

Announcements

- A4 is due April 4
- Marks for A2 are starting to come. Will be available by Friday (apologies from our side, lateness due to a sick TA)
- Grace-days left will be posted on Blackboard tomorrow
- May use grace-days after April 4, keep an eye on the final exam (worth 4 times the value of the assignment).

Image differentiation (derivatives computation)

Step 1: Interpolate to define a continuous function

$$(I * G_{\sigma})(x) = \sum_{x=0}^{M-1} I_k G_{\sigma}(x-k)$$

Step 2: Take the derivative of this continuous function

$$\frac{\delta}{\delta x}(I * G_{\sigma})(x)$$

$$Step #2: Differentiate the Interpolated Image
(I * G_{\sigma})(x) = \sum_{x=0}^{M-1} I_{k}G_{\sigma}(x-k)$$
discrete

$$d_{dx} (I * G_{G})(x) = d_{dx} \left[\sum_{x=0}^{M-1} I_{\mu} \cdot G_{G}(x-\mu) \right] =$$

Step #2: Differentiate the Interpolated Image

$$(I * G_{\sigma})(x) = \sum_{x=0}^{M-1} I_{k}G_{\sigma}(x-k)$$
discrete

$$\frac{d}{dx} \left(\mathbb{I} * G_{6} \right)(x) = \frac{d}{o|x} \left[\sum_{k=0}^{M-1} \mathbb{I}_{k} - G_{6}(x-k) \right] =$$

$$\sum_{k=0}^{M-1} \mathbb{I}_{k} - \frac{d}{dx} G_{6}(x-k) \iff$$

$$\frac{d}{dx} \left(\mathbb{I} * G_{6} \right)(x) = \left[\mathbb{I} * \left(\frac{d}{dx} G_{6} \right) \right](x)$$

Image Differentiation
$$\Leftrightarrow$$
 Convolution w/ Gaussian Derivative

$$(I * G_{\sigma})(x) = \sum_{x=0}^{M-1} I_k G_{\sigma}(x-k)$$
We can compute derivatives by
applying a template that is the
derivative of the Gaussian function!

$$\frac{d}{dx} (I * G_6)(x) = \left[I * \left(\frac{d}{dx} G_6\right)\right](x)$$

Convolution with the Derivative of a Gaussian

Gaussian

$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$

First derivative

$$G'_{\sigma}(x) = \frac{\delta}{\delta x} \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}} \right)$$
$$= -\frac{2x}{2\sigma^2} \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}} \right)$$
$$= -\frac{2x}{2\sigma^2} G_{\sigma}(x)$$

Convolution with the Derivative of a Gaussian

$$\left(I * G_{6}\right)(x) = \sum_{k=0}^{m-1} I[k] \cdot G_{6}(x-k)$$
We can compute derivatives by
applying a template that is the
derivative of the Gaussian function!

$$\left(I * G_{6}\right)(x) = \left[I * \left(\frac{d^{2}}{dx^{2}} \cdot 6\right)\right](x)$$

Convolution with the Derivative of a Gaussian

$$G''_{\sigma}(x) = \frac{\delta^2}{\delta x^2} \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}\right)$$

$$= \left(\frac{x^2}{\sigma^2} - 1\right) \left(\frac{1}{\sigma^2}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}\right)$$

$$= \left(\frac{x^2}{\sigma^2} - 1\right) \left(\frac{1}{\sigma^2}\right) G_{\sigma}(x)$$

$$\frac{d}{dx} \left(\mathbb{T} * G_{6}\right) (x) = \left[\mathbb{T} * \left(\frac{d}{dx}, G_{6}\right)\right] (x)$$

Equivalence of DOG and
$$2^{nd}$$
 Derivative Filter
What is $I * (G_{G_1} - G_{G_2})$?
What is $G_{G_1} - G_{G_2}$?
To answer, consider G folds a
function of both \times and G
Using approximate
differences, the derivative can
be computed as:
 $\frac{\delta G}{\delta \sigma} = \frac{G(x, \sigma_2) - G(x, \sigma_1)}{\sigma_2 - \sigma_1}$
From where:
 $G_{\sigma_1} - G_{\sigma_2} =$
 $(\sigma_2 - \sigma_1) \frac{\delta G_{\sigma}}{\delta \sigma}(x, \sigma_1)$
 $G_{\sigma_1} - G_{\sigma_2} =$
 $(\sigma_2 - \sigma_1) \frac{\delta G_{\sigma}}{\delta \sigma}(x, \sigma_1)$
 $G_{\sigma_1} - G_{\sigma_2} =$
 $(\sigma_2 - \sigma_1) \frac{\delta G_{\sigma}}{\delta \sigma}(x, \sigma_1)$
 $G_{\sigma_1} - G_{\sigma_2} =$
 $(\sigma_2 - \sigma_1) \frac{\delta G_{\sigma}}{\delta \sigma}(x, \sigma_1)$
 $G_{\sigma_1} - G_{\sigma_2} =$
 $(\sigma_2 - \sigma_1) \frac{\delta G_{\sigma}}{\delta \sigma}(x, \sigma_1)$

Topic 10:

Feature Detection & Image Matching

- Introduction to the image matching problem
- Image matching using SIFT features
- The SIFT feature detector
- The SIFT descriptor

<image> Image Matching Problem Image Matching Prob

