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Topic 6:

Hierarchical image
representations

1. Gaussian & Laplacian pyramids
2. Applications:

1. Multi-resolution image blending
2. Multi-resolution image editing

3. Multi-resolution texture synthesis



Topic 6.1:

Gaussian & Laplacian
Pyramids

e The Gaussian pyramid (intro)

e The convolution operation

e Constructing the gaussian pyramid
e The REDUCE() function

e Constructing the Laplacian pyramid

e The EXPAND() function



The Gaussian Pyramid

The Gaussian Pyramid: A representation in multiple scales

Original Image



The Gaussian Pyramid

The goal is to define a representation in which image
information at different scales is explicitly available (i.e. does
not need to be computed when needed)

Applications:
*Scale invariant
template matching
(like faces)
*Progressive image
transmission
*Image blending
Efficient feature
search




Application 1: Pyramid Image Blending

Goal: Merge two images without visible seams

(d) (h)



Horror Photo

© prof. dmartin



The Gaussian Pyramid

The elements of a Gaussian Pyramids are smoothed copies of the
image at different scales.

Input: Image | of size (2N+1)x(2N+1)




The Gaussian Pyramid

The elements of a Gaussian Pyramids are smoothed copies of the
image at different scales.

Input: Image | of size (2N+1)x(2N+1)

Output: Images g,

Note: The original image is
part of the output!




The Gaussian Pyramid

The elements of a Gaussian Pyramids are smoothed copies of the
image at different scales.

Input: Image | of size (2N+1)x(2N+1)

Output: Images g,, g,

25— — 2V

where the size of g, is: 7

(2N-14+1)x(2N-1+1)
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The Gaussian Pyramid

The elements of a Gaussian Pyramids are smoothed copies of the
image at different scales.

Input: Image | of size (2N+1)x(2N+1)

Output: Images g,, g, &,

25— — 2V

where the size of g, is: 7

(2N-24+1)x(2N-2+1)

|
e
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The Gaussian Pyramid

The elements of a Gaussian Pyramids are smoothed copies of the
image at different scales.

Input: Image | of size (2N+1)x(2N+1)

Output: Images g, 8, -+» 8n-1

2% ———»  — 2V

where the size of g; is:

(2N+1)x(2N1+1)




And they called this a Pyramid?

Yes, because the representation can be pictured as a pyramid of
3x3, 5x5, 9x9,..., (2N+1)x(2N+1) images when stacked.

EN-1
/

EN-2 / /
a4

g, 1s the original image




This is silly, why not just sub-sample?

Take every 2d
pixel from | for g,
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Take every 4th
pixel from | for g,




This is silly, why not just sub-sample?

Take every 8t
pixel from | for g,
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pixel from | for g,
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This is silly, why not just sub-sample?

Take every 2d
pixel from | c

Take every 8t
pixel from | for g,

Take every 4th
pixel from | for g,
Take every 16t
pixel from | for g,

and so on...



This is silly, why not just sub-sample?

Take every 2d
pixel from | for g,

Take every 8t
pixel from | for g,

Take every 4th
pixel from | for g,
Take every 16t
pixel from | for g,

All the information is there already, or is it not?



This is silly, why not just sub-sample?

Take every 8t
pixel from | for g,

Take every 2d
pixel from | for g,

Take every 4th

pixel from | for g,
Take every 16t

pixel from | for g,

NO! SUBSAMPLING ALONE LEADS TO ALIASING



Forsyth and Ponce



Sub-sampling is not enough!

I N l l | | [ ]
| ' ' —
[ | | | | l ‘ I | — 7
O 1 2 3 4 5 6 7 8 9 10
Because of “Aliasing”, sub-sampling may have
catastrophic effects.

Aliasing arises when a signal is sampled at a rate that is
insufficient to capture the changes in the signal (and in
Gaussian Pyramids, this will always happen as sub-
sampling is twice as sparse at each level!)



Smoothing

The solution to aliasing effects is smoothing, effectively
reducing the maximum frequency of image features.

In other words smoothing removes the fast changes that
sub-sampling would miss.

Smoothing



Building (or computing) a Gaussian Pyramid

To generate a Gaussian pyramid,
iterate between these two steps:

Smoothing: Remove
high-frequency
components that
could cause aliasing.

Down-sampling:
Reduce the image size
by % at each level.




