
Lecture 8Lecture 8

Images as n-Dimensional 

Vectors



RemindersReminders

Midterm is next week, here at 6:00. 

Please be here on time.

A2 is due this Sunday (March 2) at 11:59:59.999.

Alternative office hour on Mondays at noon.



Topic 05:Topic 05:

Representing Images as Representing Images as 

nn--Dimensional VectorsDimensional Vectorsnn--Dimensional VectorsDimensional Vectors

•• Template matching:Template matching:

•• crosscross--correlation & normalized crosscorrelation & normalized cross--correlation correlation 

•• Principal component analysisPrincipal component analysis

•• geometrical intuition: changing basisgeometrical intuition: changing basis

•• the the eigenfaceseigenfaces recognition algorithmrecognition algorithm

•• algorithm derivation: minimizing sample covariance algorithm derivation: minimizing sample covariance 



Template Matching ApplicationsTemplate Matching Applications

Face detection & recognitionFace detection & recognition

((FelzenszwalbFelzenszwalb and and HuttenlocherHuttenlocher, IJCV 2005, IJCV 2005))



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

As graph in 2DAs graph in 2D

We covered some tools that can 

be applied to 1-D image patches 

represented as vectors.



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

As graph in 2DAs graph in 2D For example, a patch of radius w:

is simply a (2w+1)-dimensional 

(column) vector.(column) vector.



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

As graph in 2DAs graph in 2D And you can think of it as a point in the 

(2w+1)-dimensional space.



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

A simple example is a patch x that is just a 2-dimensional 

vector, such as a 2 image pixel patch:

which can be represented 

as a point in 2D space



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

And if we think in terms of 2-pixel patches, a tiny (1x10 pixels) 

image like:

can be thought of as containing nine 2D patches (vectors)

with their corresponding 2D 

point representation:



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Now, if patches are size 3, then a patch like

can be represented as a 

point in 3D space



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

And the same tiny (1x10 pixels) image

can be thought of as containing eight (not nine) 3D vectors

with their corresponding 3D 

point representation:



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

But the choice of patch size looks pretty arbitrary...



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

And it is!

But the choice of patch size looks pretty arbitrary...

And it is!

We determined 

which pixels go in 

each patch.



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Is there anything preventing us from creating 1D vectors 

from 2D patches then?

Think of the following 3x10 image:

Can we think of this patch as a vector of size 9?



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Is there anything preventing us from creating 1D vectors 

from 2D patches then?

Think of the following 3x10 image:



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Is there anything preventing us from creating 1D vectors 

from 2D patches then?

Think of the following 3x10 image:

Absolutely!

Equally arbitrary, 

but similar 

properties and 

interpretation.



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Now, why would we want to loose the absolute spatial Now, why would we want to loose the absolute spatial 

information? 



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Because a vector representation allows us to compute 

similarity between (1D or 2D) patches using simple vector 

operations.

Dissimilar Similar



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Patch similarity is the foundation of an important detection 

procedure called template matching.

The intuition is, can we find the location of 

inthis template



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

And get this 

location as the location as the 

one most 

similar?



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Template matching sounds useful but…

How?

At what computational cost (in terms of memory 

and number of operations)? 



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Estimating similarity between image patches. 

Here are the patches from 3 slides ago, in 2D space:

x1=[100,200]
x =[100,200]

x1=[100,200]

x2=[200,50]

Dissimilar 

x1=[100,200]

x2=[180,190]

Similar



The Template Matching ProblemThe Template Matching Problem

The goal is to find the image patch xi that is most similar to a 

template T.

How about the distance?



The Template Matching ProblemThe Template Matching Problem

Measuring distances can be done in many different ways.

Here is our Similarity function #1.

Root Mean Squared Distance



The Template Matching ProblemThe Template Matching Problem

The goal is to find the image patch xi that is most similar to a 

template T. The problem can be formally written as:

Find

argmin is a shorthand for “the xi that minimizes the 

expression to the right”.

RMS



The Template Matching ProblemThe Template Matching Problem

Find

The goal is to find the image patch xi that is most similar to a 

template T. The problem can be formally written as:

Note that efficiency can be improved by minimizing  

which minimizes in the same xi and saves the square 

root computations. 

This new formulation can then be written as: 



The Template Matching ProblemThe Template Matching Problem

Again, note that this 1D metric is equivalent to the 2D operation 

that keeps the spatial relation of the template and the image.

For instance, if a patch is centered at pixel (r,c) and the template 

is of radius N, then the following equation computes the RMS 

distance between the image patch and the template.



Template Matching AlgorithmTemplate Matching Algorithm

Basic Template Matching Algorithm:

1. Define a matrix RMS_Dist of size equal to the image. This 

will hold the RMS distance at each pixel.

2. Compute                            for each patch xi (centered at 

coordinates (c, r) in the image), where it is possible to 

compute.compute.

3. When RMS distances between the template and all patches 

have been computed, search over RMS_Dist to find the 

pixel with lowest intensity.



