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Reminders

Midterm is next week, here at 6:00.
Please be here on time.

A2 is due this Sunday (March 2) at 11:59:59.999.

Alternative office hour on Mondays at noon.



Topic 05:

Representing Images as
n-Dimensional Vectors

e Template matching:

e cross-correlation & normalized cross-correlation
e Principal component analysis

e geometrical intuition: changing basis

e the eigenfaces recognition algorithm

e algorithm derivation: minimizing sample covariance



Template Matching Applications

Face detection & recognition

Fujifilm Debuts FinePix Digital Camera With Face

Detection Technology

Mew FinePix S600fd offers breakthrough focusing technelogy, company also rells out

compact FinePix F20.

Bv POFPHOTO.COM STAFF
July 12, 2008

Fujifilim introduces the SLR-styled FinePix
SEO000FS, the first digital camera in Fujifilm's
line-up with the company's revolutionary new
Face Detection Technology.

Face Detection Technology operates exactly as
itz name implies, identifying up to 10 faces ina
framed scene. Once faces are identified and
prioritized, the 6.3-megapixel FinePix S6000#
adjusts its focus and exposure accordingly to
ensure the sharpness and clarity of human
subjects inthe picture, regardless of
background. And since itis hardware rather
than software hased, Fujifilm's Face Detection
Technology works in as little as 0.05 seconds,
faster than similar in-camera detection
systems currently on the market or soon to be
available.

Quicker operation is said to raduce the
likelihood of missed o blury photas,
frustrations often associated with digital
photography. The advanced Face Detectian
Technology system builtinto Fujifilm’s new

The FinePix S6000fd is the first digital camera in Fujifilm$s

FinePix SEO00fT digital camera is based on the line-up with new Face Detection Technology.

Image Intelligence technology found in Fujifilm's Frontier Digital Lah Systemns, used by photofinishers to prodqu

(Felzenszwalb and Huttenlocher, 1JCV 2005)



Representing Images & Patches as Vectors

As graph in 2D

We covered some tools that can
be applied to 1-D image patches

X UM represented as vectors.
i X




Representing Images & Patches as Vectors

As graph in 2D

b,

2w+

For example, a patch of radius w:

PO\J'CL\ >< (2w+./L P")‘e\s)

O X
| x 2 W+ 2w+ |

x

is simply a (2w+1)-dimensional
(column) vector.

|




Representing Images & Patches as Vectors

As graph in 2D And you can think of it as a point in the
- (2w+1)-dimensional space.
& N
_?E Xw-u XS g)OY
g - [ 2w i
\,"\J/\/Wn/\ X e \ X | topixel OX(S ?or

)<7, /y\ ‘ Zﬂd Pi)(e,




Representing Images & Patches as Vectors

A simple example is a patch x that is just a 2-dimensional
vector, such as a 2 image pixel patch:

‘750 \ 255|
- IW\‘CV\‘»@ of

/LP‘AQ,\ VA
- 60
VS po—e .
which can be represented potoh X ( l’—'ﬁ])
as a point in 2D space |

| mfewsrlj of

2 pixel |




Representing Images & Patches as Vectors

And if we think in terms of 2-pixel patches, a tiny (1x10 pixels)

image like:

50 \155 0 | yo

200|110 2001250 100

can be thought of as containing nine 2D patches (vectors)

200|100 | SO 200!250 lOO\

So | 255|320 | yo

with their corresponding 2D
point representation:

Iwievs \4’3 Of

/} Pixe\ 2




Representing Images & Patches as Vectors

Now, if patches are size 3, then a patch like

2 [0

lV\l‘QV\%"’ﬂ Oe / J ’ ‘-':
can be represented as a Piees /3\ , | )
point in 3D space ) J/
30 + |
/ S lleV\S{J@ d-P




Representing Images & Patches as Vectors

And the same tiny (1x10 pixels) image

5o \ 1595

20 | o

200|110

-—

50

Rl

can be thought of as containing eight (not nine) 3D vectors

with their corresponding 3D
point representation:

50 ‘155 go | too|lio | SO | 200 ‘ =0 wo\
L ",)\N o
P )

X| Xz_ X(&

ml'(’,V\S)‘M af

Pixel 3




Representing Images & Patches as Vectors

But the choice of patch size looks pretty arbitrary...