Building (or computing) a Gaussian Pyramid

To generate a Gaussian pyramid,
iterate between these two steps:

Smoothing: Remove
high-frequency
components that
could cause aliasing.

Down-sampling:
Reduce the image size
by % at each level.

Good, but how do we actually implement this?



Topic 6.1:

Gaussian & Laplacian
Pyramids

e The convolution operation



Image Smoothing Using Averaging Masks

We know about (both the normalized and un-normalized)
the cross correlation operators.

cc ()(c,T) =Xi'/
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What happens if we evaluate them with
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everywhere in the image?



Image Smoothing Using Averaging Masks

Smoothing can be achieved by averaging neighboring pixels.

The strength of a smoothing operator is proportional to the
number of pixels it averages.

Averaging can be computed as the Cross-Correlation of the
image with a constant kernel, like:
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Image Smoothing Using Averaging Masks

Original Image




Image Smoothing Using Averaging Masks

Result of Cross-Correlation with 3x3 Mask
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Image Smoothing Using Averaging Masks

Result of Cross-Correlation with 5x5 Mask
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Image Smoothing Using Averaging Masks

Result of Cross-Correlation with 15x15 Mask

15x15 array of
elements equal
to 1/225



Image Cross Correlation <~ Matrix Multiplication

Cross correlation in 1D can be computed using matrix multiplication,
for instance, let:

I: one row of the image (with M pixels)
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T: a template (with 2w+1 pixels), suchas [T, T .1, - Tor - Tworr Tl
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Image Cross Correlation <~ Matrix Multiplication

Then, the cross correlation at pixel w can be computed using:

I: one row of the image (with M pixels)
T: a template (with 2w+1 pixels), suchas [T, T.,.1, - Tor - Tuw.1r Tl

Ie 7|
\ 7
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Image Cross Correlation <~ Matrix Multiplication

Then, the cross correlation at pixel w can be computed using:

I: one row of the image (with M pixels)
T: a template (with 2w+1 pixels), suchas [T, T.,.1, - Tor - Tuw.1r Tl

o Tw-l Tw
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Image Cross Correlation <~ Matrix Multiplication

Then, the cross correlation at pixel w can be computed using:

I: one row of the image (with M pixels)
T: a template (with 2w+1 pixels), suchas [T, T.,.1, - Tor - Tuw.1r Tl

see W_l’ W

And for all the pixels in [w, M-w-1]:
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Image Cross Correlation <~ Matrix Multiplication

Then, the cross correlation at pixel w can be computed using:

I: one row of the image (with M pixels)

T: a template (with 2w+1 pixels), such as [T, T4,

And for all the pixels in [w, M-w-1]:
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How about pixels in:
1, 2, ..., W]

and

IM-w, M-w+1, ..., M]?



Image Cross Correlation <~ Matrix Multiplication

How about pixels at [1, 2, ..., w] and [M-w, M-w+1, ..., M]?
Options (to taste, with advantages and disadvantages):

e Wrap around in |

 Define new templates

 Assume |l is zero for the out-of-image
e Extrapolate (in-paint!?)




Cross-Correlation Expressed as a Sum
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Cross-Correlation Expressed as a Sum
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Cross-Correlation

Expressed as a Sum

(Jo] [ T-TwO~ -0 To ]
{S\ T_‘TD Tu Tw (o) Il
S| T T - T el T e || T
J?{v-ﬂ o T, To ':Ev., Tw - 19 Iwﬂ
:SZ'GCCI)T>=‘ = :
P
o O ’l'..,’l_'.,..---T.,'l'oT.
LS.M | 0~oT, " TLTT ||t |
| M-\
Gemeval T - z I, T,
cum  horarion: | w T
M—4 for instance: 1
Y ap ~ M- —
j;" Z L leg g = 2 Ly eaw
K-?- O \C.zo
\ M~—1
O£ \§{M-1 B T
\ - Z J—\C ‘T\L-—(w‘n)



Indexing by image position, not template position

'Jo.\ -ToTu-'Two """ (@) [ To A
| |LeT T o I,
30| [T T - T et T o || T
Jbﬂ OT_N To o Tw - O LV."
S=ec(L,P)= | |- ) :
L.
0 0 Tl ~T.TT
Bﬂ | o-oT -TTT _qu-\l
— |
Geneval o
swm  norakon: CST.T
M—4 : SR LIS 4
3‘ S T. T, Equivalent to: 1= o
L L T kel 0. 1{ M1
K= 0O
0 £ \{M=1

’Ko\okq'\v\ek Eﬂ Su\oS\"\JW{ﬁV\S

{- - ch\em\ Swm
Netabon Cormnla



The Convolution Operation

A similar operation to Cross Correlation is Convolution:
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The Convolution Operation

The convolution operation is one of the most fundamental
operations in image (and signal) processing.

