

Topic 6:

Hierarchical image representations

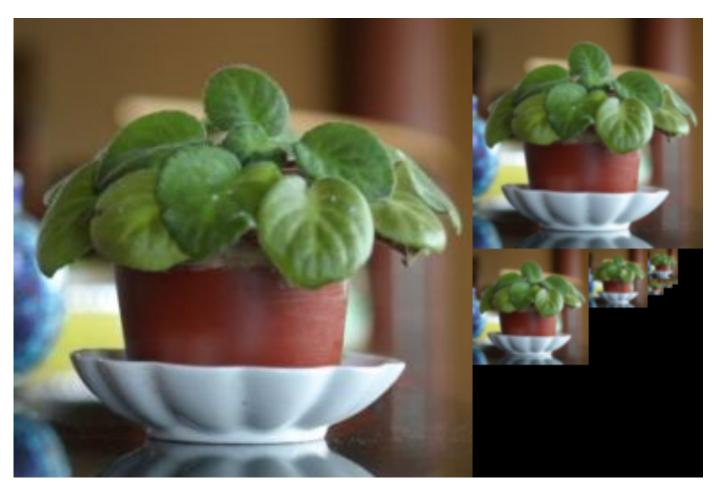
- 1. Gaussian & Laplacian pyramids
- 2. Applications:
 - 1. Multi-resolution image blending
 - 2. Multi-resolution image editing
 - 3. Multi-resolution texture synthesis

Topic 6.1:

Gaussian & Laplacian Pyramids

- The Gaussian pyramid (intro)
- The convolution operation
- Constructing the gaussian pyramid
 - The REDUCE() function
- Constructing the Laplacian pyramid
 - The EXPAND() function

The Gaussian Pyramid: A representation in multiple scales



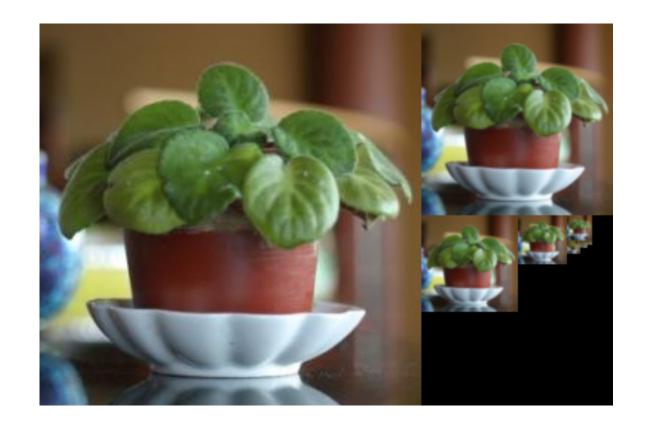
Original Image

The goal is to define a representation in which image information at different scales is explicitly available (i.e. does not need to be computed when needed)

Applications:

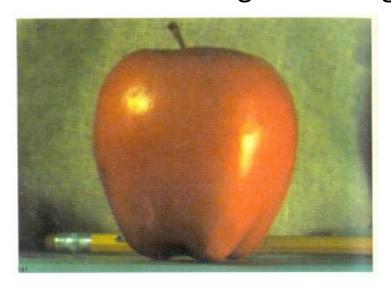
- •Scale invariant template matching (like faces)
- Progressive image transmission
- Image blending
- •Efficient feature search

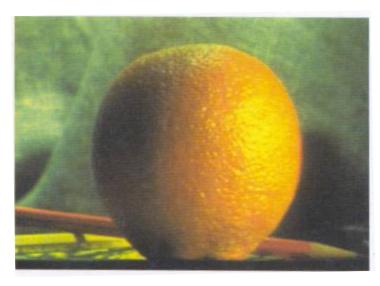
• . . .

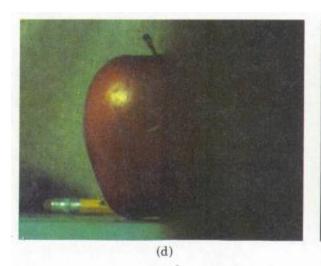


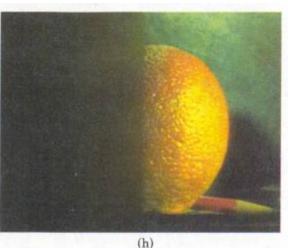
Application 1: Pyramid Image Blending

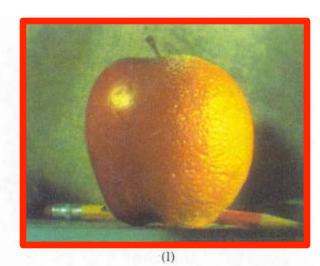
Goal: Merge two images without visible seams



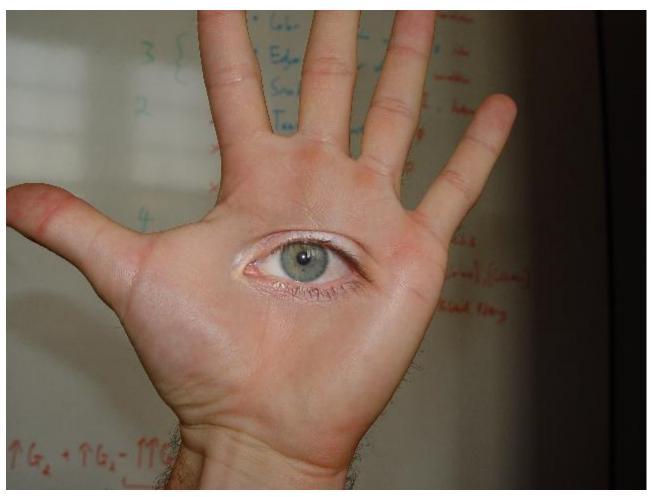








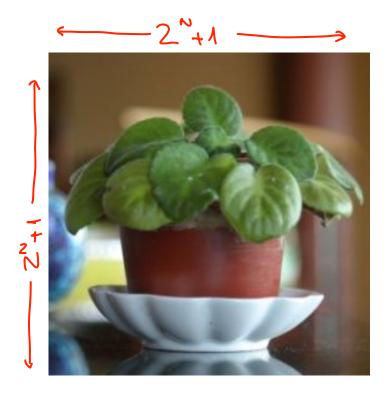
Horror Photo



© prof. dmartin

The elements of a Gaussian Pyramids are smoothed copies of the image at different scales.

Input: Image I of size $(2^N+1)x(2^N+1)$

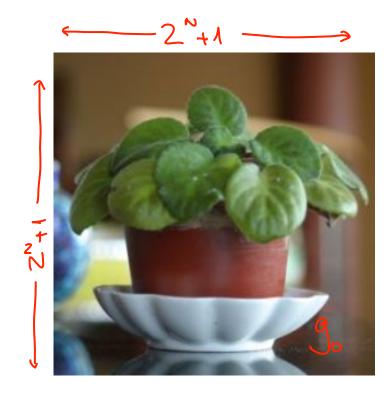


The elements of a Gaussian Pyramids are smoothed copies of the image at different scales.

Input: Image I of size $(2^N+1)x(2^N+1)$

Output: Images g₀

Note: The original image is part of the output!



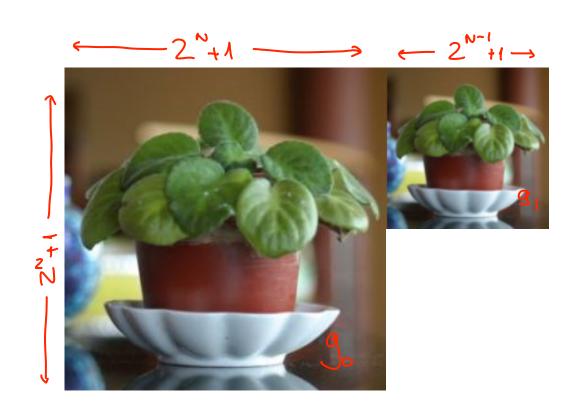
The elements of a Gaussian Pyramids are smoothed copies of the image at different scales.

Input: Image I of size $(2^N+1)x(2^N+1)$

Output: Images g₀, g₁

where the size of g_1 is:

 $(2^{N-1}+1)x(2^{N-1}+1)$



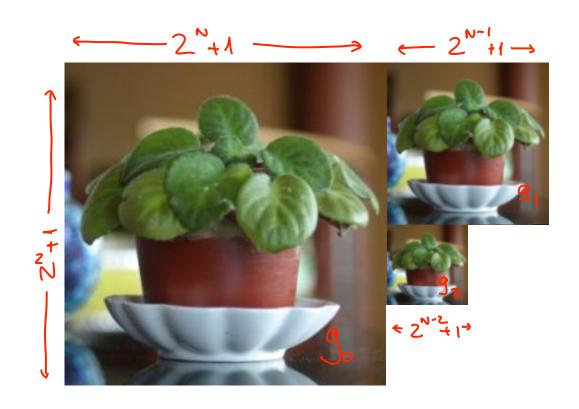
The elements of a Gaussian Pyramids are smoothed copies of the image at different scales.