So {25520 | yo | 200|lip | SO | 200 ! 20 coo\
\ _ l)( l— ) —,
K. [A )(5’ )(q
50 \165 0 | yo | 200|li0 | SO | 200 ! ) IOO\
L — R

e
X‘ XZ



Representing Images & Patches as Vectors

But the choice of patch size looks pretty arbitrary...

SO | 255|130 | go | 2oo|liD | SO 200!250 aoo\

| F—
X g <5 Xq
50 \165 20 | yo | 2000 | SO | 200 ! 20 400\

And it is!

We determined
which pixels go in
each patch.



Representing Images & Patches as Vectors

Is there anything preventing us from creating 1D vectors
from 2D patches then?

Think of the following 3x10 image:

50\15‘330 o | 30 | 1o || SO 2&3‘250 IDO\

%O‘wo toOIs‘o 60|30l %0 60\20 Qo
‘1\”°l70 30 [fo (90 150 \oo\w‘o

(00

Can we think of this patch as a vector of size 97



Representing Images & Patches as Vectors

Is there anything preventing us from creating 1D vectors
from 2D patches then?

Think of the following 3x10 image:

50\15‘3 20 |lgo | 30 | 1o || SO 2001250 IDO\
%0 ‘wo Loo |co 60|30l 30| 60 \ %0 | Qo
‘lx*ol% 30 (8o |90 |00 ||250 \oo\w‘o

"%o“
\x.[5

(= oo
SO
60
30
&0
ao

| 100 |




Representing Images & Patches as Vectors

Is there anything preventing us from creating 1D vectors

from 2D patches then?

Think of the following 3x10 image:

S0 \155 20 |lgo | 30 | o || SO 2z>o‘250 wo\ AbSOIUtE'V!

‘60‘7400 100'CO 60|30 %0 60\20

Qo
‘,\Ao!qo 30 (ko |20 | 100|250 \oo\w‘o‘_i Equally arbitrary,

I $0 7

X.. |2
L'; oo

SO
60
30
&0

ao
| 100 |

but similar
properties and
interpretation.



Representing Images & Patches as Vectors

Now, why would we want to loose the absolute spatial
information?



Representing Images & Patches as Vectors

Because a vector representation allows us to compute
similarity between (1D or 2D) patches using simple vector
operations.

_
_

I
o

Dissimilar Similar



Representing Images & Patches as Vectors

Patch similarity is the foundation of an important detection
procedure called template matching.
The intuition is, can we find the location of

this template




Representing Images & Patches as Vectors

And get this
location as the
one most
similar?




Representing Images & Patches as Vectors

Template matching sounds useful but...

How?

At what computational cost (in terms of memory
and number of operations)?



Representing Images & Patches as Vectors

Estimating similarity between image patches.
Here are the patches from 3 slides ago, in 2D space:

e - .

x,=[100,200]

x,=[100,200]

N X,=[180,190]

X,=[200,50] B

Dissimilar Similar



The Template Matching Problem

The goal is to find the image patch x, that is most similar to a
template T.
How about the distance?

Intevs rb 019
ixe\
/L ’ “ \/&‘}Or
US5S 2 /




The Template Matching Problem

Measuring distances can be done in many different ways.
Here is our Similarity function #1.

wﬂ:ev;c,.b of Root Mean Squared Distance
Pixe\ 2




The Template Matching Problem

The goal is to find the image patch x, that is most similar to a
template T. The problem can be formally written as:

Find Giamm X T
3><;

RMS

argmin is a shorthand for “the x; that minimizes the
expression to the right”.



