OF THE HEDGE FLIND WOR Build pyramid Locate extrema Buid DOG \Rightarrow of Gausspyramid of DOG smoothed pyramid images (x_i, y_i, ϱ_i) Step le step Id Step 14 Refine location Prune set of Assign (_____ E orientation of DOG extrema to extrema Keypoints = } ex+rema all remaining $P_i = (x_i, y_i, \rho_i, \vartheta_i)$ (xi, yi, pi) -> (xi,yi,ei) { (xis yised) Extremum pruning Orientation assign Location refinement

Pixels and Scales Are at Discrete Locations

Discrete approximation to the minimum: x = 2

Pixels and Scales Are at Discrete Locations

Real minimum: x = 2.48

Step 1d: Refining Location of Extrema

Use a 2nd order Taylor series approximation:

$$D(\Delta x, \Delta y, \Delta p) = D(x, y, p) + \frac{\partial D}{\partial x} \cdot \Delta x + \frac{\partial D}{\partial y} \cdot \Delta y + \frac{\partial D}{\partial p} \cdot \Delta p +$$

$$\frac{1}{2} \begin{bmatrix} \Delta x & \Delta y & \Delta \rho \end{bmatrix} \begin{bmatrix} 3D \\ 3X & 3D \\ 3x^2 & 3x^2y \\ 3D \\ 3x^2 & 3x^2y \\ 3y^2 & 3y^2\rho \\ 3y^2 & 3y^2 \\ 3y^2 & 3y^2\rho \\ 3y^2 & 3y^2 \\ 3y^2 & 3y^2$$

Use a 2nd order Taylor series approximation:

$$D(\Delta x, \Delta y, \Delta p) = D(x, y, p) + \frac{\partial D}{\partial x} \cdot \Delta x + \frac{\partial D}{\partial y} \cdot \Delta y + \frac{\partial D}{\partial p} \cdot \Delta p +$$

$$\frac{1}{2} \begin{bmatrix} \Delta x & \Delta y & \Delta \rho \end{bmatrix} \begin{bmatrix} \frac{\partial D}{\partial x^2} & \frac{\partial D}{\partial x^2} & \frac{\partial D}{\partial x^2} & \frac{\partial D}{\partial x^2 \rho} \\ \frac{\partial D}{\partial x^2} & \frac{\partial D}{\partial x^2} & \frac{\partial D}{\partial y^2 \rho} & \frac{\partial D}{\partial y^2} \\ \frac{\partial D}{\partial x^2 \rho} & \frac{\partial D}{\partial y^2 \rho} & \frac{\partial D}{\partial y^2 \rho} & \frac{\Delta \rho}{\partial \rho} \\ \frac{\partial D}{\partial x^2 \rho} & \frac{\partial D}{\partial y^2 \rho} & \frac{\partial D}{\partial y^2 \rho} & \frac{\partial \rho}{\partial \rho} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \rho \end{bmatrix}$$

$$\frac{\partial D}{\partial x} \sim D(x+1, y, c) - D(x, y, p)$$

In vector notation

$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{e} \end{bmatrix} \qquad \Delta \vec{\mathbf{x}} = \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{y} \\ \Delta \mathbf{e} \end{bmatrix}$$

$$D(\Delta \vec{x}) = D(\vec{x}) + \left(\frac{\delta D}{\delta \vec{x}}\right)^{\top} \Delta \vec{x} + \frac{1}{2} (\Delta \vec{x})^{\top} \left(\frac{\delta^2 D}{\delta \vec{x}^2}\right) \Delta \vec{x}$$

And knowing that the function is an extrema when...

In vector notation

$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{e} \end{bmatrix} \qquad \Delta \vec{\mathbf{x}} = \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{y} \\ \Delta \mathbf{e} \end{bmatrix}$$

$$D(\Delta \vec{x}) = D(\vec{x}) + \left(\frac{\delta D}{\delta \vec{x}}\right)^{\top} \Delta \vec{x} + \frac{1}{2} (\Delta \vec{x})^{\top} \left(\frac{\delta^2 D}{\delta \vec{x}^2}\right) \Delta \vec{x}$$

 $D(\Delta \vec{x})$ is a function of $\Delta \vec{x}$, and we know it will have an extrema when...

In vector notation

$$\vec{x} = \begin{bmatrix} x \\ y \\ \varrho \end{bmatrix} \qquad \Delta \vec{x} = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \rho \end{bmatrix}$$

$$D(\Delta \vec{x}) = D(\vec{x}) + \left(\frac{\delta D}{\delta \vec{x}}\right)^{\top} \Delta \vec{x} + \frac{1}{2} (\Delta \vec{x})^{\top} \left(\frac{\delta^2 D}{\delta \vec{x}^2}\right) \Delta \vec{x}$$

 $D(\Delta \vec{x})$ is a function of $\Delta \vec{x}$, and we know it will have an extrema when the first derivative with respect to $\Delta \vec{x}$ is zero!

