4.3. Local analysis of 2D image patches (cont)

4.4. Case study: Intelligent Scissors




Announcements

Marks for Al are already available on line, through Blackboard

Next week is reading week.
No class, office hours only on Wednesday 11-12.



Topic 4.3:

Local analysis of 2D image
patches

e I[mages as surfaces in 3D
e Directional derivatives
e Image Gradient

e Painterly rendering
e Edge detection & localization

e Gradient extrema

e Laplacian zero-crossings



Analysing Special 2D Image Patches

Goal: To mathematically characterize salient image patches
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Topic 4.3:

Local analysis of 2D image
patches

e [mages as surfaces in 3D e Local geometry at image
e Directional derivatives extrema
e Image Gradient e The Image Hessian
e Painterly rendering * Eigenvectors & eigenvalues

e Edge detection & localization e Corner & feature detection
e Gradient extrema e Lowe feature detector

e Laplacian zero-crossings e Harris/Forstner detector



Analysing Special 2D Image Patches

Goal: To mathematically characterize salient image patches




Not these corners...




Corners




Corners

What is a corner?

How is this image patch special?



a corner patch is one where two edges intersect



Corners

will the image gradient be useful?

1
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(what was the intuition behind the image gradient?)



Reminder: Partial Derivative along x
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Local metric of image intensity variation in the horizontal direction




Reminder: Partial Derivative alongy

VICX,VD [ ( )D (—a_:[_ ‘)5)1

Local metric of image intensity variation in the vertical direction




And the action is at the gradient’s...



... extrema (maxima and minima)
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... extrema (maxima and minima)
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but what happens at a corner?



but what happens at a corner?

and why do we care?



why we care: feature tracking
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why we care: motion segmentation
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a corner patch is one where two edges intersect

how can they be found using a computer?



Analysis in Neighborhood of Function Extrema
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Analysis in Neighborhood
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Analysis in Neighborhood of Function Extrema
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Function extrema

Conditions for gradient extrema:
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Case A-C: Elliptical Points
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Case A-C: Elliptical Points
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Case A-C: Elliptical Points
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Case A-D: Hyperbolic Points
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Case A-D: Hyperbolic Points
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Cases B-C and B-D
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Local Geometry Near Surface Extrema

What if we wanted to approximate the image close to these
extreme points?
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Local Geometry Near Surface Extrema

What if we wanted to approximate the image close to these
extreme points?
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Note that local shape is determined by the 2"d derivative only!



Topic 4.2:

Local analysis of 2D image
patches

e [mages as surfaces in 3D e Local geometry at image
e Directional derivatives extrema
e Image Gradient e The Image Hessian
e Painterly rendering * Eigenvectors & eigenvalues

e Edge detection & localization e Corner & feature detection
e Gradient extrema e Lowe feature detector

e Laplacian zero-crossings e Harris/Forstner detector



The Hessian Matrix
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The Hessian Matrix: Intuition

\L

The Hessian matrix H determines a8 -

how S(x,y) changes from a unit-length : =

displacement d, in a given direction N e
=
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The Hessian Matrix: Intuition

In other words, the Hessian knows about the local shape of S




Local Geometry from the Hessian Matrix

SC=sCeo) ti[x 4 |

The Hessian (H) defines 2 orthogonal unit vectors v,, v, such that:
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Local Geometry from the Hessian Matrix

Vj] vy & S(xv)-9(00) =Dy = MAXIMAL
) =ve & S -S(90)= 02 = MmIMAL

N Z—circ\e of
‘ urn b rodius




Local Geometry from the Hessian Matrix
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Local Geometry from the Hessian Matrix
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Local Geometry from the Hessian Matrix

Vj] vy & S(xv)-9(00) =Dy = MAXIMAL
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Local Geometry from the Hessian Matrix

Vj] z Vv &S SCXM)-SC%) = Q\ > MAXIMAL
) =va & S -S(90)= 02 = MmIMAL

*v,, V, are unit Eigenvectors of H

*A,, A, are Eigenvalues of H



Local Geometry from the Hessian Matrix

SERIERS S(xv)-9(90) = Oy = MAXIMAL
) =va & S -S(90)= 02 = MmIMAL
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Local Geometry from the Hessian Matrix

Vj] v & S(xv)-9(00) =Dy = MAXIMAL
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vl = direction of steepest
ascent (or less steep descent)

v2 = direction of steepest
descent (or least steep
ascent)



Local Geometry from the Hessian Matrix

Vj] v & S(xv)-9(00) =Dy = MAXIMAL
)=V & 5G5S0z 2 = MmMAL
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vl = direction of steepest
ascent (or less steep descent)

v2 = direction of steepest
descent (or least steep
ascent)



Principal Directions & Curvatures

* v, and v, are called the principal directions at the
surface point S(0,0)




Principal Directions & Curvatures

* A, andA, are called the principal curvatures at S(0,0)




Topic 4.3:

Local analysis of 2D image
patches

e [mages as surfaces in 3D e Local geometry at image
e Directional derivatives extrema

: : e Eigenvectors & eigenvalues
e Painterly rendering 8 &

e Edge detection & localization © Corner & feature detection

e Gradient extrema e Lowe feature detector

e Laplacian zero-crossings e Harris/Forstner detector



Background: Eigenvectors & Eigenvalues

Definition:

A non-zero vector v is an eigenvector of a matrix H if
Hv = Aw.