Input: Image I of size $(2^N+1)x(2^N+1)$

Output: Images g₀, g₁, g₂

where the size of g₂ is:

 $(2^{N-2}+1)x(2^{N-2}+1)$

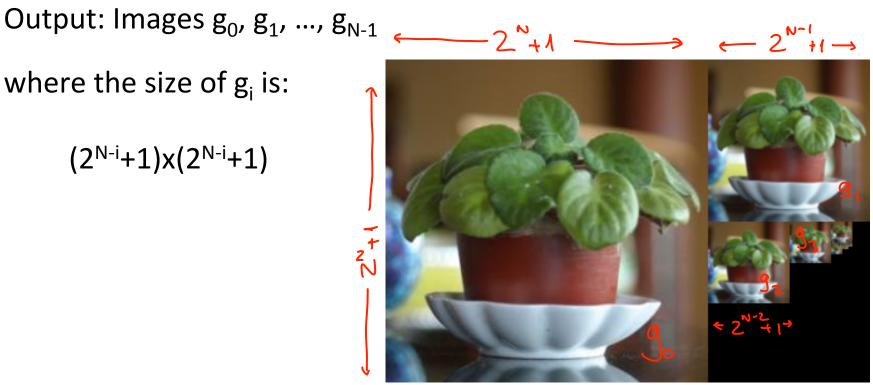


The elements of a Gaussian Pyramids are smoothed copies of the image at different scales.

Input: Image I of size $(2^N+1)x(2^N+1)$

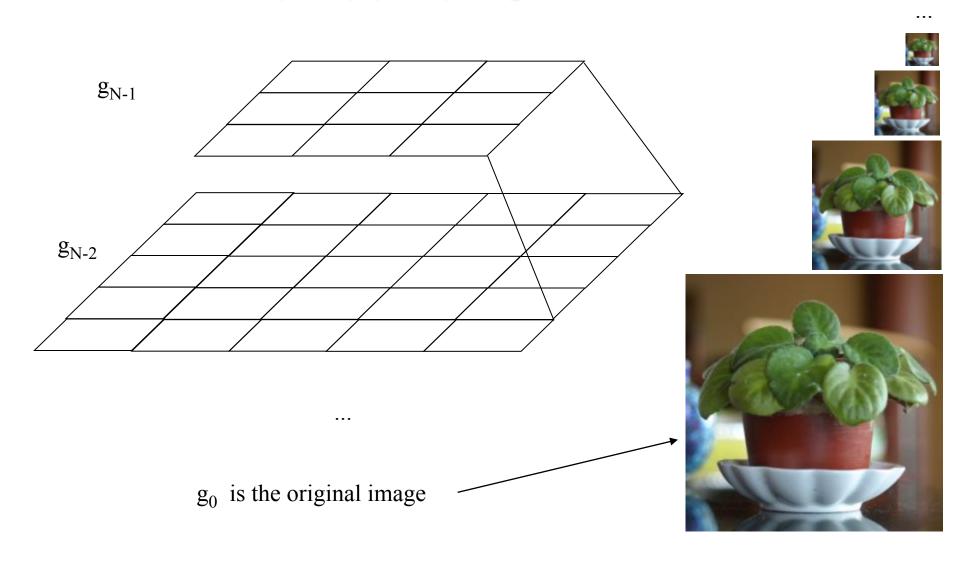
where the size of g_i is:

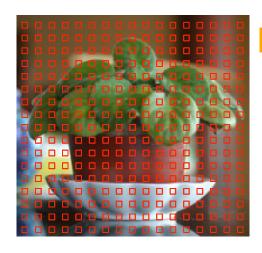
$$(2^{N-i}+1)x(2^{N-i}+1)$$



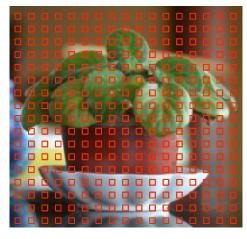
And they called this a Pyramid?

Yes, because the representation can be pictured as a pyramid of 3x3, 5x5, 9x9,..., $(2^N+1)x(2^N+1)$ images when stacked.



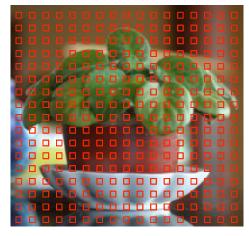


Take every 2nd pixel from I for g₁

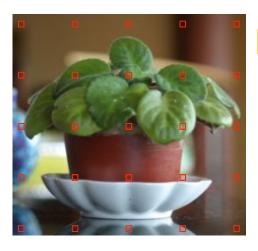


Take every 2nd pixel from I for g₁

Take every 4th pixel from I for g₂

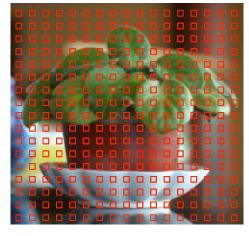


Take every 2nd pixel from I for g₁



Take every 8th pixel from I for g₃

Take every 4th pixel from I for g₂



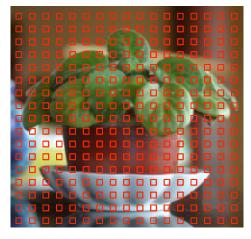
Take every 2nd pixel from I c

Take every 8th pixel from I for g₃

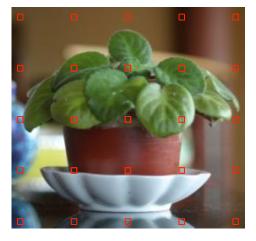
Take every 4th pixel from I for g₂

Take every 16th pixel from I for g₄

and so on...

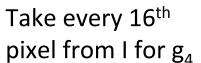


Take every 2nd pixel from I for g₁

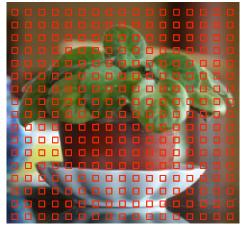


Take every 8th pixel from I for g₃

Take every 4th pixel from I for g₂

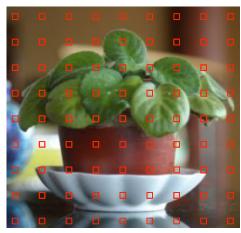


All the information is there already, or is it not?

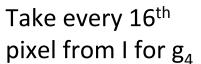


Take every 2nd pixel from I for g₁

Take every 8th pixel from I for g₃

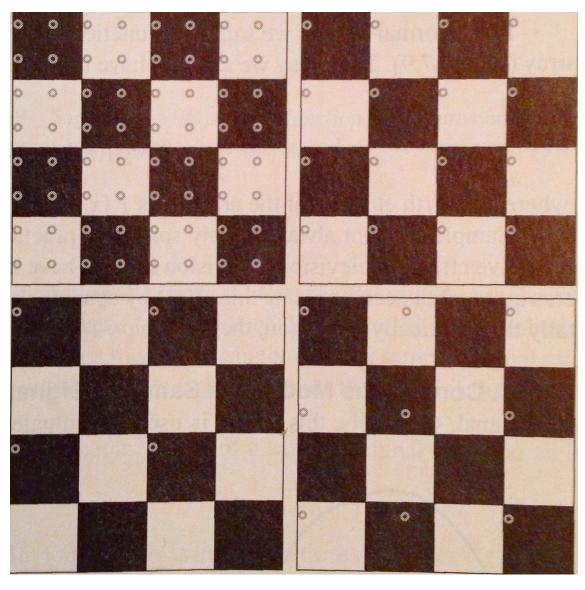


Take every 4th pixel from I for g₂



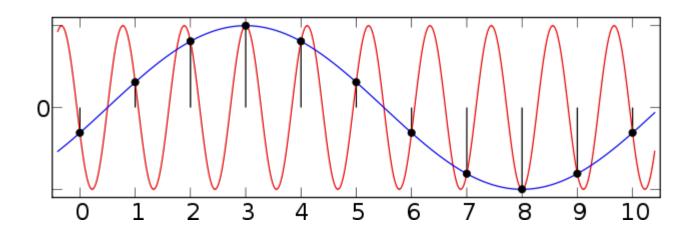
NO! SUBSAMPLING ALONE LEADS TO ALIASING

Aliasing?



Forsyth and Ponce

Sub-sampling is not enough!

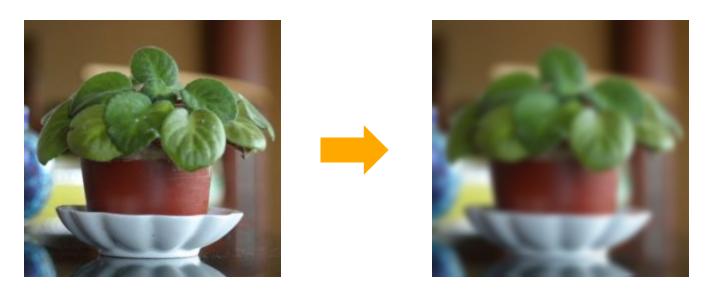


Because of "Aliasing", sub-sampling may have catastrophic effects.

Aliasing arises when a signal is sampled at a rate that is insufficient to capture the changes in the signal (and in Gaussian Pyramids, this will always happen as subsampling is twice as sparse at each level!)

Smoothing

The solution to aliasing effects is smoothing, effectively reducing the maximum frequency of image features. In other words smoothing removes the fast changes that sub-sampling would miss.



Smoothing

Building (or computing) a Gaussian Pyramid

To generate a Gaussian pyramid, iterate between these two steps:

Smoothing: Remove high-frequency components that could cause aliasing.

Down-sampling: Reduce the image size by ½ at each level.

Building (or computing) a Gaussian Pyramid

To generate a Gaussian pyramid, iterate between these two steps:

Smoothing: Remove high-frequency components that could cause aliasing.

Down-sampling: Reduce the image size by ½ at each level.

Good, but how do we actually implement this?

Topic 6.1:

Gaussian & Laplacian Pyramids

- The Gaussian pyramid (intro)
- The convolution operation
- Constructing the gaussian pyramid
 - The REDUCE() function
- Constructing the Laplacian pyramid
 - The EXPAND() function

We know about (both the normalized and un-normalized) the cross correlation operators.

$$CC \left(X_{i}, T\right) = X_{i}^{T} \cdot T$$

$$NCC \left(X_{i}, T\right) = \frac{X_{i}^{T} \cdot T}{\|X_{i}\| \cdot \|T\|}$$

What happens if we evaluate them with

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

or

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

everywhere in the image?