In vector notation

$$\vec{x} = \begin{bmatrix} x \\ y \\ \rho \end{bmatrix} \qquad \Delta \vec{x} = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \rho \end{bmatrix}$$

$$D(\Delta \vec{x}) = D(\vec{x}) + \left(\frac{\delta D}{\delta \vec{x}}\right)^{\top} \Delta \vec{x} + \frac{1}{2} (\Delta \vec{x})^{\top} \left(\frac{\delta^2 D}{\delta \vec{x}^2}\right) \Delta \vec{x}$$

To find the extrema, take the derivative of $D(\Delta \vec{x})$ with respect to a displacement $\Delta \vec{x}$ and solve for

$$\frac{\delta D}{\delta(\Delta \vec{x})} = 0$$

The 2nd degree Taylor Expansion is:

$$D(\Delta \vec{x}) = D(\vec{x}) + \left(\frac{\delta D}{\delta \vec{x}}\right)^{\top} \Delta \vec{x} + \frac{1}{2} (\Delta \vec{x})^{\top} \left(\frac{\delta^2 D}{\delta \vec{x}^2}\right) \Delta \vec{x}$$

And the derivative wrt $\Delta \vec{x}$ is:

$$\frac{\delta D}{\delta(\Delta \vec{x})} = \left(\frac{\delta D}{\delta \vec{x}}\right)^{\top} + \left(\frac{\delta^2 D}{\delta \vec{x}^2}\right) (\Delta \vec{x})$$

The extremum of D is when the derivative is equal to zero:

$$\Delta \vec{x} = \left(\frac{\delta^2 D}{\delta \vec{x}^2}\right)^{-1} \left(\frac{\delta D}{\delta \vec{x}}\right)$$

The refinement is complete when the displacement is added to the initial estimate of the extremum.

~ D(x,y,P) Extremum at: $(x + \Delta x, y + \Delta y, \rho + \Delta \rho)$ Where $\Delta \vec{x} = \left(\frac{\delta^2 D}{\delta \vec{x}^2}\right)^{-1} \left(\frac{\delta D}{\delta \vec{x}}\right)$ and: $\frac{\partial D}{\partial x^{2}} = \begin{bmatrix} \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} \\ \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{\partial x^{2}} & \frac{\partial D}{$ SX = SY

Computing SIFT Keypoints: Basic Steps

Source image I Gauss-Pyramid pyramid DOG extrema DOG Step la Step 16 Step 1c OF THE HEDGE FUND WOR Locate extrema Build pyramid Bund DOG \Rightarrow of Gausspyramid of DOG smoothed pyramid images (x_i, y_i, ϱ_i) Step le step Id Step 14 Refine location Prune set of Assign (=F orientation of DOG extrema to extrema Keypoints = } ex+rema all remaining $\beta = (x_i, y_i, \rho_i, \vartheta_i)$ (xi, yi, pi) -> (xi,yi,ei) { (xis yised) Extremum pruning Orientation assign Location refinement

Step 1e: Pruning "Insignificant" Extrema

Discard extrema that are weak or that correspond to edges:

Strength is simply measured by the (absolute) magnitude of the Difference of Gaussians at the interest point

$$\left| D(x_{i}', y_{i}', e_{i}') \right| = \lambda$$

In practice λ =0.03, when images are in [0, 1].

Step 1e: Pruning "Insignificant" Extrema

Also prune extrema that correspond to edges

Also prune extrema that correspond to edges

Compute $\frac{\partial^2 S}{\partial x^2}, \frac{\partial^2 S}{\partial y^2}, \frac{\partial^2 S}{\partial x \partial y}$ Compute DetCH) at each pixel Compute TrCH)

Require
$$\frac{31}{32} = \gamma = small$$

 $\frac{Tr(H)^2}{De+(H)} \leq \frac{(T+1)^2}{r}$ for SIFT:
 $r=10$

See lecture 6 for details!

Step 1e: Pruning "Insignificant" Extrema

Algorithm:

Compute the Hessian H of $S(x,y) = D(x,y,\rho')$, at (x,y) = (x',y'), and prune if:

$$\frac{\mathrm{Tr}^{2}(H)}{\mathrm{Det}(H)} > \left(\frac{H}{10}\right)^{2}$$

Computing SIFT Keypoints: Basic Steps

Source Image I Gauss-Pyramid pyramid DOG extrema DOG Step la Step 16 Step 1c Locate extrema Build pyramid Buid DOG \Rightarrow of Gausspyramid of DOG smoothed pyramid images (x_i, y_i, ϱ_i) Step le Step 1f step Id Refine location Prune set of Assign E E orientation of DOG extrema to extrema Keypoints = } ex+rema all remaining $P_{i}=(x_{i},y_{i},\rho_{i}^{\prime},\vartheta_{i})$ (xi, yi, pi) -> (xi,yi,ei) { (x6 4600) Extremum pruning Location refinement Orientation assign

Compute a Gaussian image with the relevant scale ρ^\prime

I*GP.