The scalar A is the eigenvalue associated to v.



Background: Eigenvectors & Eigenvalues
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The scalar A is the eigenvalue associated to v.

A matrix H transforms a vector v to the vector Hv, so if:
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Background: Eigenvectors & Eigenvalues

A non-zero vector v is an eigenvector of a matrix H if Hv = Aw.
The scalar A is the eigenvalue associated to v.

A matrix H transforms a vector v to the vector Hv, so if:

H v b H Vv y
v
> >
v NOTJ/ aw v S an
€exoenvectoy €igewvector

This also means that if vis an eigenvectorand k # 0 is a
constant, then kv is also an eigenvector.
We will think of eigenvectors as unit-eigenvectors | |v]| |=1.



Eigenvectors of Symmetric Matrices

s 28

The hessian Y= K OxF 9% | is a symmetric matrix, which
3S ?.ii&
L 9doy Y

means that H = HT (where HT denotes the transpose of H).

We said that if v is an eigenvector then Hv=Av, but when H is
symmetric, then: vIH = Av'.
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Eigenvectors of Symmetric Matrices

When the matrix H is symmetric (H = HT like the Hessian),
its associated eigenvectors are orthogonal: v,'v,=0.
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BTW, what other matrices are symmetric

The covariance matrix!

Eij = cov(X;, X;) = E[(Xi — w) (X — )]



Eigenvalues & the Trace of a Matrix

The trace of a matrix (denoted as tr(H)) is the sum of the
diagonal elements.

The sum of the eigenvalues of a matrix H is equal to its trace
(regardless of H being symmetric).

For a 22 watvix (¢ 5] a+d = D«0y

This is important for computational efficiency



Eigenvalues & the Trace of a Matrix

The product of the eigenvalues of a matrix H is equal to its
determinant (also regardless of H being symmetric).

For a 22 watvix (¢ S] ad-lbe =D\ D2

This is very important for computational efficiency



Topic 4.3:

Local analysis of 2D image
patches

e Corner & feature detection



Analysis in Neighborhood of Function Extrema

aoss'Whov
Ol\OV\& a_

What type of extrema do we have?

IOCOJ MAGRX 1WA WW \om\ WAV AR

SCx,9o) /\ @ SCx99) \L/
o X o X
lOCok\ MAAX I\ \Oc.a\ WA AR

=N O =y, O

0 ﬂ \0 j




Analysis in Neighborhood of Function Extrema
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Analysis in Neighborhood of Function Extrema
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The Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v, and v, such that:

PYl=v = 5ky)-5000) =3, = MAXIMAL
) =ve &= SG) -S(90) = X2 = MINIMAL

detCH)= D0.22> 0 ?



The Hessian Matrix: Elliptical Points
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detCH) = D02 > 0 = sign(Al)=sign(A2)



The Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v, and v, such that:
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The Hessian Matrix: Elliptical Points

deACH) = D002 > 0 = sign(A1)=sign(A\2) = Eliptical
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The Hessian Matrix: Elliptical Points
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The Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v, and v, such that:

PYl=v = 5ky)-5000) =3, = MAXIMAL
) =ve &= SG) -S(90) = X2 = MINIMAL
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The Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v, and v, such that:

PYl=v = 5ky)-5000) =3, = MAXIMAL
) =ve &= SG) -S(90) = X2 = MINIMAL

detCH) = D1.22< 0 = sign(Al) #sign(A2) = saddle points
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The Hessian Matrix: Elliptical Points

deACH) =2 D0.02< 0 = sign(A1) £#sign(A2) = saddle points
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The Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v, and v, such that:

PYl=v = 5ky)-5000) =3, = MAXIMAL
) =ve &= SG) -S(90) = X2 = MINIMAL

detCH) = D002 =0 but b CH)z0



The Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v, and v, such that:
. if]'l = Vv, <_:> SCX,\G,)-SCO/OD = Q\ = MAXIMAL