Smoothing can be achieved by averaging neighboring pixels.

The strength of a smoothing operator is proportional to the number of pixels it averages.

Averaging can be computed as the Cross-Correlation of the image with a constant kernel, like:

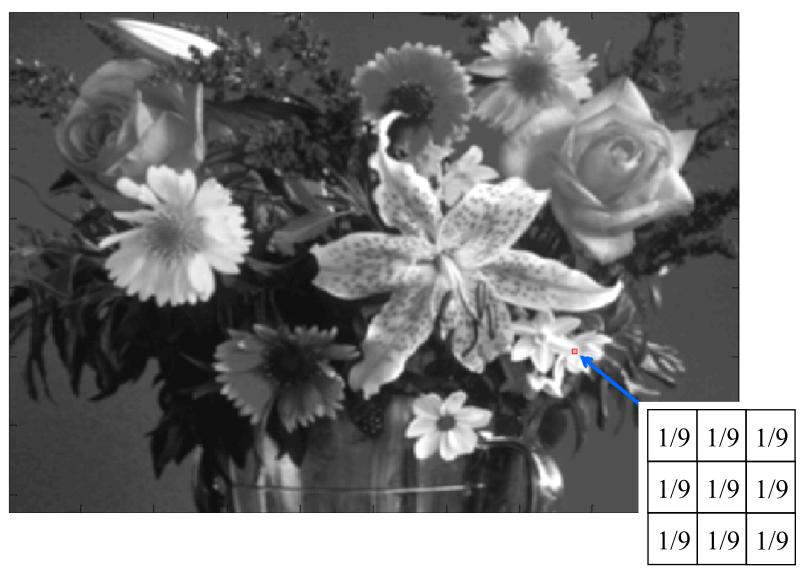
1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

or

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

Original Image

Result of Cross-Correlation with 3x3 Mask

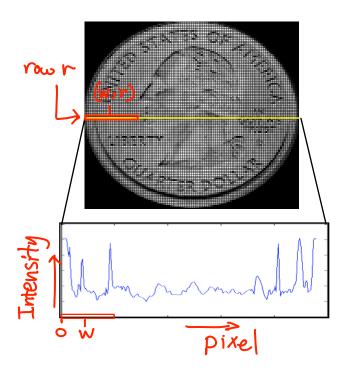


Result of Cross-Correlation with 5x5 Mask

Result of Cross-Correlation with 15x15 Mask

Cross correlation in 1D can be computed using matrix multiplication, for instance, let:

I: one row of the image (with M pixels)



and

T: a template (with 2w+1 pixels), such as $[T_{-w}, T_{-w-1}, ... T_0, ... T_{w-1}, T_w]$

Then, the cross correlation at pixel w can be computed using:

I: one row of the image (with M pixels)

T: a template (with 2w+1 pixels), such as $[T_{-w}, T_{-w-1}, ..., T_0, ..., T_{w-1}, T_w]$

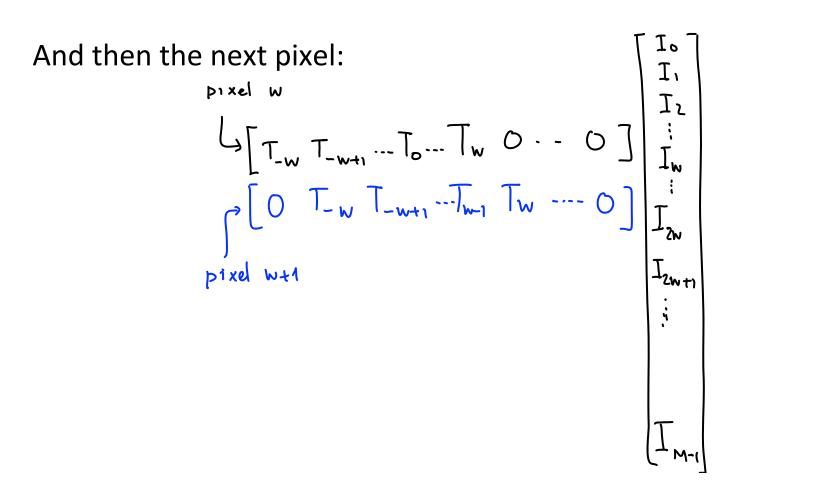
$$CC(I,T) = [T_{-w+1} \dots T_{o} \dots T_{w} \quad o \quad o \quad o \quad]$$

$$\begin{bmatrix} I_{o} \\ I_{1} \\ I_{w} \\ \vdots \\ I_{2w+1} \\ \vdots \\ \vdots \\ I_{M-1} \end{bmatrix}$$

Then, the cross correlation at pixel w can be computed using:

I: one row of the image (with M pixels)

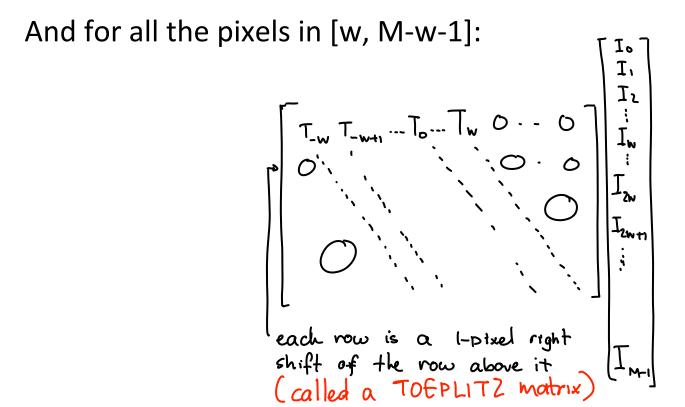
T: a template (with 2w+1 pixels), such as $[T_{-w}, T_{-w-1}, ..., T_0, ..., T_{w-1}, T_w]$



Then, the cross correlation at pixel w can be computed using:

I: one row of the image (with M pixels)

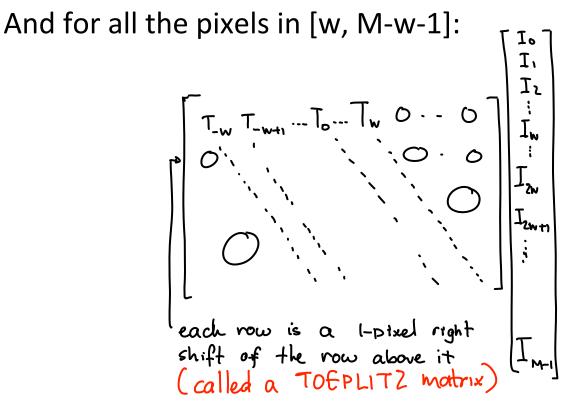
T: a template (with 2w+1 pixels), such as $[T_{-w}, T_{-w-1}, ... T_0, ... T_{w-1}, T_w]$



Then, the cross correlation at pixel w can be computed using:

I: one row of the image (with M pixels)

T: a template (with 2w+1 pixels), such as $[T_{-w}, T_{-w-1}, ..., T_0, ..., T_{w-1}, T_w]$



How about pixels in:

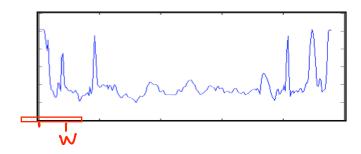
and

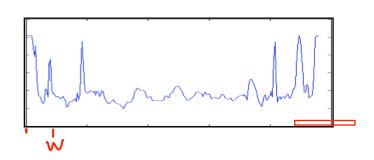
Image Cross Correlation Matrix Multiplication

How about pixels at [1, 2, ..., w] and [M-w, M-w+1, ..., M]?

Options (to taste, with advantages and disadvantages):

- Wrap around in I
- Define new templates
- Assume I is zero for the out-of-image
- Extrapolate (in-paint!?)





Cross-Correlation Expressed as a Sum

Cross-Correlation Expressed as a Sum

General sum notation:
$$J_i = \sum_{k=0}^{M-1} I_k T_{k-i}$$
osism-1

Cross-Correlation Expressed as a Sum

General sum notation:
$$J_i = \sum_{k=0}^{M-1} I_k T_{k-i}$$
osism-1

General sum notation: for instance:
$$J_{w} = \sum_{k=0}^{M-1} I_{k} . T_{k-w}$$

$$J_{i} = \sum_{k=0}^{M-1} I_{k} . T_{k-w-1}$$

$$J_{w+1} = \sum_{k=0}^{M-1} I_{k} . T_{k-w-1}$$

$$J_{w+1} = \sum_{k=0}^{M-1} I_{k} . T_{k-w-1}$$

$$= \sum_{k=0}^{M-1} I_{k} . T_{k-(w+1)}$$

Indexing by image position, not template position

$$\mathcal{J} = CC(I,T) =
\begin{bmatrix}
J_{0} \\
J_{1} \\
J_{W} \\
J_{WH} \\
J$$

General
sum notation:

$$J_i = \sum_{k=0}^{M-1} I_k T_{k-i}$$

0 s is M-1

Equivalent to:

$$J_{i} = \sum_{\ell=0}^{M-1} I_{\ell+i} T_{\ell}$$

$$0 \le i \le M-1$$

* obtained by substituting l=K-i in General Sum Notation Formula

The Convolution Operation

A similar operation to Cross Correlation is Convolution:

Cross-correlation:

$$J_i = \sum_{k=0}^{M-1} I_k . T_{k-i}$$

Convolution:

$$(I*T)_i = \sum_{k=0}^{M-1} I_k \cdot T_{i-k}$$

$$\begin{bmatrix} T_{w} & T_{-w+1} & \dots & T_{o} & \dots & T_{w} \\ T_{zw} & T_{zw+1} & \dots & T_{o} & \dots \\ T_{zw+1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{o} & \dots & T_{w} \\ T_{w-1} & \dots & T_{w} & \dots & T_{w} \\ T_{w} & \dots & T_{w} & \dots & T_{w} \\ T_{w$$

The Convolution Operation

The convolution operation is one of the most fundamental operations in image (and signal) processing.