The Template Matching Problem

The goal is to find the image patch x, that is most similar to a
template T. The problem can be formally written as:

Find Geamim X -TI
3>(;

Note that efficiency can be improved by minimizing lx, -TI\*

which minimizes in the same x; and saves the square

root computations.
This new formulation can then be written as:

_ T
arg)v;n v (X -T) (6-T)



The Template Matching Problem

Again, note that this 1D metric is equivalent to the 2D operation
that keeps the spatial relation of the template and the image.

For instance, if a patch is centered at pixel (r,c) and the template
is of radius N, then the following equation computes the RMS
distance between the image patch and the template.

z

|
1

rwsdst ()= [ S50Y (I(rm,ub)J(a,b))

a =N b=-yp



Template Matching Algorithm

Basic Template Matching Algorithm:

1. Define a matrix RMS_Di st of size equal to the image. This
will hold the RMS distance at each pixel.

2. Compute (X: -T) Q(.-T) for each patch x; (centered at
coordinates (c, r) in the image), where it is possible to
compute.

3. When RMS distances between the template and all patches
have been computed, search over RV5 _Di st to find the

pixel with lowest intensity.



Template Matching Algorithm

Basic Template Matching Algorithm:

1. Define a matrix RMS_Di st of size equal to the image. This
will hold the RMS distance at each pixel.

2. Compute (X: -T) Q(.-T) for each patch x; (centered at
coordinates (c, r) in the image), where it is possible to
compute.

3. When RMS distances between the template and all patches
have been computed, search over RV5 _Di st to find the

pixel with lowest intensity.

What is the problem with this distance metric?



Template Matching Algorithm

The problem with this distance metric.

A [Ty 06-7) |

X

| -

Thoughts?




Template Matching Algorithm

The problem with this distance metric.

\/X
>

What is the distance from T to this new patch x?

>



Template Matching Algorithm

The problem with this distance metric.

\/X
>

The same!




Template Matching Algorithm

The problem with this distance metric.

Circle Oze veckors
[ M\at onre
X equadiskant

Q"O W\ \

In fact, there is an
infinite number of
image patches that
render the same
distance.




Template Matching Algorithm

But there is a problem with this distance metric.

Circle Oze veckors

[ Mot ore
eqwu A sba VA‘

Q"O W\ \

In fact, there is an
infinite number of
image patches that
render the same
distance.




Template Matching Algorithm

But there is a problem with this distance metric.

Circle of vectors
[ M\t ore
X equadiskant

cco W\ \




Representing Images & Patches as Vectors

would be small




Template Matching Algorithm

l, is just a scaled version of x,, but the RMS(x,,T) is much
bigger than RMS(x,,T) (which is almost zero)

/\




Representing Images & Patches as Vectors

would be small

would be large

RMS cannot distinguish between patches that are just scaled
versions of T, from other patches that differ in other ways.



Representing Images & Patches as Vectors

Is there anything we can do?



Topic 05:

Representing Images as
n-Dimensional Vectors

e Template matching:

e cross-correlation & normalized cross-correlation



The Template Matching Problem

Measuring distances can be done in many different ways.
Similarity function #2.

uvﬁcvns»b of Cross-correlation

Ptre\ 2 _
ISS/L ._ cc (Yc,T) = X, -0

i.e. the dot product between
the two vectors

The projection from one onto the other.



The Template Matching Problem

Properties of cross-correlation CC(x;, T)
Depends on the lengths of x. and T (still ®)

From all x. of the same length, the CC is maximum when
x; and T have the same direction.

CCis zero when x. and T are orthogonal (most dissimilar!)

{ —_

cc ()(c,T) = X, - |

= || (N7 cod2



The Template Matching Problem

Measuring distances can be done in many different ways.
Similarity function #3.

mjfﬁvﬁvb Of
Pire\ 2 Normalized Cross-Correlation
259 X
~ X T
Ve (Y" ) TR
= cof?

The cosine of the angle between the two vectors.