[’3} =2 Vo & SC"/% -S(v,0) = X2 = MINVIMAL

detCH) = D002 =0 but b CH)z0

v S(b,j)
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F-C, E-D, A-F, B-F



The Hessian Matrix: Elliptical Points

detCH) = D022 =0 but H(CH)=20
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Topic 4.3:

Local analysis of 2D image
patches

e Corner & feature detection

e Lowe feature detector



The (single-scale) Lowe Feature Detector

Gool of Lowe feature detector
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The (single-scale) Lowe Feature Detector
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The (single-scale) Lowe Feature Detector
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The (single-scale) Lowe Feature Detector
Steps:

SCad 5 all %
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The (single-scale) Lowe Feature Detector
Steps:

SCad 5 all %

@ ldewh 4‘?3 all P\\XQ,\S ¢ heighbors
ot a extrema of SGuw) e o :;bon

@ E‘i\mw\o\lra all  extrevnon  withh [SCx,w) < Phareshold (:o.o"s)

@ Elimirode all  extremor whose  local " ’,
s\hhape S wear ,c,(é\w\o\v\'ca\ (ie. edaflfh\ﬁﬁ)
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The (single-scale) Lowe Feature Detector

@ Eliminade all e xtremon whose locall

s\hape & wnwear - %\\V\o\v\‘Ca\ (ie. edge- h\ce)

How?



The Hessian Matrix: Elliptical Points

H defines 2 orthogonal unit vectors v, and v, such that:
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The (single-scale) Lowe Feature Detector

@ Eliminade all e xtremon whose locall

s\hape & wnwear - c,t\/)\\vxo\v\‘Co(\ (ie. edge- h\ce)
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The (single-scale) Lowe Feature Detector

@ Eliminade all e xtremon whose locall

s\hape & wnwear - c,t\/)\\vxo\v\‘Co(\ (ie. edge- h\ce)
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The (single-scale) Lowe Feature Detector

@ Eliminode all extremor whose locol|

s\hape \S  wear ,%\mdv\'ca\ (ie. eo\%e,h\ce)

But what we really want to know is if A1 is much bigger
compared terms to A2, as in “r” times bigger, so if we do:
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We can use the following equation to test for the ratio:
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The (single-scale) Lowe Feature Detector

@ Eliminade all e xtremon whose locall

s\hape & wnwear - c,t\/)\\vxo\v\‘Co(\ (ie. edge- h\ce)
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The (single-scale) Lowe Feature Detector
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Topic 4.3:

Local analysis of 2D image
patches

e Harris/Forstner detector



The Harris/Forstner Corner Detector
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The Harris/Forstner Corner Detector

The Harris/Forstner Corner Detection looks for (dis)-similarity
between the center pixel and its neighborhood, literally

S(z,y) =3 > wluv) (I(u+z,v+y) — (uv))
The center pixels are more heavily weighted than the rest.

Now, because I(u+ z,v+y) can be approximated using a Taylor
expansion

Hu+x,v+y) = I(uv)+ Lu,v)e+ L(u,v)y



The Harris/Forstner Corner Detector

The dissimilarity metric
S(z,y) =Y Y w(u,v) (Iu+zx,v+y) — I{u,v))’

can then be written as the approximation:

S(z,y) ~ S w(u,v) (I (u,v)z + I(u,v)y)’

or equivalently:

S(z,y) ~ (z y)4 (;)

. | Iﬁ Iz1,
with: 4= Y ww)|
1 v oY

Y



The Harris/Forstner Corner Detector

The Harris/Forstner Corner detector looks for patches that
are “very dissimilar” from their neighbors!




The Harris/Forstner Corner Detector

The Harris/Forstner Corner detector looks for patches that
are “very dissimilar” from their neighbors!




Topic 4.4:

Application: Intelligent
Scissors

e Assigning cost to “links” between pixels
e Contour tracing as a shortest-path problem



Image Scissoring: Motivation

By scissoring portions of one or more images & pasting them
together we can create new, composite images

composite image

A 4

source image




Image Scissoring: Requirements

Interactive operation

“User is always right”

Scissoring system must allow user to select arbitrary
regions

Scissoring operations must be performed efficiently

Scissoring interface must be simple & easy to use




lmage Scissoring

In contrast the manual approach requires the user to manually
delineate every single image pixel that defines the
region boundary

What is proposed here is: Intelligent Scissors approach
(“livewire”) developed by Eric Mortensen & presented at SIGGRAPH’95

Figure 2: Image demonstrating how the live-wire segment adapts and
snaps to an object boundary as the free point moves (via cursor move-
ment). The path of the free point is shown in white. Live-wire segmenls
from previous free point positions (1o, 11, and t,) are shown in green.