In this context

I is the "image" or the "signal"

T is the "filter", "mask", "template", "impulse response", "kernel"...

Notation: T*T: reads as "the convolution of I with T" an means:

Convolution:

$$(I*T)_i = \sum_{k=0}^{M-1} I_k \cdot T_{i-k}$$

The Convolution Properties

1. For symmetric masks, convolution is equal to cross-correlation:

CC(I,T) = I*T
when
$$T_i = T_{-i}$$

2. Commutativity:

3. Linearity:

$$(aI+bJ)*T =$$

$$a(I*T)+b(J*T)$$
for any constants a,b

You may want to prove these as an exercise.

The Convolution Properties

But images are 2D!

The Convolution Properties

Similar to 2D cross-correlation. For a M by N image:

$$(I*T)(i,j) = \sum_{k=0}^{M-1} \sum_{\ell=0}^{M-1} I(k,\ell).T(i-k,j-\ell)$$

This can get expensive. If the image is M by N and the Template is P by Q, the complexity is:

O(MNPQ)

The Separable Convolution

There is one very special case, when the Template is "separable".

Separable templates are such that $T=PQ^T$ for some vectors P, Q.

The Separable Convolution

There is one very special case, when the Template is "separable".

For instance, is the "Sobel" kernel separable?

Sobel =
$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

The Separable Convolution

There is one very special case, when the Template is "separable".

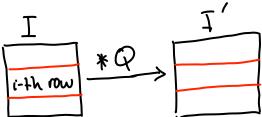
For instance, is the "Sobel" kernel separable?

Sobel =
$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 = $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ [[-1 0 1]]

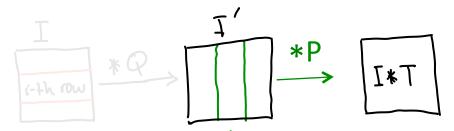
The Convolution Operation

When a kernel is separable the 2D convolution can be obtained from 2, cascaded 1D convolutions. The algorithm is as follows:

 Compute the 1D convolution between each row of I and Q to obtain I'.



2. Compute the 1D convolution between each row of I' and P, to obtain the final 2D result:



The Convolution Operation

When a kernel is separable the 2D convolution can be obtained from 2, cascaded 1D convolutions.

In the previous slide, we first convolved rows of I with Q to obtain I' and then columns of I' with P to obtain the final result.

The same result can be obtained by first convolving columns of I with P to obtain I' and then convolve rows of I' with Q.

You may want to prove this as an exercise

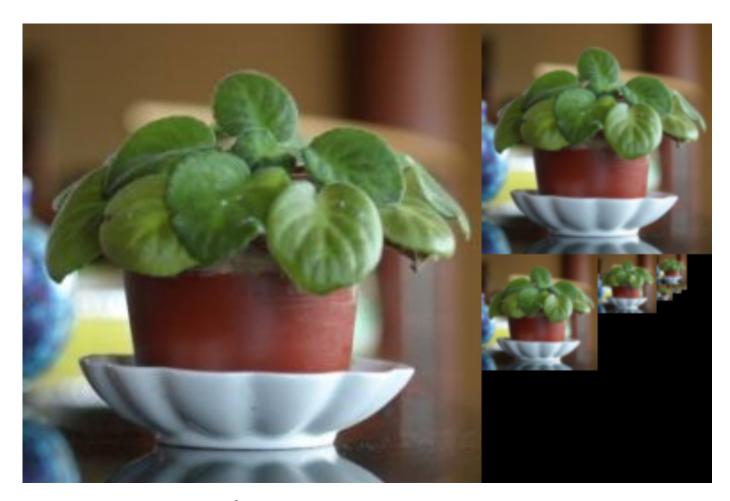
Topic 6.1:

Gaussian & Laplacian Pyramids

- The gaussian pyramid (intro)
- The convolution operation
- Constructing the gaussian pyramid
 - The REDUCE() function
- Constructing the Laplacian pyramid
 - The EXPAND() function

The Gaussian Pyramid

The Gaussian Pyramid: A representation in multiple scales



Original Image

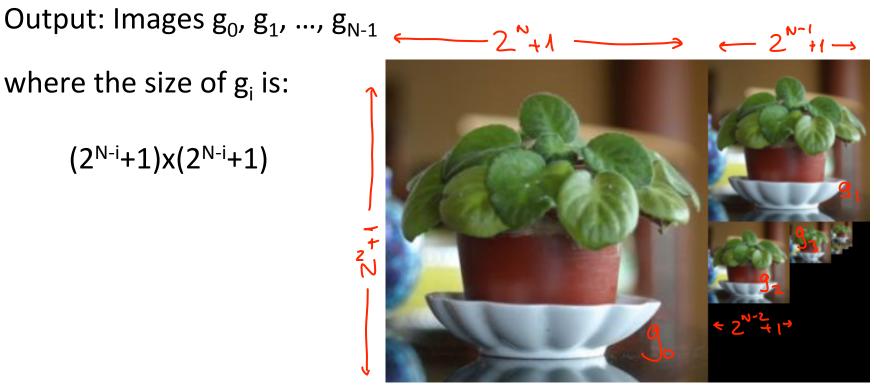
The Gaussian Pyramid

The elements of a Gaussian Pyramids are smoothed copies of the image at different scales.

Input: Image I of size $(2^N+1)x(2^N+1)$

where the size of g_i is:

$$(2^{N-i}+1)x(2^{N-i}+1)$$



Building (or computing) a Gaussian Pyramid

To generate a Gaussian pyramid, iterate between these two steps:

Smoothing: Remove high-frequency components that could cause aliasing.

Down-sampling: Reduce the image size by ½ at each level.

Operation #1: Smooth Image, recursively

Take the original image g_0 and compute g_1 using:

$$\hat{q}_{1}(i,j) = \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m,n) \cdot q_{0}(i-m,j-n)$$

1					
	1/25	1/25	1/25	1/25	1/25
	1/25	1/25	1/25	1/25	1/25
	1/25	1/25	1/25	1/25	1/25
	1/25	1/25	1/25	1/25	1/25
	1/25	1/25	1/25	1/25	1/25

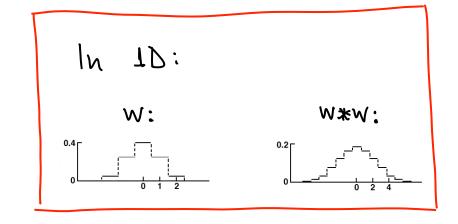
To estimate g_2 repeat using g_1 as the input:

$$\hat{g}_{2} = w * \hat{g}_{1}$$

$$= w * (w * go)$$

$$= (w * w) * go$$

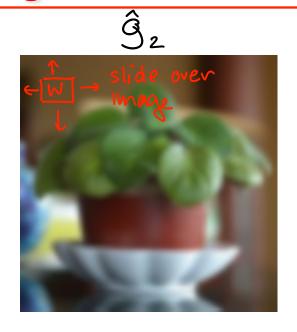
$$can be thought of as a filter
$$h = w * w$$
whose radius is twice that of w$$

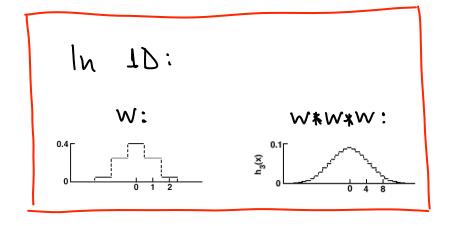


To estimate g_3 repeat using g_2 as the input:

$$\hat{g}_3 = w * \hat{g}_2$$

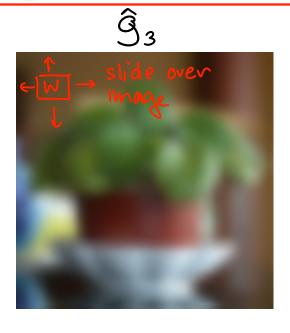
$$= (w * w * w) * g_0$$
radius is 4
times that of w

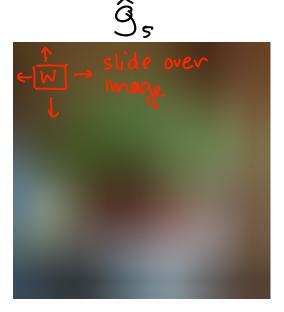


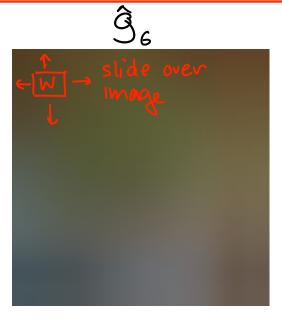


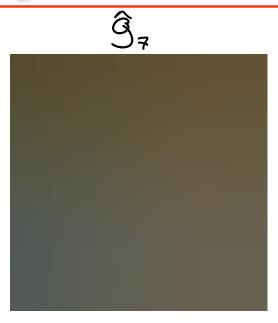
$$\hat{g}_4 = w * \hat{g}_3$$

$$= (w * w * w * w) * 90$$









To take a 5x5 2D kernel into a 1D kernel we must satisfy 4 criteria:

- The window size must remain the same: 5 elements.
- 2. The kernel must be symmetric around its origin