The Template Matching Problem

Properties of Normalized Cross-Correlation:
Independent of lengths of x. and T (finally ©)

Maximum (NCC(x, ,T)=1) when the intensities of x, and T
are the same, up to a scale factor

Minimum (NCC(x,,T) =0) when x, and T are orthogonal
(most dissimilar).

NCC(x,T) = CC(x,, T) when x, and T are unit vectors.



2D Template Matching Using CC & NCC

Note that Cross-Correlation and Normalized Cross-Correlation
can be computed as a 2D sum

CC-O\\%%((')C )1 Z Z I(T'fOk’C-tb) T(O\,b)

(24N | b == |
( S0 \ 255 qO x So \7/55 20 |lgo | 30 |1 || SO | 200 ! 0 ooo\
0 _
row — |« | WO |00 roove r oo %D "Loo lOOICO 60|30]|| 30|60 | 30 | Qo
)0 (40 |30 [(s0 l‘io 30 (fo [0 |(00 | 250 | 100 | 260
co\ O col ¢

Q‘. w\/\a‘\ 5 e 2p Sum eXpFEsSSIon gioy- nNCce 7



2D Template Matching Using CC & NCC

Applying this procedure to the entire image

7-ewv[>|aJ:a ) (M Pixc\%) ’MQSQ T (N POA'C\"9§>
\:. - \'} - C‘QC\A. \W\a%e

I = M -anemﬁional M —d|wmensi ovel
CO’uwm vector cclumn  vectov

What is the computational complexity?



2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000

T.CIMFlOJz ) (M Pixc\%) ’MCASQ T (N P‘ﬂcheﬁ}
e - - 2 3 C eg. N 166
%\"—' - \J \(3 M= 2| -4y m:— wooq Cacl wage
_ M — potel =
[ = M —AlWMV\%iOhO' (ooTO M ~dimeni ovel
o luwin vector cclumn  vectov




2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000

Tewnplaclz ) (M Pixe,\$> ’MQSQ 1 (N PQJ“C“?«5>
e - - 2 3 C eg. N 166
%\"—' - \J \(3 M= 2| -4y m:— wooq Cacl wage
_ | — potel =
I = M —clwvwvﬁ\'cmal (ooTo M ~d\mems ovel
o lumn vector L cclummn  vectov

If we use CC as the distance metric, we do M multiplications
and M-1 additions per pixel in the image |.



2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000

Tewnplaclz ) (M Pixe,\$> ’MQSQ 1 (N PQJ“C“?«5>
e - 2 3 C eg. N 166
%\"—' - \J \(3 M= 2| -4y m:— wooq Cacl wage
_ | — potel =
I = M —clwvwvﬁ\'cmal (ooTo M ~d\mems ovel
o lumn vector L cclummn  vectov

The complexity when using CC is in the order of O(MN)
operations for the entire image.



2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000

Tewnplaclz ) (M Pixd%) ’MQSQ 1 (N PQJ“C“?«5>
e o - 2 3 C eg. N 166
%\"—' - \J \(3 M= 2| -4y m:— wooq Cacl wage
_ | — potel =
I = M —c:‘IVV\£V\6iOha' (ooTo M ~d\mems ovel
o lumn vector L cclummn  vectov

The complexity of NCC is also O(MN), with only some more
products and additions to normalize the patch (x;) vectors.



2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000

T.CIMFlOJz ) (M Pixc\s) ‘MCASQ T (N pa*‘c\/\?ﬁ)
e - 2 3 C eg. N 166
%\—'—' - \j \lg M= 2| -4y m:— wooq Cacl wage
_ M — potel =
[ = M —Anw\emeional wOTO M ~d\memnsi ovel
co luwin Vector L cclumn  vectov

These are over 1 billion operations!



2D Template Matching Using CC & NCC

Matching a template of 21x21 to an image of 1000x1000 requires
around 1 billion operations.

Is there a way to represent x, and T with d<<M to improve
efficiency?

