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AnnouncementsAnnouncements

Marks for A1 are already available on line, through Blackboard

Next week is reading week. 

No class, office hours only on Wednesday 11-12.
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4.3. Local analysis of 2D image patches (cont)

4.4. Case study: Intelligent Scissors

Let’s start with a demo!Let’s start with a demo!
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Goal: To mathematically characterize salient image patches



Not these corners…Not these corners…



CornersCorners



CornersCorners

What is a corner?

How is this image patch special?



a corner patch is one where two edges intersect



CornersCorners

will the image gradient be useful?



(what  was the intuition behind the image gradient?)(what  was the intuition behind the image gradient?)



Reminder: Partial Derivative along Reminder: Partial Derivative along xx

Local metric of image intensity variation in the horizontal direction



Reminder: Partial Derivative along Reminder: Partial Derivative along yy

Local metric of image intensity variation in the vertical direction



And the action is at the gradient’s…



… … extremaextrema (maxima and minima)(maxima and minima)



… … extremaextrema (maxima and minima)(maxima and minima)



but what happens at a corner?



but what happens at a corner?

and why do we care?



why we care: feature tracking why we care: feature tracking 



why we care: motion segmentationwhy we care: motion segmentation



a corner patch is one where two edges intersect

how can they be found using a computer?



Analysis in Neighborhood of Function Analysis in Neighborhood of Function ExtremaExtrema



Analysis in Analysis in NeighborhoodNeighborhood



Analysis in Neighborhood of Function ExtremaAnalysis in Neighborhood of Function Extrema



Function Function extremaextrema

Conditions for gradient extrema:



Case ACase A--C: Elliptical PointsC: Elliptical Points

If it could be because:



Case ACase A--C: Elliptical PointsC: Elliptical Points

If it could be because:

Like in:



Case ACase A--C: Elliptical PointsC: Elliptical Points

If it could be because:



Case ACase A--D: Hyperbolic PointsD: Hyperbolic Points

If it could be because:



Case ACase A--D: Hyperbolic PointsD: Hyperbolic Points

If it could be because:



Cases BCases B--C and BC and B--DD

If it could be because:



Local Geometry Near Surface ExtremaLocal Geometry Near Surface Extrema

What if we wanted to approximate the image close to these 

extreme points?



What if we wanted to approximate the image close to these 

extreme points?

Local Geometry Near Surface ExtremaLocal Geometry Near Surface Extrema

Note that local shape is determined by the 2nd derivative only!
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The Hessian MatrixThe Hessian Matrix

If                                                             at a point (x,y), then the 

Taylor Series expansion of the function at that point is:



The Hessian Matrix: IntuitionThe Hessian Matrix: Intuition

The Hessian matrix H determines 

how S(x,y) changes from a unit-length 

displacement d, in a given direction



The Hessian Matrix: IntuitionThe Hessian Matrix: Intuition

In other words, the Hessian knows about the local shape of S



Local Geometry from the Hessian MatrixLocal Geometry from the Hessian Matrix

The Hessian (H) defines 2 orthogonal unit vectors v1, v2 such that:



Local Geometry from the Hessian MatrixLocal Geometry from the Hessian Matrix



Local Geometry from the Hessian MatrixLocal Geometry from the Hessian Matrix



Local Geometry from the Hessian MatrixLocal Geometry from the Hessian Matrix



Local Geometry from the Hessian MatrixLocal Geometry from the Hessian Matrix



Local Geometry from the Hessian MatrixLocal Geometry from the Hessian Matrix

•v1, v2 are unit Eigenvectors of H

•λ1, λ2 are Eigenvalues of H



Local Geometry from the Hessian MatrixLocal Geometry from the Hessian Matrix



Local Geometry from the Hessian MatrixLocal Geometry from the Hessian Matrix

v1 = direction of steepest 
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Local Geometry from the Hessian MatrixLocal Geometry from the Hessian Matrix