3. Applying w to a constant image does not change (intensity preserving)

$$\sum_{m=-2}^{2} \hat{w}(m) = 1 \iff a + 2b + 2c = 1$$

4. The ratio of the contributions should follow:

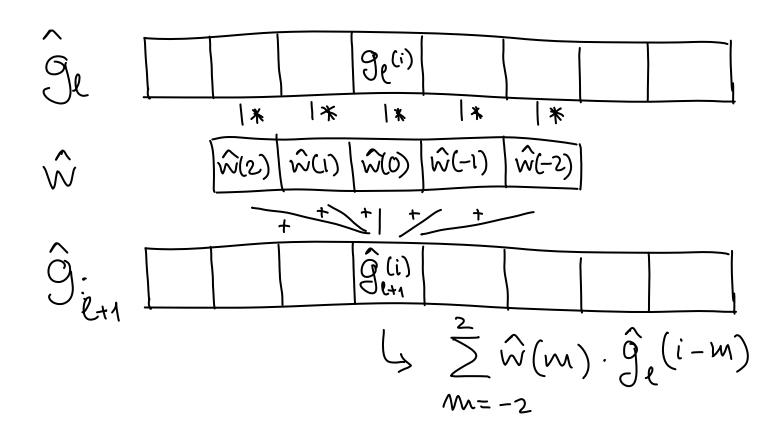
$$a+2c=2b=1/2$$

The conditions on the previous slide render filters of the form:

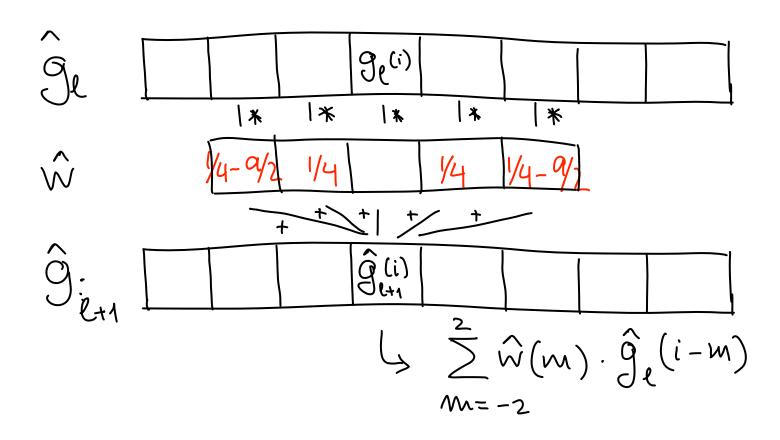
$$\hat{W} = \begin{bmatrix} c \\ b \\ c \end{bmatrix} = \begin{bmatrix} \frac{1}{4} - \frac{9}{2} \\ \frac{1}{4} \\ \frac{1}{4} - \frac{9}{2} \end{bmatrix}$$

usually
$$a \in [0.3, 0.6]$$

This means that to estimate the ith pixel at the (l+1)th level one must do:



This means that to estimate the ith pixel at the (l+1)th level one must do:



Defining the Smoothing Filter in 2D

$$\hat{g}_{1} = W * g_{0}$$
 $\sqrt{w} = \sqrt{s} = \sqrt{s}$

Exploiting separability to compute \hat{g}_i :

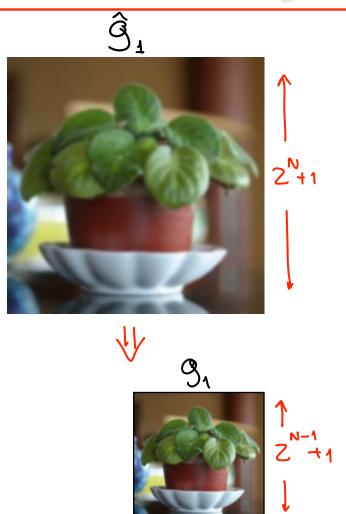
- 1) Convolve each row of 90 with \hat{w}
- 2) Convolve the columns of the result with \hat{w} again

Operation #2: Downsample the Smoothed Image

Downsample by taking every other pixel.

Smoothing prevents aliasing effects.

$$q_{1}(i.j) = \hat{q}_{1}(2i,2j)$$



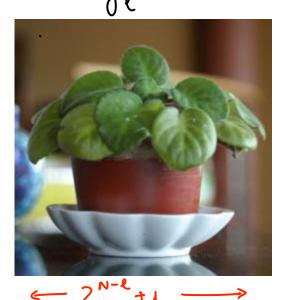
Topic 6.1:

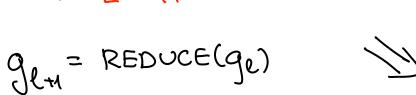
Gaussian & Laplacian Pyramids

- The gaussian pyramid (intro)
- The convolution operation
- Constructing the gaussian pyramid
 - The REDUCE() function
- Constructing the Laplacian pyramid
 - The EXPAND() function

Operations #1 & #2: The REDUCE() Function

The REDUCE() function combines smoothing and down sampling.

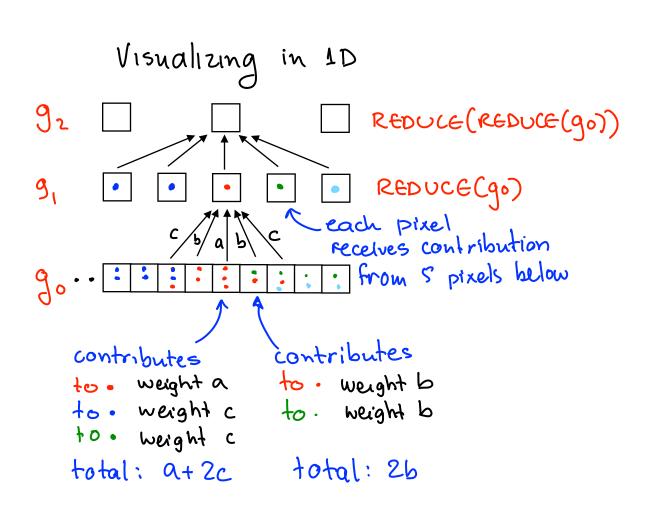


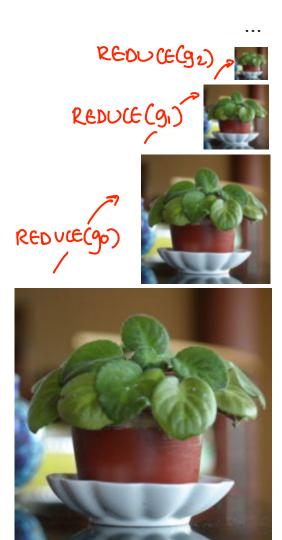


$$g(i,j) = \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m,n) \cdot g(2i-m,2j-n)$$

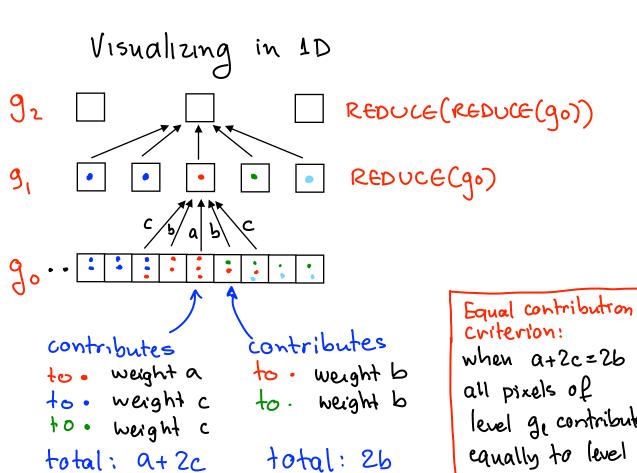
The REDUCE() function

The REDUCE() function

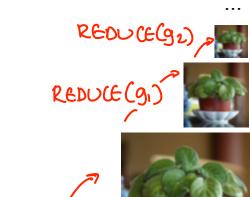




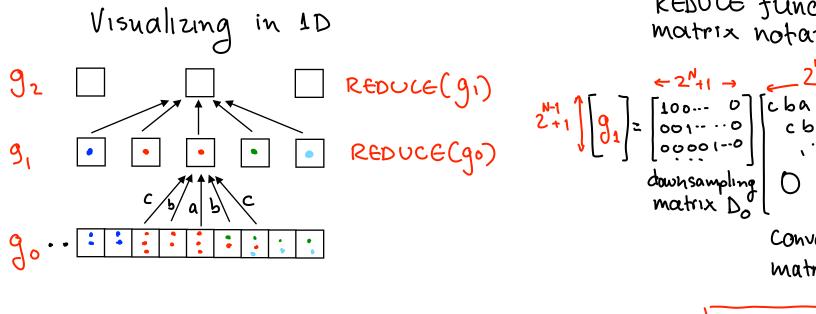
The REDUCE() function



when a+2c=2blevel ge contribute equally to level 924



The REDUCE() function



REDUCE function in matrix notation (1D) convolution matrix Co

What Does Smoothing Take Away?

go = I

original

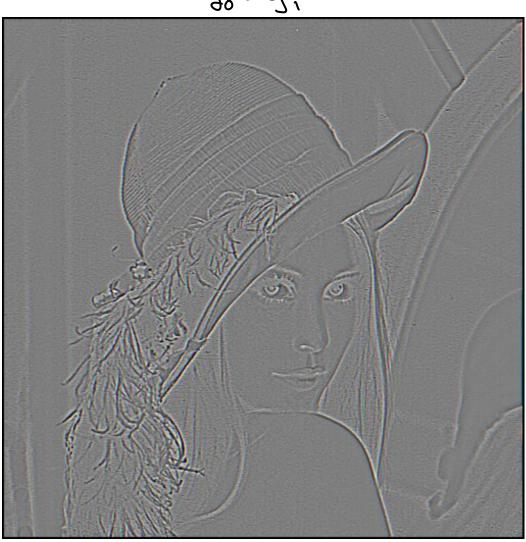
photo

What Does Smoothing Take Away?