Taking O(MN) down to O(dN)

(with d =5, as opposed to d = 441, for instance)



Template Matching: Computational Issues

This problem is called Dimensionality Reduction

and using it can lead to speed-ups of orders of magnitude!



Template Matching: Computational Issues

Demo!



Topic 05:

Representing Images as
n-Dimensional Vectors

Principal component analysis

e geometrical intuition: changing basis



Linear Dimensionality Reduction: Basic Intuition

Lets look at an example to develop some intuition about
dimensionality reduction.

IV\‘\'CV\QI“‘U
of i
Pircel 2 "‘ . ° ', 'S .
* . . ". o ‘e v
...‘. e . - ‘V !‘ ’.
.- * P g . A
. .. . Y
¢ ., 2 e
LY I
[ BN e
) S .-
el - ‘ |
-1 = > m%ev\s\ﬂ
\
01 X\ o pizxel L

Imagine a set of 2-pixel patches whose x, and x, values
are uncorrelated



Linear Dimensionality Reduction: Basic Intuition

Lets look at an example to develop some intuition about
dimensionality reduction.

IV\‘\'CV\QI“‘U
of i
P"‘C‘ 2 " ¢ ‘e - ’ R N .
* CON ". o ‘e v
...‘. e . - ‘V !‘ ’.
.- * . g . A
® .. . Y
¢ . . )
K e e
D] N e
o S -
el - ‘ |
-1 = > m%ev\s\ﬂ
\
01 X\ o pixel L

The coordinate of each of these patches can be
determined given two basis vectors.



Linear Dimensionality Reduction: Basic Intuition

Lets look at an example to develop some intuition about
dimensionality reduction.

IV\‘\'CV\QI“‘U
of .
Pircel 2 ."‘ . ° ', 'S .
* . . ". o .. 5
.'C‘. L. . - ‘v !‘ l.
.'. * [} g ) A
. .. . Y
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o o .
1 ‘ |
. ke = > m%ev\s\ﬂ
\
01 X\ o pizxel L

| chose unit vectors that aligned with the x and y axis, but
any two (non-parallel) vectors could have been used.



Linear Dimensionality Reduction: Basic Intuition

|v\“!,\r\$\-‘~lj

= 2 intensit Y

" " this setting, a point X. can
be written as:
basi1s veckorS
— N
x A ' ( O Xl
XL‘ = [ \ ‘1 - [() X'\ 1 l \
X g /"

Coord imates



Linear Dimensionality Reduction: Basic Intuition

Ih‘\"L\nSv‘-q

o3 T
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Linear Dimensionality Reduction: Basic Intuition

Ih‘\"L\nSv‘-q
o T
Picel 2 X'c D R
xPL 2o ot T
) e I
Lol L > inbensihy And the CC (T, x;) as

[(')] X\“ o pixe) L
-
C CCT ) X, ) = T XC Un CoOWSHrol ned

- T (u];‘ + [?] \))<f‘>
(T Lo))x (7 [?DKS

Notice both x;! and x.2 are relevant



Linear Dimensionality Reduction: Basic Intuition

Now imagine that pixels in a patch are correlated.

Let’s not imagine, but look at some actual data!



Linear Dimensionality Reduction: Basic Intuition

If pixel intensities are correlated, as in:

Ih‘\‘(h%v‘-q
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Linear Dimensionality Reduction: Basic Intuition

Then we can use different basis vectors with interesting
properties, for instance assume the basis vectors in black.