Compute a Gaussian image with the relevant scale ρ^\prime

Compute a Gaussian image with the relevant scale ρ^\prime

Compute a Gaussian image with the relevant scale ρ^\prime

Compute the gradient magnitudes and orientations in the neighborhood of the detected feature point

Compute a histogram of orientations:

Compute a Gaussian image with the relevant scale ρ^\prime

Compute the gradient magnitudes and orientations in the neighborhood of the detected feature point

Compute a histogram of orientations

Take the highest peak as the canonical orientation

Histogram of Orientations Computing

I*GP.

Orientations are divided into 36 bins (one every 10 degrees). Pixel (x,y) contributes to the bin corresponding to the gradient orietation θ at (x,y).

The contribution to that bin is equal to $|\nabla I(x, y)| \cdot G_{1.5\rho'}(d)$

where $G_{1.5o'}$ is a circular Gaussian weighting function and d is the distance to the feature point

Orientations

 $|\nabla I(x,y)| \cdot G_{1.5\rho'}(d)$

Computing SIFT Keypoints: Basic Steps

Source Image I Gauss-Pyramid pyramid DOG extrema DOG Step la Step 16 Step 1c Locate extrema Build pyramid Buid DOG \Rightarrow of Gausspyramid of DOG smoothed pyramid images (x_i, y_i, ϱ_i) Step le Step 1f step Id Refine location Prune set of Assign E E orientation of DOG extrema to extrema Keypoints = } ex+rema all remaining $P_{i}=(x_{i},y_{i},\rho_{i}^{\prime},\vartheta_{i})$ (xi, yi, pi) -> (xi,yi,ei) { (x6 4600) Extremum pruning Location refinement Orientation assign

Topic 10:

Feature Detection & Image Matching

- Introduction to the image matching problem
- Image matching using SIFT features
- The SIFT feature detector
- The SIFT descriptor

The SIFT Keypoints

We defined key-points that are "visually distinct" from its surroundings.

nput: Image I Output: A set of K SIFT Keypoints

$$P_i = (x_i, y_i, G_i, \theta_i)$$

location $($
scale $($ orientatio

The SIFT Feature Vectors

nput: Image I Output: A set of K Key points $P_i = (x_i, y_i, G_i, \theta_i)$ location / orientation scale e

Detected keypoints

The 4x4 Orientation Histogram

Building the SIFT Descriptor: Complete Algorithm

Converting SIFT Descriptors to 128-dim Vectors

Matching 2 Images Using SIFT Features

SIFT Feature Matching Algorithm

Matching 2 Images Using SIFT Features

3 Match fi Intuition for match ing a. Comprote algorithm: $\|f_i - f_i\|$ ما يد ا for all j match b. Compute established fraction only if it $\phi = \frac{\|f_i - f_j^*\|}{\|f_i - f_j^*\|}$ is deemed ||fi - fj**|| reliable, i.e. if where fit is closest f:** there is only descriptor in J'and fi** is 2nd-closest one very c. Match similar feature fi to fix if in image I' 6 < 0.8 @Build feature Identity keypoints vectors

Topic 11:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

Building Panoramic Image Mosaics

Input images

automatically created mosaric

Image Mosaicing

Technique:

MOSQIC

* In general, photos must be warped to align their contents!

Step 1: Capture

Important:

Camera should change orientation, not position Keep camera settings (gain, focus, speed, aperture) fixed if possible

Step 2: Warp & Align

V 28/57 images aligned

Step 2: Warp & Align (Continued)

Step 3: Blend

Laplacian Pyramid Blending U/ seams not visible anymore

(Brown & Lowe; ICCV 2003) google "Lowe Brown Autostitch"

Topic 11:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

Representing Pixels by Euclidean 2D Coordinates

Image

The "standard" (or Euclidean) representation of an image point is p is:

coordinates

Euclidean Coordinates ⇒ Homogeneous Coordinates

The "standard" (or Euclidean) representation of an image point is p is:

$$P = X \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} r \\ y \end{bmatrix}$$

The Homogeneous (or Projective) representation of the same point is:

2D Homogeneous Coordinates: Definition

2D Homogeneous Coordinates: Definition

2D Homogeneous Coordinates: Definition

Note that the transformation is simply:

2D Homogeneous Coordinates: Equality

Definition (Homogeneous Equality)
Two vectors of homogeneous coords
$$V_1 = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $V_2 = \begin{bmatrix} x' \\ y' \end{bmatrix}$ are
called equal if they represent the same 2D point:

Homogeneous Coordinates ⇒ Euclidean Coordinates

Homogeneous Coordinates ⇒ Euclidean Coordinates

Practice exercise: Plot positions
of the following points
$$P_{6} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad P_{3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$P_{1} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \quad P_{2} = \begin{bmatrix} 10 \\ 0 \\ 2 \end{bmatrix} \quad P_{3} = \begin{bmatrix} 0 \\ 8 \\ 4 \end{bmatrix} \quad P_{4} = \begin{bmatrix} 0 \\ 0.0001 \end{bmatrix} \quad P_{5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Homogeneous Coordinates ⇒ Euclidean Coordinates

Points at ∞ in Homogeneous Coordinates

Line Equations in Homogeneous Coordinates

The Line Passing Through 2 Points

To compute the cross product using matrix multiplication do:

$$l_{1} \times l_{2} = \begin{bmatrix} 0 & -c & b \\ c & 0 & -a \end{bmatrix} l_{2}$$
$$\begin{bmatrix} -b & 0 & 0 \end{bmatrix}$$

where $l_1 = [a, b, c]^T$

The Point of Intersection of Two Lines

Computing the Intersection of Parallel Lines

This calculation works even when li, lz are parallel!

(no floating point exceptions or divide-by-zero errors!)

Computing the Intersection of Parallel Lines

Topic 11:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

Linear Image Warps

Basic Insight: lo align multiple photos for mosaicing we must warp then in a way that preserves all lines (i.e. lines before warping remain lines after warping)

Linear Image Warps & Homographies

Homographies & Image Mosaicing

Useful property # 3 · Every photo taken from a tripod-mounted camera is related by a homography

Assumptions:

No lens distortions Camerais center of projections does not more while camera is mounded on tripod

Homographies & Image Mosaicing

Useful property # 3 · Every photo taken from a tripod-mounted camera is related by a homography . These homographies are unknown . To align these photos for mosaicing ue must estimate Hs, Hz,... etc

Topic 11:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

Homography Estimation: Basic Intuition

Estimating Homographies from Point Correspondences

Estimating Homographies from Point Correspondences

Homography Estimation by Solving Linear System

Given point correspondances X1 and X2 and writing the homography H as:

$$\mathbf{h} = (H_{11}, H_{12}, H_{13}, H_{21}, H_{22}, H_{23}, H_{31}, H_{32}, H_{33})^{T}$$

$$\mathbf{a}_{x} = (-x_{1}, -y_{1}, -1, 0, 0, 0, x'_{2}x_{1}, x'_{2}y_{1}, x'_{2})^{T}$$

$$\mathbf{a}_{y} = (0, 0, 0, -x_{1}, -y_{1}, -1, y'_{2}x_{1}, y'_{2}y_{1}, y'_{2})^{T}.$$

the homography can be estimated using least squares as Ah=0, where:

$$A = \begin{pmatrix} \mathbf{a}_{x1}^T \\ \mathbf{a}_{y1}^T \\ \vdots \\ \mathbf{a}_{xN}^T \\ \mathbf{a}_{yN}^T \end{pmatrix}$$

Topic 11:

Homographies & Image Mosaics

- Introduction to image mosaicing
- Homogeneous coordinates for points & lines
- Image homographies
- Estimating homographies from point correspondences
- The autostitch algorithm

Feature-Based Image Matching

Building Panoramic Image Mosaics

Input images

automatically created mosaric

- #1: Yes, math <u>IS</u> useful in CS !!
- #2: How to turn math into pictures
- #3: Basics of image analysis & manipulation
- #4: How to code interactive tools

#5: How to read research papers

Visual Computing Principles

Imaging essentials

Understanding pixel intensity & color

Image representation & transformation camera response functions Image \Leftrightarrow 2D array of pixels pixel representations & matting polynomial fitting, WLS, RANSAC derivative estimation Image \Leftrightarrow continuous 2D function curves, curvature, gradients, Laplacian, Hessian, edge & corner oletection Image \Leftrightarrow n-dimensional vector correlation, convolution, PCA filtering a derivative computations smoothing Hierarchical image representations pyramids, wavelets, scale-space representations, SIFT Homogeneous point representations + applications: Inpainting, scissoring, texture synthesis, alpha matting morphing, mesaicing, recognition, feature matching,...

What Comes Next...

Computer Vision

Courses

Other Courses

CS420

Into to Image Understanding CS4 18 Computer Graphics CS321 Neural Networks CS411 Machine Learning & Data Mining

CS 2530	Visual Modeling	CSC 2521	Machine Learning for Computer Graphics
CS2523	Visual Recognition	CSC 2522	Advanced Image
CS 2539	Visual Motion		Synthesis
	Analysis	CSC 2529	Computer Animation