Smoothed photo $\hat{g}_{1} = W * g_{0}$

What Does Smoothing Take Away?

g, -ĝ,



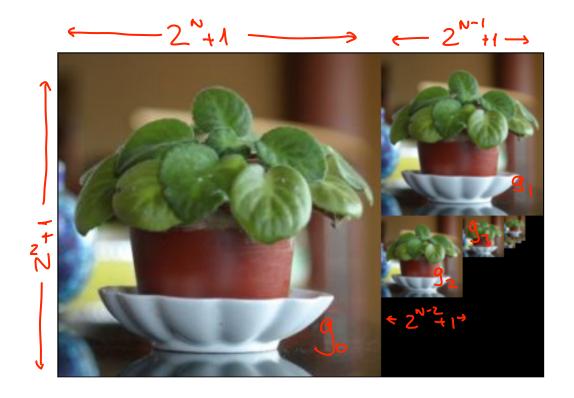
Details in 90 that were <u>not</u> represented in 9,

Topic 6.1:

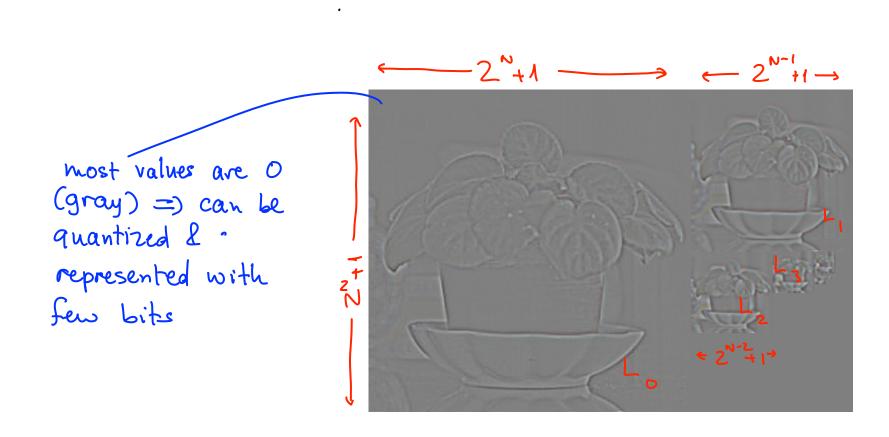
Gaussian & Laplacian Pyramids

- The gaussian pyramid (intro)
- The convolution operation
- Constructing the gaussian pyramid
 - The REDUCE() function
- Constructing the Laplacian pyramid
 - The EXPAND() function

What if instead of storing the smoothed images, we store only the difference between the levels g_l and g_{l+1}



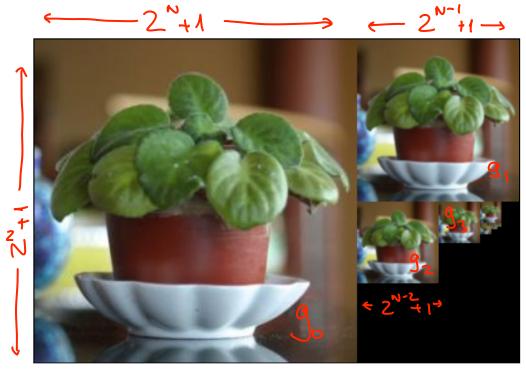
What if instead of storing the smoothed images, we store only the difference between the levels g_l and g_{l+1}



What if instead of storing the smoothed images, we store only the difference between the levels g_l and g_{l+1}

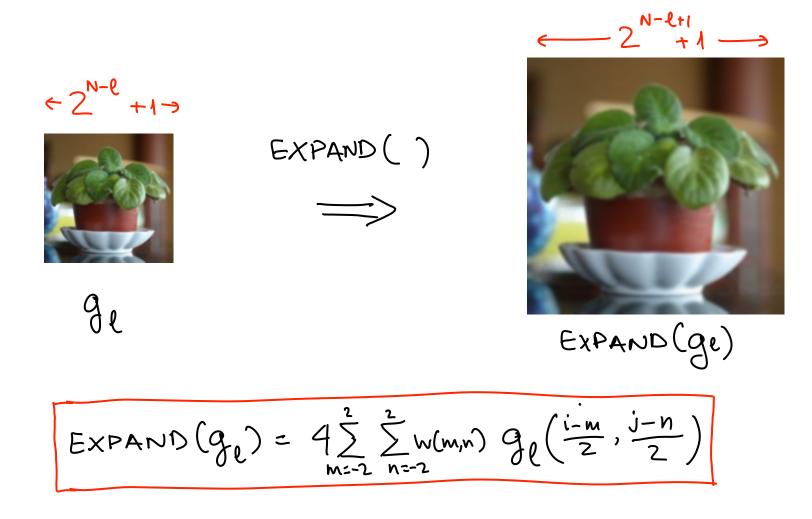
. But g_{th} , g_{ℓ} are not the same size!

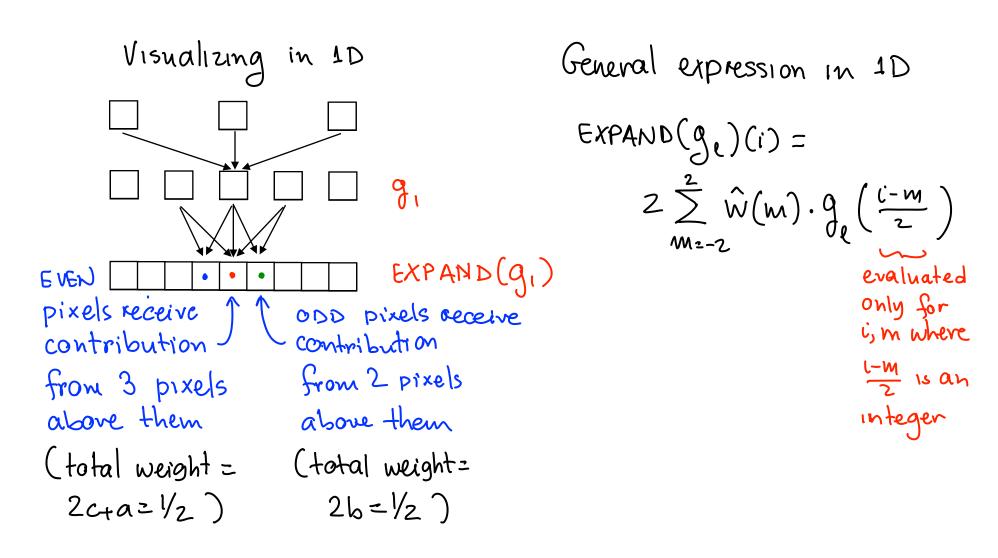
=> Expand gen to make it equal size to ge

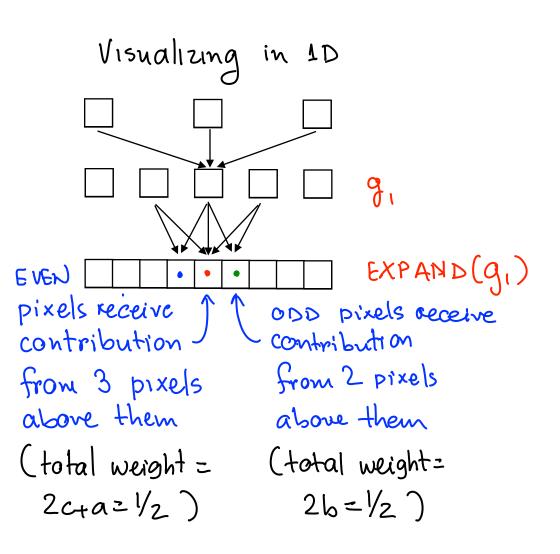


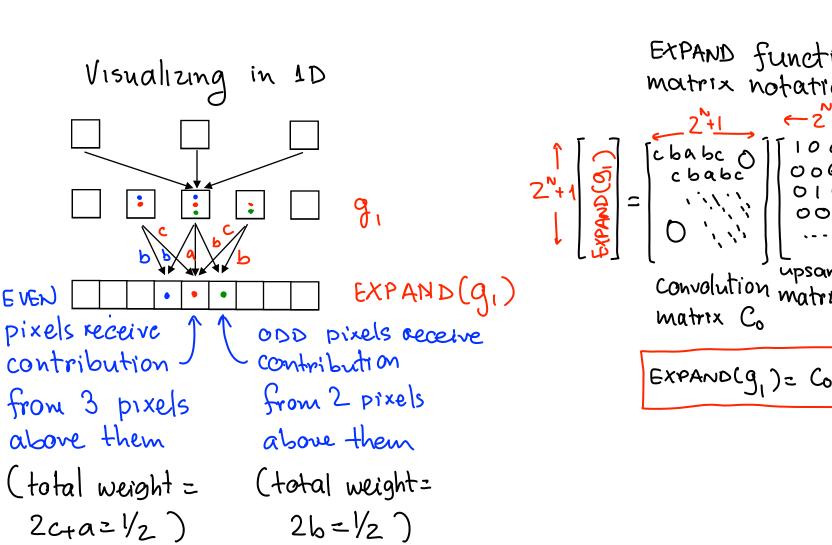
Operation #3: The EXPAND() Function

And we can write this with an equation:

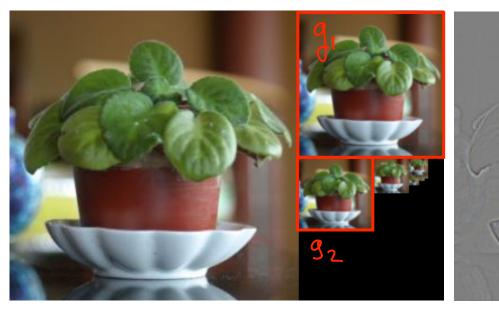








$$L_0 = g_0 - EXPAND (g_1)$$



Often we use a truncated Laplacian pyramid by storing images Lo, Li,..., Lk, 9 k+1 for k+1 < N