V1V2

v1 = direction of steepest 

ascent (or less steep descent)

v2 = direction of steepest 

descent (or least steep 

ascent)

V1V2



Principal Directions & CurvaturesPrincipal Directions & Curvatures

• v1 and v2 are called the principal directions at the 

surface point S(0,0)

V1V2



Principal Directions & CurvaturesPrincipal Directions & Curvatures

• λ1 and λ2 are called the principal curvatures at S(0,0)

λ1

λ2
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Background: Eigenvectors & EigenvaluesBackground: Eigenvectors & Eigenvalues

A non-zero vector v is an eigenvector of a matrix H if

Hv = λv.
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Hv = λv.

The scalar λ is the eigenvalue associated to v.
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Background: Eigenvectors & EigenvaluesBackground: Eigenvectors & Eigenvalues

A non-zero vector v is an eigenvector of a matrix H if Hv = λv.
The scalar λ is the eigenvalue associated to v.

A matrix H transforms a vector v to the vector Hv, so if:

This also means that if v is an eigenvector and k ≠ 0 is a 

constant, then kv is also an eigenvector.

We will think of eigenvectors as unit-eigenvectors ||v||=1.



Eigenvectors of Symmetric MatricesEigenvectors of Symmetric Matrices

The hessian                                      is a symmetric matrix, which 

means that H = HT (where HT denotes the transpose of H).

We said that if v is an eigenvector then Hv=λv, but when H is 

symmetric,  then:  vTH = λvT.



Eigenvectors of Symmetric MatricesEigenvectors of Symmetric Matrices

When the matrix H is symmetric (H = HT like the Hessian), 

its associated eigenvectors are orthogonal: v1
Tv2=0.



BTW, what other matrices are symmetricBTW, what other matrices are symmetric

The covariance matrix!



Eigenvalues & the Trace of a MatrixEigenvalues & the Trace of a Matrix

The trace of a matrix (denoted as tr(H)) is the sum of the 

diagonal elements. 

The sum of the eigenvalues of a matrix H is equal to its trace 

(regardless of H being symmetric). 

This is important for computational efficiency



Eigenvalues & the Trace of a MatrixEigenvalues & the Trace of a Matrix

The product of the eigenvalues of a matrix H is equal to its 

determinant (also regardless of H being symmetric). 

This is very important for computational efficiency



Topic 4.3:Topic 4.3:

Local analysis of 2D image Local analysis of 2D image 

patchespatchespatchespatches
•• Images as surfaces in 3DImages as surfaces in 3D

•• Directional derivatives Directional derivatives 

•• Image Gradient Image Gradient 

• Painterly rendering

•• Edge detection & localizationEdge detection & localization

• Gradient extrema 

• Laplacian zero-crossings

•• Local geometry at image Local geometry at image 

extremaextrema

•• The Image HessianThe Image Hessian

•• Eigenvectors & Eigenvectors & eigenvalueseigenvalues

• Corner & feature detection

• Lowe feature detector

• Harris/Forstner detector



Analysis in Neighborhood of Function ExtremaAnalysis in Neighborhood of Function Extrema

What type of extrema do we have?



Analysis in Neighborhood of Function ExtremaAnalysis in Neighborhood of Function Extrema



Analysis in Neighborhood of Function ExtremaAnalysis in Neighborhood of Function Extrema



The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v1 and v2 such that:

0 ?0 ?



The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v1 and v2 such that:

0 sign(λ1)=sign(λ2)0 sign(λ1)=sign(λ2)
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H defines 2 orthogonal unit vectors v1 and v2 such that:
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The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

0 sign(λ1)=sign(λ2)         Eliptical



The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

0 sign(λ1)=sign(λ2)         Eliptical

tr(H)>0        tr(H)<0



The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v1 and v2 such that:

00



The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v1 and v2 such that:

0 sign(λ1) ≠ sign(λ2)        saddle points0 sign(λ1) ≠ sign(λ2)        saddle points



The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

0 sign(λ1) ≠ sign(λ2)        saddle points



The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v1 and v2 such that:
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The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v1 and v2 such that:

= 0 but ≠ 0= 0 but ≠ 0



The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

= 0 but ≠ 0
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The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector
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The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector



The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector



The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector



The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector

How?