Intelligent Scissors: Operation

User loads image & specifies a “seed” point on boundary
that must be outlined

User then positions
mouse close to
object boundary

System automatically
creates a “live-wire’
that connects seed &

& fOI IOWS bO un d d ry from previous free point positions (to, t;, and t,) are shown in green.
as much as possible

Live wire updated whenever mouse moves



Intelligent Scissors: Basic Idea

Approach answers one basic question:

e How should we define a path from seed to mouse that
follows an object boundary as closely as possible?

Figure 2: Image demonstrating how the Ihfe-wire segment adapts and
snaps to an object boundary as the free point moves (via cursor move-
ment). The path of the free point is shown in white. Live-wire segments
from previous free point positions (ty, t,, and t,) are shown in green.

e Answer:

Define a path that is as close as possible to image
edges



Intelligent Scissors: Basic Idea

Approach taken in intelligent scissors attempts to exploit user
interaction while avoiding the need to detect edges
corresponding to object boundaries very accurately

Figure 2: Image demonstrating how the Ii:fe-uﬁire segment adapis and
snaps to an object boundary as the free poini moves ( via cursor move-
ment). The path of the free point is shown in white. Live-wire segmenls
from previous free point positions (ty, t;, and t,) are shown in green.



Intelligent Scissors: Basic Idea

Pl A
T ——1link

« Every pair of neighboring pixels is called a link and is
assigned an “edgeness” weight

« Link weights defined so that pixel links along an edge
have very low weights

« To connect seed & mouse positions, choose the path

that minimizes the totale along the path
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Intelligent Scissors: Basic Idea

Two questions must be answered to fully specify
the algorithm:

e How do we assign a weight to a link?

e How do we find the lowest-cost path between any two image
pixels?




Intelligent Scissors: Weight Assignment

Path: a sequence of adjacent pixels in the image

Link: a pair of adjacent pixels along the path —

Given a link defined by pixels p & g, its weight is defined to be

I(p,q) =0.43f,(q) +0.43f,(p,q) +0.141(q)

/ \ |01 ]

f,(q)=0 if the Laplacian has a fo(a)=1- max(|0I |)
Zero-anassimy) ati ‘
f,(g)=1 otherwise term that penalizes links not \

consistent with the gradient largest value
direction atp andg over the image



Intelligent Scissors: Weight Assignment

Path: a sequence of adjacent pixels in the image

Link: a pair of adjacent pixels along the path —

Given a link defined by pixels p & g, its weight is defined to be

1(p,q) =0.43f,(q) +0.43f,(p,q) +0.141,(q)

\‘ |01

o (@ =1~ aimn

|

largest value
over the image




Weight Assignment: Gradient Term

Recall:
» can detect edges where 15t derivative is high

gradient magnitude

101 | i =[(,,1,)| =12 +1,7

fe(q)=1-

max(|dI |) ——— largestvalue
over the image

* high gradients produce low costs
* scaled by largest gradient in image, to lie in [0,1]



Weight Assignment: Laplacian Term

Path: a sequence of adjacent pixels in the image

Link: a pair of adjacent pixels along the path —

Given a link defined by pixels p & g, its weight is defined to be

1(p,q) =0.43f,(q) +0.43f,(p,q) +0.141,(q)

/

f,(q)=0 if the Laplacian has a
Zero-anasss ) &t

f,(q)=1 otherwise



Intelligent Scissors: Weight Assignment

Recall:
« can detect edges where 2"d derivative is zero (inflection points)
» find zero-crossings instead (sign change with 8-neighbors)

Laplacian L=1, +1,
f,(q)=0 if the Laplacian has a
Zero-anasss my) ati
f,(q) =1 otherwise

* zero-crossings produce low costs
* many zero-crossings are due to noise




Intelligent Scissors: Weight Assignment

Path: a sequence of adjacent pixels in the image

Link: a pair of adjacent pixels along the path —

Given a link defined by pixels p & g, its weight is defined to be

1(p,q) =0.43f,(q) +0.43f,(p,q) +0.141,(q)

v

term that penalizes links not
consistent with the gradient
direction afp andq



Weight Assignment: Direction Term

gradient direction term fo(p. Q)
 penalizes paths that do not follow edges in the image
 penalizes sharp changes in path direction (creases)
* normalized to lie in [0,1]

f5(p,q) = (angldv,0p") + angldv,0q"))/7r
angl€u, w) = arccoE‘ EMjD[O, 7T/2]

uw



Intelligent Scissors: Path Optimizer

Path optimization formulated as a graph search algorithm that
computes the minimum-cost path from seed to all other

image pixels (use Dijkstra’s algorithm)

Weights

Step 1

Step 2

Step 3
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Intelligent Scissors: Results




issors: Results

Intelligent Sc




Intelligent Scissors: Results

By scissoring portions of one or more images & pasting them
together we can create new, composite images

composite image

A 4

source image