Ih‘\‘(\ﬂ%v‘-q
of 4\
Picel 2

whensid
?HQSjL

°£ Pix&\



Linear Dimensionality Reduction: Basic Intuition

Now, note that when pixel

lV\‘\"CV\%\“"ﬂ

2 T intensities are correlated, it
Pirel 2 4 . .
\ < : is possible to express a patch
T in terms of basis vectors

where only a few of the
coordinates are significant
> inhensity (not close to zero):

1

°£ pirel
X =Byt + B,y
—

Close to zero



Linear Dimensionality Reduction: Basic Intuition

imrewsity

0
puuz/\ o
ciag _ 1 2
i X =By + By

Close to zero

} In*@msiij
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Linear Dimensionality Reduction: Basic Intuition

imtensity

T

9
pue,ll/\ o

P — 1 2

s X =Byy; +Byy,

Close to zero

> In*?msiij

L
o pixel

And when this is true, then: cc (T, X;) ~ 9 : (TT&)
Compared to: < (T, Xi) - ))(\ )XG
Note that when pixels intensities are related, the choice of

basis vectors can make a big difference in computational
complexity.



Dimensionality Reduction by Principal Component Analysis

In summary:

We now know that carefully chosen basis vectors can
represent image patches of correlated pixels much more
efficiently

And we also know that in “natural images”, pixel intensities
inside each patch are highly correlated.

We can exploit these two pieces of knowledge to do template
matching much more efficiently.



Dimensionality Reduction by Principal Component Analysis

Algorithm:

1) Find the optimal set of basis vectors B, B,, ..., B,,. These
basis are often called the Principal Components.

2) Compute patch coordinates in that basis

3) Discard the axes with near zero coordinates for all
patches.



Changing the Basis: Matrix Notation

Keep in mind to this
that the goal
is to go from

. ' !
this X, - 'B'.(j.t 4 (E’L'ﬂ;
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Changing the Basis: Matrix Notation

In the original case, the basis matrix is the identity matrix.

x| Ok 4 wk |
el X, = [O}X‘ + [ ‘] X; lw watrix  wotation (‘ Por\’clf\> _
- A\ / basis matvix
Pirel 2 /\ uwnconshrvouiwe A S~
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Changing the Basis: Matrix Notation

In the alternative representation, the basis B, are the

transformations that take new coordinates y,, to reconstruct
the original data x..

MV\COV\S\‘MV\ ea‘ weaov- ([®)

Al N portches

B L)y

Y

1
N



Changing the Basis: Matrix Notation

The same is true for M-Dimensional patches: The reconstructed
data X. is the basis B times the new representations (Y,).

{Xa Xa - Xw]

\ \Bu %1”(‘5Ml‘

[

\

Ly oy, Y

1 2
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Changing the Basis: Matrix Notation

The same is true for M-Dimensional patches: The reconstructed
data X. is the basis B times the new representations (Y,).

X K Xw]

[

\%l %1 - '(BM ]
\ \ | ]
\At \57— ﬂnﬁ
TN Yo |
But crucially, many of these | Y yde 'Qif‘i y
coefficients will be close to : o »
zero and can be ignored. 2 vy, Y Yu



Changing the Basis: Matrix Notation

Eliminating these coefficients leaves us with a d-Dimensional
approximation:

X % Xo] = [B 8- B H\a ).

Note only d basis are used now, not M
(and d << M)




Changing the Basis: Matrix Notation

Finding these (not so) magical Basis in 4 steps:
Input: matrix X, and desired dimension d
Output: Basis vectors B,, B,, ... B4

1)
2)
3)

4)

Compute the average patch \ X =L Zx

N

Subtract the average patch from each X, ‘ Z - X\'-SZ )

Define the matrixZ = [z, z,, ..., Z,]

0o ) n

[B,, B,, ... B4 ] = the eigenvectors of the matrix ZZ" with the d
largest eigenvalues.



Notes on the dimensions of these matrices

The matrix Z is defined as the concatenation of n column-
vectors of size M, as in:

=z, 2, ..,2,]
The size of Z is therefore [M x n].
The dimension of ZZ" is [M x M] (noting that its size is
independent of the number of data points (n)). So, ZZ" is square

and of size equal to the dimension of one point.

The dimensionality reduction basis B are the first d eigenvectors
B =[b,, b,, .. By] of the matrix ZZ'. The size of B is [M x d].