The Hessian Matrix: Elliptical PointsThe Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v1 and v2 such that:

= 0 but ≠ 0= 0 but ≠ 0



The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector

|       |      |      | |      |    |``   |



The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector

|       |      |      | |      |    |``   |



The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector

But what we really want to know is if λ1 is much bigger 

compared terms to λ2, as in “r” times bigger, so if we do:

We can use the following equation to test for the ratio:



The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector



The (singleThe (single--scale) Lowe Feature Detectorscale) Lowe Feature Detector
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The Harris/Forstner Corner DetectorThe Harris/Forstner Corner Detector



The Harris/Forstner Corner DetectorThe Harris/Forstner Corner Detector

The Harris/Forstner Corner Detection looks for (dis)-similarity 

between the center pixel and its neighborhood, literally

The center pixels are more heavily weighted than the rest.

Now, because                         can be approximated using a Taylor

expansion



The Harris/Forstner Corner DetectorThe Harris/Forstner Corner Detector

The dissimilarity metric 

can then be written as the approximation:

or equivalently: 

with: 



The Harris/Forstner Corner DetectorThe Harris/Forstner Corner Detector

The Harris/Forstner Corner detector looks for patches that 

are “very dissimilar” from their neighbors!



The Harris/Forstner Corner DetectorThe Harris/Forstner Corner Detector

The Harris/Forstner Corner detector looks for patches that 

are “very dissimilar” from their neighbors!
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Application: Intelligent Application: Intelligent 

ScissorsScissorsScissorsScissors

•• Assigning cost to “links” between pixelsAssigning cost to “links” between pixels

•• Contour tracing as a shortestContour tracing as a shortest--path problempath problem



Image Scissoring: MotivationImage Scissoring: Motivation
By scissoring portions of one or more images & pasting them 

together we can create new, composite images
so

ur
ce

 im
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composite image
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Image Scissoring: Requirements Image Scissoring: Requirements 

Interactive operation

“User is always right”

Scissoring system must allow user to select arbitrary 

regions

Scissoring operations must be performed efficientlyScissoring operations must be performed efficiently

Scissoring interface must be simple & easy to use



Image Scissoring Image Scissoring 

In contrast the manual approach requires the user to manually 

delineate every single image pixel that defines the

region boundary

What is proposed here is: Intelligent Scissors approach 

(“livewire”) developed by Eric Mortensen & presented at SIGGRAPH’95



Intelligent Scissors: Operation Intelligent Scissors: Operation 

User loads image & specifies a “seed” point on boundary 

that must be outlined

User then positions

mouse close to 

object boundary

System automatically

creates a “live-wire”

that connects seed &

current mouse position

& follows boundary 

as much as possible

Live wire updated whenever mouse moves 



Approach answers one basic question:

• How should we define a path from seed to mouse that 

follows an object boundary as closely as possible?

Intelligent Scissors: Basic Idea Intelligent Scissors: Basic Idea 

• Answer: Define a path that is as close as possible to image 

edges



Approach taken in intelligent scissors attempts to exploit user 

interaction while avoiding the need to detect edges 

corresponding to object boundaries very accurately

Intelligent Scissors: Basic Idea Intelligent Scissors: Basic Idea 



• Every pair of neighboring pixels is called a link and is
assigned an “edgeness” weight

• Link weights defined so that pixel links along an edge 
have very low weights

• To connect seed & mouse positions, choose the path

Intelligent Scissors: Basic Idea Intelligent Scissors: Basic Idea 

p q

link

• To connect seed & mouse positions, choose the path
that minimizes the total weight of links along the path



Two questions must be answered to fully specify 

the algorithm:

• How do we assign a weight to a link?