In this context
| is the “image” or the “signal”

T is the “filter”, “mask”, “template”, “impulse response”,
“kernel”...

Notation: L% | : reads as “the convolution of | with T” an means:

Convo \u,’hon

(IxT), = LIT



The Convolution Properties

1. For symmetric masks, convolution is equal to cross-correlation:
‘ —

CCC1) T'> = Ix]
uo\’\-Q.V\ Tl, < T"L

2. Commutativity:

L7 7|

3. Linearity: —
(QT_‘\' lo3)*T = You may want
a(T¥ T+ b (3%7) to prove
’COV' O.V\ﬂ COV\%%QV\*s Q,J‘o ] these dsan

exercise.




The Convolution Properties

But images are 2D!



The Convolution Properties

Similar to 2D cross-correlation. For a M by N image:

S S 1) Tlew -0

=0 l=0

(T T)ew)=

This can get expensive. If the image is M by N and the Template
is P by Q, the complexity is:

O(MNPQ)



The Separable Convolution

There is one very special case, when the Template is “separable”.

Separable templates are such that T=PQ' for some vectors P, Q.

taqual 4(*0 >tk Col
P: @y \)’-H\ ol - = [ é\? :\
| J
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row vecor &
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The Separable Convolution

There is one very special case, when the Template is “separable”.

For instance, is the “Sobel” kernel separable?



The Separable Convolution

There is one very special case, when the Template is “separable”.

For instance, is the “Sobel” kernel separable?



The Convolution Operation

When a kernel is separable the 2D convolution can be obtained
from 2, cascaded 1D convolutions. The algorithm is as follows:

1. Compute the 1D convolution between each row of | and Q
to obtain I'.

I 1’
\c-!fkmw'—&E-

2. Compute the 1D convolution between each row of I’ and P,
to obtain the final 2D result:

1
%P
>

A



The Convolution Operation

When a kernel is separable the 2D convolution can be obtained
from 2, cascaded 1D convolutions.

In the previous slide, we first convolved rows of | with Q to
obtain I’ and then columns of I’ with P to obtain the final result.

The same result can be obtained by first convolving columns of |
with P to obtain I’ and then convolve rows of I’ with Q.

You may want to
prove this as an
exercise



Topic 6.1:

Gaussian & Laplacian
Pyramids

e Constructing the gaussian pyramid



The Gaussian Pyramid

The Gaussian Pyramid: A representation in multiple scales

Original Image



The Gaussian Pyramid

The elements of a Gaussian Pyramids are smoothed copies of the
image at different scales.

Input: Image | of size (2N+1)x(2N+1)

Output: Images g, 8, -+» 8n-1

2% ———»  — 2V

where the size of g; is:

(2N+1)x(2N1+1)




Building (or computing) a Gaussian Pyramid

To generate a Gaussian pyramid,
iterate between these two steps:

Smoothing: Remove
high-frequency
components that
could cause aliasing.

Down-sampling:
Reduce the image size
by % at each level.




Operation #1: Smooth Image, recursively

Take the original image g, and
compute g, using:
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Operation #1: Smooth Image at N-1 Scales

3.

To estimate g, repeat using g, as
the input:




Operation #1: Smooth Image at N-1 Scales

3.

To estimate g, repeat using g, as
the input:
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Operation #1: Smooth Image at N-1 Scales

3,

And so on...




Operation #1: Smooth Image at N-1 Scales
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And so on...




Operation #1: Smooth Image at N-1 Scales

35

And so on...




Operation #1: Smooth Image at N-1 Scales

3,

And so on...




Operation #1: Smooth Image at N-1 Scales

3,




2D Kernel to 1D kernel, how?

To take a 5x5 2D kernel into a 1D kernel we must satisfy 4 criteria:

1.
2.

The window size must remain the same: 5 elements.
The kernel must be symmetric around its origin

Cc
- 14
W= b
C

Applying w to a constant image does not change (intensity
preserving)

5 W)zt & a+2b +2e A

The ratio of the contributions should follow:

o+2c=2b = VZ



2D Kernel to 1D kernel, how?