Template Matching AlgorithmTemplate Matching Algorithm

Basic Template Matching Algorithm:

1. Define a matrix RMS_Dist of size equal to the image. This 

will hold the RMS distance at each pixel.

2. Compute                            for each patch xi (centered at 

coordinates (c, r) in the image), where it is possible to 

compute.

What is the problem with this distance metric?

compute.

3. When RMS distances between the template and all patches 

have been computed, search over RMS_Dist to find the 

pixel with lowest intensity.



Template Matching AlgorithmTemplate Matching Algorithm

The problem with this distance metric. 

Thoughts?



Template Matching AlgorithmTemplate Matching Algorithm

The problem with this distance metric. 

What is the distance from T to this new patch x?



Template Matching AlgorithmTemplate Matching Algorithm

The problem with this distance metric. 

The same!



Template Matching AlgorithmTemplate Matching Algorithm

The problem with this distance metric. 

In fact, there is an 

infinite number of 

image patches that 

render the same 

distance. 



Template Matching AlgorithmTemplate Matching Algorithm

But there is a problem with this distance metric. 

In fact, there is an 

infinite number of 

image patches that 

render the same 

distance. 



Template Matching AlgorithmTemplate Matching Algorithm

But there is a problem with this distance metric. 



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

RMS of in would be small

I1

RMS of in would be large

I2



Template Matching AlgorithmTemplate Matching Algorithm

I2 is just a scaled version of x1, but the RMS(x2,T) is much 

bigger than RMS(x1,T) (which is almost zero)

x1

x2



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

RMS of in would be small

RMS of in would be large

RMS cannot distinguish between patches that are just scaled 

versions of T, from other patches that differ in other ways.



Representing Images & Patches as VectorsRepresenting Images & Patches as Vectors

Is there anything we can do?Is there anything we can do?



Topic 05:Topic 05:

Representing Images as Representing Images as 

nn--Dimensional VectorsDimensional Vectorsnn--Dimensional VectorsDimensional Vectors

•• Template matching:Template matching:

•• crosscross--correlation & correlation & normalized crossnormalized cross--correlation correlation 

•• Principal component analysisPrincipal component analysis

• geometrical intuition: changing basis

• the eigenfaces recognition algorithm

• algorithm derivation: minimizing sample covariance 



The Template Matching ProblemThe Template Matching Problem

Measuring distances can be done in many different ways.

Similarity function #2.

Cross-correlation

i.e. the dot product between 

the two vectors

The projection from one onto the other.



The Template Matching ProblemThe Template Matching Problem

Properties of cross-correlation CC(xi, T)

Depends on the lengths of xi and T (still �)

From all xi of the same length, the CC is maximum when 

xi and T have the same direction.

CC is zero when xi and T are orthogonal (most dissimilar!) 



The Template Matching ProblemThe Template Matching Problem

Measuring distances can be done in many different ways.

Similarity function #3.

Normalized Cross-Correlation

The cosine of the angle between the two vectors.



The Template Matching ProblemThe Template Matching Problem

Properties of Normalized Cross-Correlation:

Independent of lengths of xi and T (finally ☺)

Maximum (NCC(xi ,T)=1) when the intensities of xi and T 

are the same, up to a scale factor

Minimum (NCC(xi ,T) =0) when xi and T are orthogonal 

(most dissimilar).

NCC(xi,T) = CC(xi, T) when xi and T are unit vectors.



2D Template Matching Using CC & NCC2D Template Matching Using CC & NCC

Note that Cross-Correlation and Normalized Cross-Correlation 

can be computed as a 2D sum



2D Template Matching Using CC & NCC2D Template Matching Using CC & NCC

Applying this procedure to the entire image

What is the computational complexity?



2D Template Matching Using CC & NCC2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000



2D Template Matching Using CC & NCC2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000

If we use CC as the distance metric, we do M multiplications 

and M-1 additions per pixel in the image I.



2D Template Matching Using CC & NCC2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000

The complexity when using CC is in the order of O(MN) 

operations for the entire image. 



2D Template Matching Using CC & NCC2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000

The complexity of NCC is also O(MN), with only some more 

products and additions to normalize the patch (xi) vectors.



2D Template Matching Using CC & NCC2D Template Matching Using CC & NCC

For instance match a template of 21x21 to an image of 1000x1000

These are over 1 billion operations!



2D Template Matching Using CC & NCC2D Template Matching Using CC & NCC

Matching a template of 21x21 to an image of 1000x1000 requires 

around 1 billion operations.

Is there a way to represent xi and T with d<<M to improve 

efficiency?

Taking O(MN) down to O(dN)

(with d = 5, as opposed to d = 441, for instance)



Template Matching: Computational IssuesTemplate Matching: Computational Issues

This problem is called Dimensionality Reduction

and using it can lead to speed-ups of orders of magnitude!



Template Matching: Computational IssuesTemplate Matching: Computational Issues

Demo!