• How do we find the lowest-cost path between any two image 

pixels?

Intelligent Scissors: Basic Idea Intelligent Scissors: Basic Idea 



Path: a sequence of adjacent pixels in the image

Link: a pair of adjacent pixels along the path

Given a link defined by pixels p & q, its weight is defined to be

Intelligent Scissors: Weight Assignment Intelligent Scissors: Weight Assignment 
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Path: a sequence of adjacent pixels in the image

Link: a pair of adjacent pixels along the path

Given a link defined by pixels p & q, its weight is defined to be

Intelligent Scissors: Weight Assignment Intelligent Scissors: Weight Assignment 
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Weight Assignment: Gradient TermWeight Assignment: Gradient Term

-1  0  1
-2  0  2
-1  0  1

RecallRecall: : 
•• can detect edges where 1can detect edges where 1stst derivative is highderivative is high
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0  0  0
1  2  1
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yI

22),( yxyx IIIII +==∇

gradient magnitudegradient magnitude

•• high gradients produce low costshigh gradients produce low costs
•• scaled by largest gradient in image, to lie in [0,1]scaled by largest gradient in image, to lie in [0,1]

1  2  1
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I
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largest value largest value 
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Path: a sequence of adjacent pixels in the image

Link: a pair of adjacent pixels along the path

Given a link defined by pixels p & q, its weight is defined to be

Weight Assignment: Laplacian TermWeight Assignment: Laplacian Term

)(14.0),(43.0)(43.0),( qfqpfqfqpl GDZ ++=

p q

if the Laplacian has a if the Laplacian has a 
zerozero--crossing at crossing at qq

0)( =qfZ

1)( =qfZ otherwiseotherwise



Intelligent Scissors: Weight AssignmentIntelligent Scissors: Weight Assignment

0  1  0
1 -4  1
0  1  0

RecallRecall: : 
•• can detect edges where 2can detect edges where 2ndnd derivative is zero (inflection points)derivative is zero (inflection points)
•• find zerofind zero--crossings instead (sign change with 8crossings instead (sign change with 8--neighbors)neighbors)

yyxx IIL +=

0  1  0

if the Laplacian has a if the Laplacian has a 
zerozero--crossing at crossing at qq

0)( =qfZ

1)( =qfZ otherwiseotherwise

LaplacianLaplacian

)(qfZ

yyxx IIL +=

•• zerozero--crossings produce low costscrossings produce low costs
•• many zeromany zero--crossings are due to noisecrossings are due to noise



Path: a sequence of adjacent pixels in the image

Link: a pair of adjacent pixels along the path

Given a link defined by pixels p & q, its weight is defined to be

Intelligent Scissors: Weight Assignment Intelligent Scissors: Weight Assignment 

)(14.0),(43.0)(43.0),( qfqpfqfqpl GDZ ++=

p q

term that penalizes links not term that penalizes links not 
consistent with the gradientconsistent with the gradient

direction at direction at pp and and qq



Weight Assignment: Direction TermWeight Assignment: Direction Term

⊥∇q

⊥∇p

gradient direction termgradient direction term
•• penalizes paths that do not follow edges in the imagepenalizes paths that do not follow edges in the image
•• penalizes sharp changes in path direction (creases)penalizes sharp changes in path direction (creases)
•• normalized to lie in [0,1]normalized to lie in [0,1]
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Intelligent Scissors: Path OptimizerIntelligent Scissors: Path Optimizer

Path optimization formulated as a graph search algorithm that 

computes the minimum-cost path from seed to all other 

image pixels (use Dijkstra’s algorithm) 

Weights

Step 1 Step 2 Step 3

Step n

seed



Intelligent Scissors: Results Intelligent Scissors: Results 
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Intelligent Scissors: Results Intelligent Scissors: Results 
By scissoring portions of one or more images & pasting them 

together we can create new, composite images
so
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