The conditions on the previous slide render filters of the form:
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2D Kernel to 1D kernel, how?

This means that to estimate the it" pixel at the (I+1)" level one
must do:

g 3 ﬁl
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2D Kernel to 1D kernel, how?

This means that to estimate the it" pixel at the (I+1)" level one
must do:
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Defining the Smoothing Filter in 2D

A Yo
81 = W X go
w15 O\Z@E_q_@ﬂ_c_
Swootw gl\l)(“&l‘
detined :cé_/]’ W
. AT
1 U] |
= |w
i 17 B{Ploilr\"v‘g SQ,PQPOJQ\‘\.\"\‘n }o
s — ,\l N COW\PUA‘Q %l:
Sx{ vector
@ COV\vo\ve Q_OLCJm rouvo ®Q
W(W\,V\) = v’:/(w\)\,'\} CV‘) 9e withh. W

@ COV\VO\Ve— —\(M. coluwmn s
of e vesult ik

W oo



Operation #2: Downsample the Smoothed Image

Downsample by taking every
other pixel.

Smoothing prevents aliasing
effects.

e
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Topic 6.1:

Gaussian & Laplacian
Pyramids

e Constructing the gaussian pyramid
e The REDUCE() function



Operations #1 & #2: The REDUCE() Function

The REDUCE() function combines smoothing and down sampling.

At

N-L )
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Q= REDVCE (q0) NN
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The REDUCE() function
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The REDUCE() function
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The REDUCE() function
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The REDUCE() function
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What Does Smoothing Take Away?




What Does Smoothing Take Away?
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What Does Smoothing Take Away?
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Topic 6.1:

Gaussian & Laplacian
Pyramids

e Constructing the Laplacian pyramid
e The EXPAND() function



The Laplacian Pyramid

What if instead of storing the smoothed images, we
store only the difference between the levels g, and g, ,
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The Laplacian Pyramid

What if instead of storing the smoothed images, we
store only the difference between the levels g, and g, ,
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The Laplacian Pyramid

What if instead of storing the smoothed images, we
store only the difference between the levels g, and g, ,
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Operation #3: The EXPAND() Function

And we can write this with an equation:




The EXPAND() function
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The EXPAND() function
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The EXPAND() function
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The EXPAND() function
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The Laplacian Pyramid

L, = 8o~ EXPAND (g,)




The Laplacian Pyramid
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The Laplacian Pyramid
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The Laplacian Pyramid
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The Laplacian Pyramid

But we can use the Pyramid in the opposite way too. To recover
g,, We can do:

g, = L, + EXPAND (g,)




The Laplacian Pyramid

But we can use the Pyramid in the opposite way too. To recover
g,, we can do: g, = L, + EXPAND (g,)
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Transmission using EXPAND

‘Q\ECE‘V%‘QJ @DYSP\% @) Display O Dws\a\aﬂ d, =
a3 = dat On= d1+ ExPant (o)

exPang (Len) EXPAND U—v.-\) ®va\$‘m"l‘ Ox

[TRAvSMITTER |

(D Transmit (D Transmit @ T—raV\Sm»Sr > Transmit
-4 ez Lo Ly



Topic 6:

Hierarchical image
representations

2. Applications:

1. Multi-resolution image blending



Image Blending
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Effect of Window Size
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Effect of Window Size




Image Blending
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Application #1: Pyramid Blending Algorithm

\V\PV\*“. %OUWGQ \‘w\aaeg A’% L b‘warp W\OkH-e, M
Ourpus: Rlended {\,\,\@\%Q < .




Pyramid Blending Algorithm
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Pyramid Blending Algorithm
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Pyramid Blending Algorithm
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Pyramid Blending Algorithm
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Pyramid Blending Algorithm
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Pyramid Blending Algorithm
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Pyramid Blending Algorithm
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Pyramid Blending Algorithm

The alqorrthm 6Q$ecfﬂve,\ uses o ifferent alpha
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Pyramid Blending Algorithm
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Pyramid Blending Algorithm




Blending Mis-Matched Photos (still looks OK)




Merging Mis-Matched Photos (no blend)




Blending without Using Pyramid




Blending without Using Pyramid




Pyramid Blending
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Horror Photo
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