Topic 05:Topic 05:

Representing Images as Representing Images as 

nn--Dimensional VectorsDimensional Vectorsnn--Dimensional VectorsDimensional Vectors

•• Template matching:Template matching:

• cross-correlation & normalized cross-correlation

•• Principal component analysisPrincipal component analysis

•• geometrical intuition: changing basisgeometrical intuition: changing basis

• the eigenfaces recognition algorithm

• algorithm derivation: minimizing sample covariance



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

Lets look at an example to develop some intuition about 

dimensionality reduction.

Imagine a set of 2-pixel patches whose x1 and x2 values 

are uncorrelated



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

Lets look at an example to develop some intuition about 

dimensionality reduction.

The coordinate of each of these patches can be 

determined given two basis vectors.



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

Lets look at an example to develop some intuition about 

dimensionality reduction.

I chose unit vectors that aligned with the x and y axis, but 

any two (non-parallel) vectors could have been used.



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

In this setting, a point xi can 

be written as: be written as: 



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

And the CC (T, xi) as 



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

And the CC (T, xi) as 

Notice both xi
1 and xi

2 are relevant



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

Now imagine that pixels in a patch are correlated.

Let’s not imagine, but look at some actual data!Let’s not imagine, but look at some actual data!



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

If pixel intensities are correlated, as in:



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

Then we can use different basis vectors with interesting 

properties, for instance assume the basis vectors in black.



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

Now, note that when pixel 

intensities are correlated, it 

is possible to express a patch 

in terms of basis vectors 

where only a few of the where only a few of the 

coordinates are significant 

(not close to zero):

xi = B1 yi
1 + B2 yi

2

Close to zero



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

xi = B1 yi
1 + B2 yi

2

Close to zero

And when this is true, then:



Linear Dimensionality Reduction: Basic IntuitionLinear Dimensionality Reduction: Basic Intuition

xi = B1 yi
1 + B2 yi

2

Close to zero

And when this is true, then:

Note that when pixels intensities are related, the choice of 

basis vectors can make a big difference in computational 

complexity.

Compared to:



Dimensionality Reduction by Principal Component AnalysisDimensionality Reduction by Principal Component Analysis

In summary:

We now know that carefully chosen basis vectors can 

represent image patches of correlated pixels much more 

efficiently

And we also know that in “natural images”, pixel intensities And we also know that in “natural images”, pixel intensities 

inside each patch are highly correlated.

We can exploit these two pieces of knowledge to do template 

matching much more efficiently.



Dimensionality Reduction by Principal Component AnalysisDimensionality Reduction by Principal Component Analysis

Algorithm:

1) Find the optimal set of basis vectors B1, B2, … , Bm. These 

basis are often called the Principal Components.

2) Compute patch coordinates in that basis2) Compute patch coordinates in that basis

3) Discard the axes with near zero coordinates for all 

patches.



Changing the Basis: Matrix NotationChanging the Basis: Matrix Notation

Keep in mind 

that the goal 

is to go from 

this

to this



Changing the Basis: Matrix NotationChanging the Basis: Matrix Notation

In the original case, the basis matrix is the identity matrix.



Changing the Basis: Matrix NotationChanging the Basis: Matrix Notation

In the alternative representation, the basis Bi are the 

transformations that take new coordinates yi, to reconstruct 

the original data xi.



Changing the Basis: Matrix NotationChanging the Basis: Matrix Notation

The same is true for M-Dimensional patches: The reconstructed 

data Xi is the basis B times the new representations (Yi).



Changing the Basis: Matrix NotationChanging the Basis: Matrix Notation

The same is true for M-Dimensional patches: The reconstructed 

data Xi is the basis B times the new representations (Yi).

But crucially, many of these 

coefficients will be close to 

zero and can be ignored.



Changing the Basis: Matrix NotationChanging the Basis: Matrix Notation

Eliminating these coefficients leaves us with a d-Dimensional 

approximation: 

d

Note only d basis are used now, not M

(and d << M)



Changing the Basis: Matrix NotationChanging the Basis: Matrix Notation

Finding these (not so) magical Basis in 4 steps:

Input: matrix X, and desired dimension d

Output: Basis vectors  B1, B2, … Bd

1) Compute the average patch

2) Subtract the average patch from each Xi2) Subtract the average patch from each Xi

3) Define the matrix Z = [z1, z2, …, zn]

4) [B1, B2, … Bd ] = the eigenvectors of the matrix ZZT with the d

largest eigenvalues.



Notes on the dimensionsNotes on the dimensions of these matricesof these matrices

The matrix Z is defined as the concatenation of n column-

vectors of size M, as in: 

Z = [z1, z2, …, zn]

The size of Z is therefore [M x n].

The dimension of ZZT is [M x M] (noting that its size is 

independent of the number of data points (n)). So, ZZT is square 

and of size equal to the dimension of one point.

The dimensionality reduction basis B are the first d eigenvectors 

B = [b1, b2, … Bd ] of the matrix ZZT. The size of B is [M x d].