Base case: store gn

But we can use the Pyramid in the opposite way too. To recover g_0 , we can do:

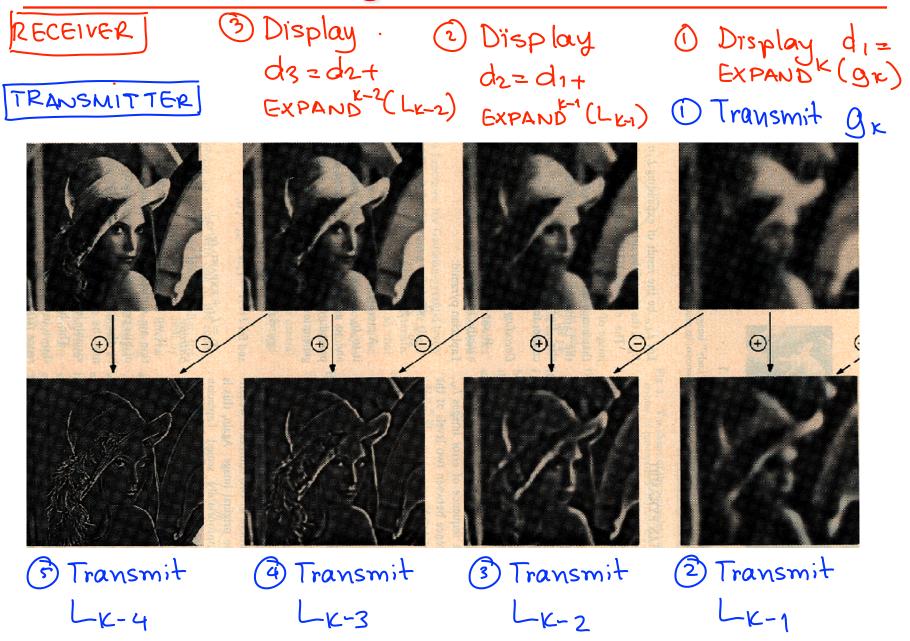
$$g_0 = L_0 + EXPAND(g_1)$$

But we can use the Pyramid in the opposite way too. To recover g_0 , we can do: $g_0 = L_0 + EXPAND(g_1)$

Given an input mage of size (2 1) x (2 1), the Laplacian pyramid representation consists of

- · Lo,..., LK-1 · gk for some K < N

Transmission using EXPAND



Topic 6:

Hierarchical image representations

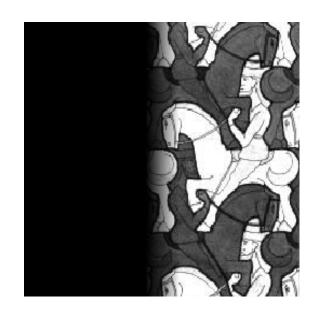
- 1. Gaussian & Laplacian pyramids
- 2. Applications:
 - 1. Multi-resolution image blending
 - 2. Multi-resolution image editing
 - 3. Multi-resolution texture synthesis

Image Blending

Source 1 Source 2 Blend Slides adapted from A. Efros

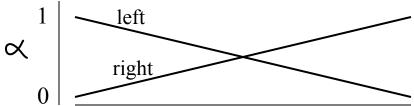
(CMU)

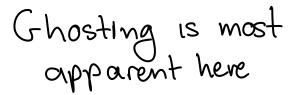
Feathering

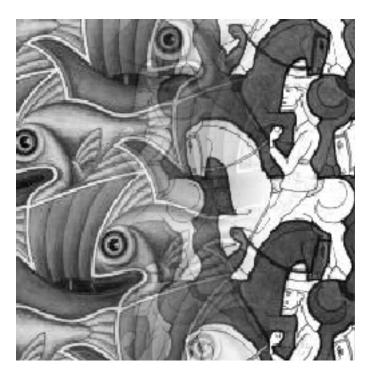


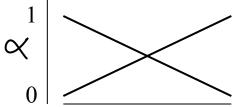
Assign an alpha value to each pixel hear the seam to make it less visible

Effect of Window Size

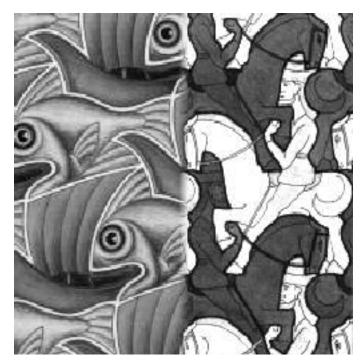


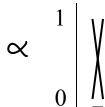


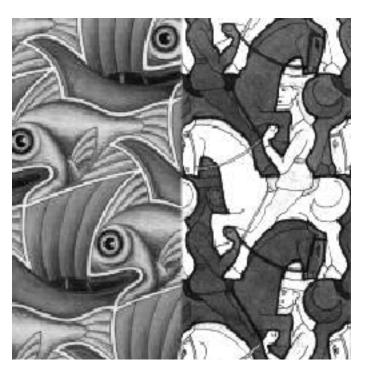




Effect of Window Size







$$\left|\begin{array}{c|c} 1 & \\ 0 & \\ \end{array}\right|$$

seam most visible here

Image Blending

Source B Source A Blend

Main challenge:

· Minimize ghosting without making visible seams

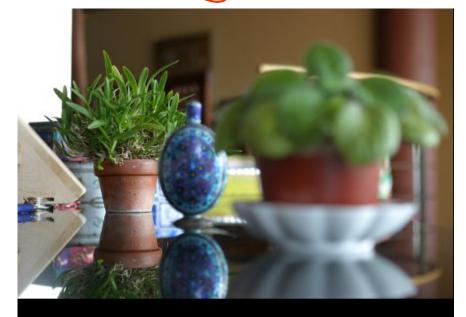
Slides adapted from A. Efros (CMU)

Application #1: Pyramid Blending Algorithm

Input: Source images A, B & binary matte M' Output: Blended image S'

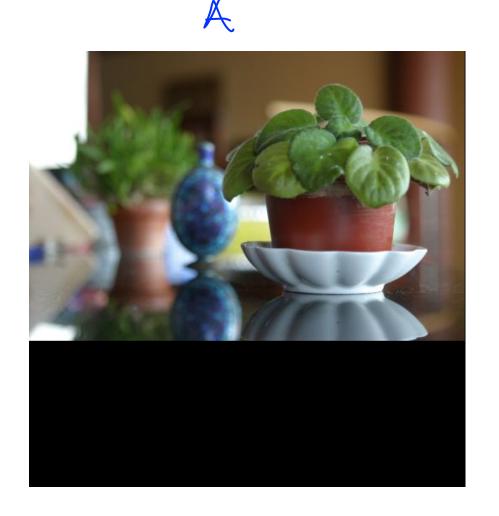
Input: Source images A, B & binary matte M' Output: Blended image S'

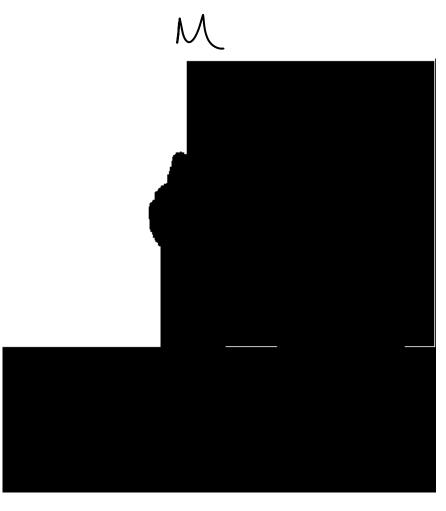
Pad to make size (2N+1)x(2N+1)



Input: Source images A, B Output: Blended image S

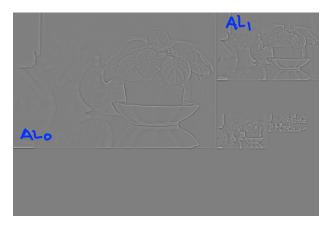
2 binary matte M





Input: Source images A, B Output: Blended image S'

2 binary matte M



1) Compute As

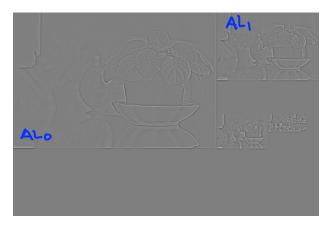
Laplacian

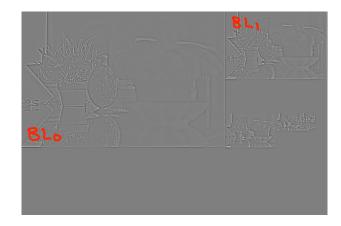
Pyramid:

ALD,...,ALD-1,A9N

Input: Source images A, B Output: Blended image S'

2 binary matte M





① Compute As

Laplacian

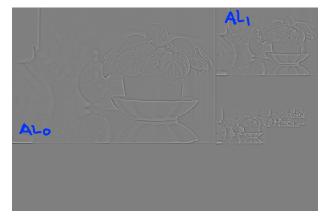
Pyramid:

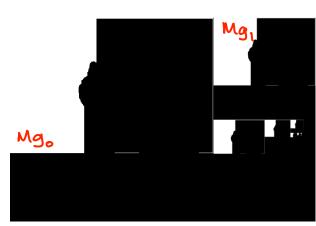
ALO,...,ALN-1,A9N

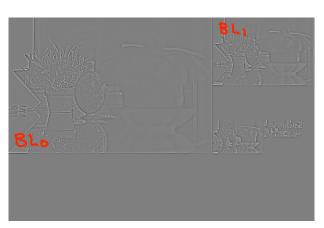
© Compute B's Laplacian pyramid:
Blo,..., BLN-1, Bgn

Input: Source images A, B Output: Blended image S'

2 binary matte M







- 1 Compute As

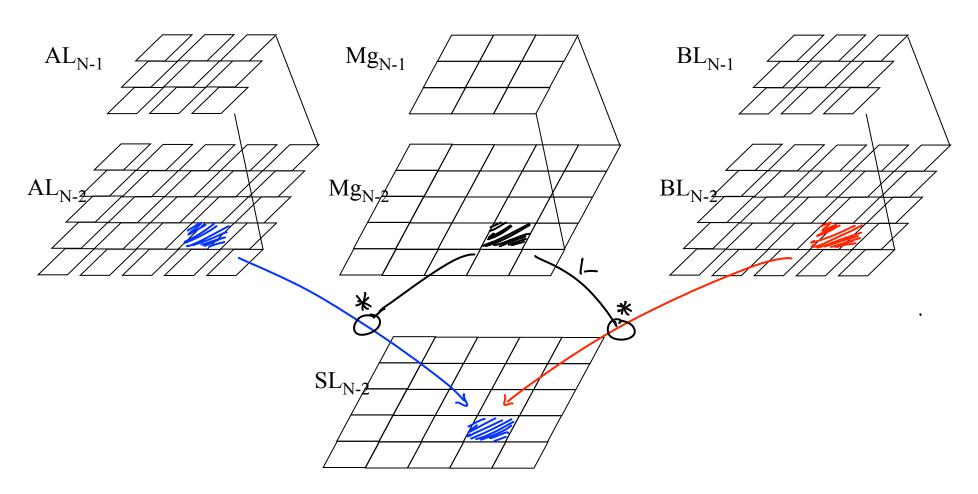
 Laplacian

 Pyramid:

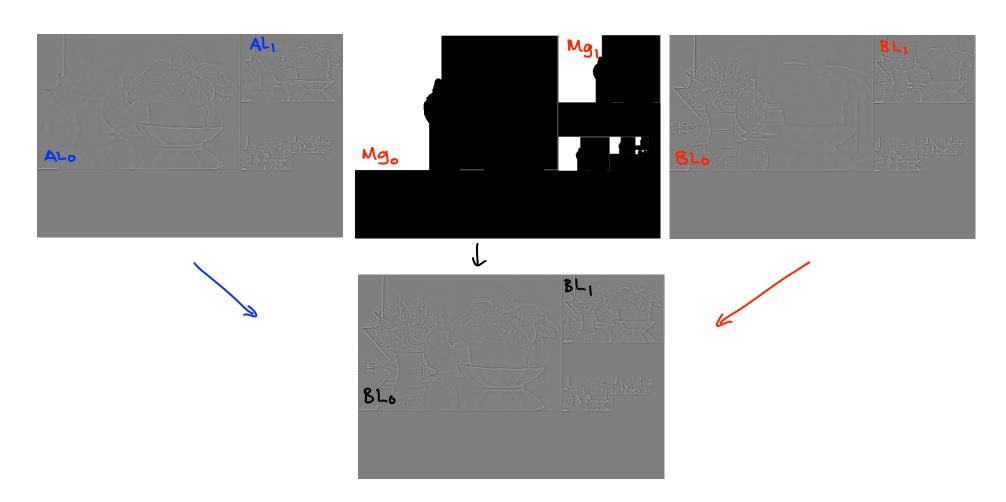
 ALD..., ALD..., AGN
- 3 Compute M's Gaussian pyramid:
 Mgo,..., Mgn

© Compute B's Laplacian pyramid:
Blo,..., BLN-1, Bgn

(4) Compute the Laplacian pyramid, SLo, SL1,...SLin-1, Sgn by applying the matting equation with matter Mge: SLe(i,j) = Mge(i,j) ALe(i,j)+(1-Mge(i,j))BLe(i,j)



(4) Compute the Laplacian pyramid, SLo, SL1,...SLin-1, Sgn by applying the matting equation with matter Mge: SLe(i,j) = Mge(i,j) ALe(i,j) + (1-Mge(i,j)) BLe(i,j)



The algorithm effectively uses a different alpha matte for each level of detail 1 detail => 1 feathering window I detail => 1 feathering window Mg.

(5) Compute level 0 of the Gaussian pyramid of S from SLo, ..., SLN-1, SgN

Result SI

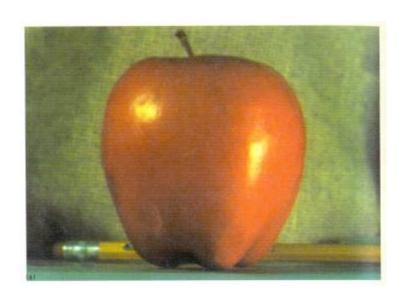
Blending Mis-Matched Photos (still looks OK)

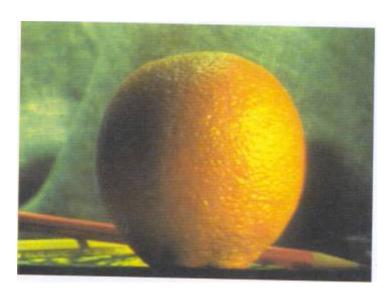
Merging Mis-Matched Photos (no blend)

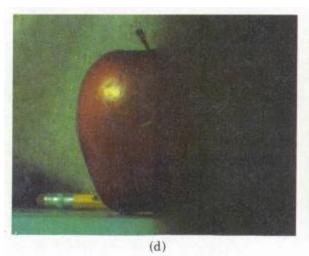
Blending without Using Pyramid

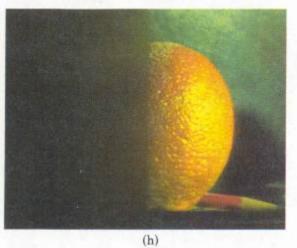
Blending without Using Pyramid

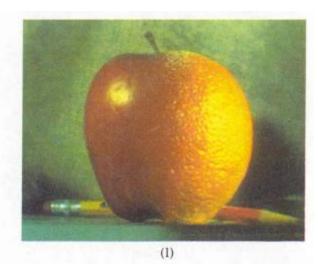
Pyramid Blending

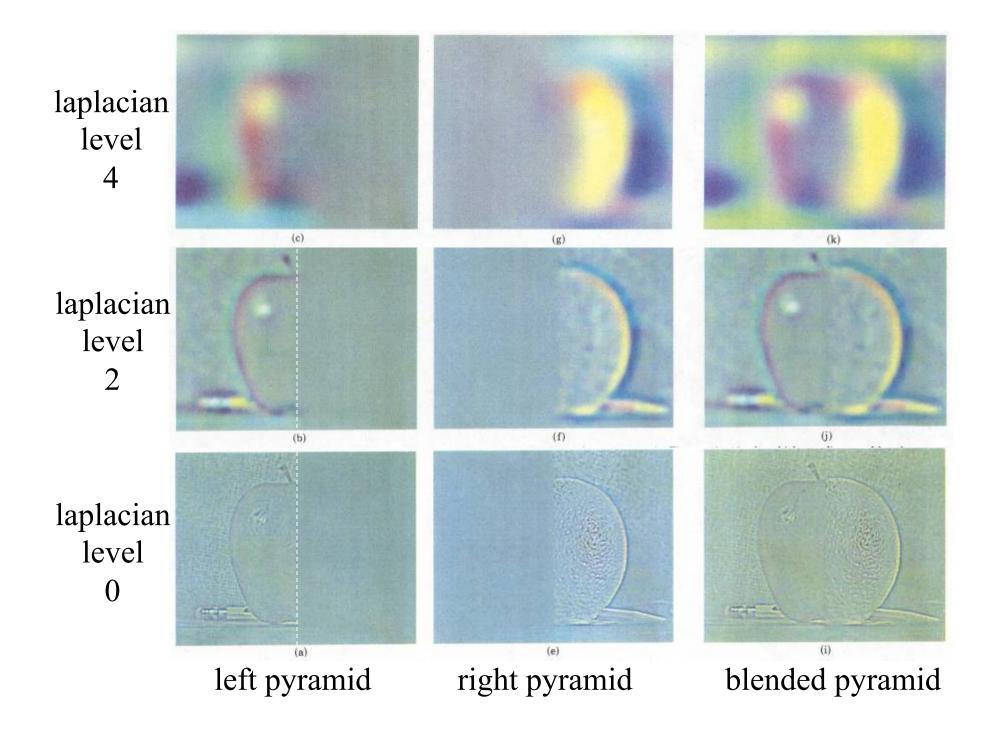




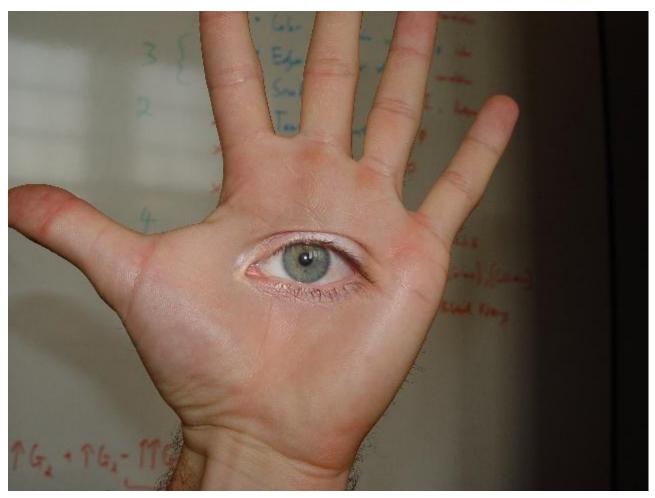








Horror Photo



© prof. dmartin