CSC320

Week 5: The image gradient



News:

Al is being marked. Marks will be available on blackboard by
next lecture.

A2 is out! We’ll check it out during the tutorial, tonight.

Vote for the alternative office hour.

Link in the announcements section of the course website.

Tutorial tonight on:
A2

Answers to Al Part B, including and how estimating the
pseudoinverse is not relevant

Paper on Accidental Pinhole and Pinspeck cameras (time
permitting)



Curves applications: matching features
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Curves applications: matching features
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Curves applications: detection

Histogram of Oriented Gradient Histogram of Curvature Histogram of Oriented Gradient Histogram of Curvature
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original image edge image curvature image

original image edge image curvature image

From: http://hci.iwr.uni-heidelberg.de/COMPVIS/research/curvature/



Curves: summary




Today

Images as 3D surfaces



Local Analysis of Image Patches: Outline

As curve in 2D As surface in 3D

As graph in 2D




Local Analysis of Image Patches: Outline

As surface in 3D




Topic 4.3:

Local analysis of 2D image
patches

e I[mages as surfaces in 3D e Local geometry at image

e Directional derivatives extrema

e Image Gradient * The Image Hessian

e Edge detection & localization e Eigenvectors & eigenvalues
e Gradient extrema e Corner & feature detection
e Laplacian zero-crossings e Lowe feature detector

e Painterly rendering e Harris/Forstner detector



Image < Surface in 3D

Gray-scale image




Image < Surface in 3D

Gray-scale image

Image patch
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Image < Surface in 3D

Image patch




: detection

From: http://www.cs.toronto.edu/~jepson/csc420/asgn/a2_11.pdf



Why: recognition

Input Image (image.jpg)

Iinltssas.antilln + W + adtbivs ]
|

Output PHOG descriptor (image.jpg.txt)

From: http://www.robots.ox.ac.uk/~vgg/research&aitphog.html



Why: estimation

(b) Magmfied e (¢) Spauotemporal YT slices

From: “Eulerian Video Magnification for Revealing Siéb€Changes in the World”, Wu et al.



Estimating I(x,y) in a neighborhood




2D Taylor Series Expansion

2D Taylor series expansion near (0,0) with 3 terms:
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2D Taylor Series Expansion

2D Taylor series expansion near (0,0) with 3 terms:
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2D Taylor Series Expansion

2D Taylor series expansion near (0,0) with 3 terms:
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2D Taylor Series Expansion

2D Taylor series expansion near (0,0) with 3 terms:
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Topic 4.3:

Local analysis of 2D image
patches

e Directional derivatives



Computing Directional Image Derivatives

1storder Taylor Series approximation

XCx‘jy . ICo,0) +X __(o 0) j ——(o,o)

In 1-D



Computing Directional Image Derivatives
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Computing Directional Image Derivatives

1storder Taylor Series approximation

XCx‘jy . ICo0) +X __(o 0) j ——(o,o)




Computing Directional Image Derivatives

15t order Taylor Series approximation

1Cx‘j3 . ICo0) +X __(o 0) + j ——(o,o)

The first derivative tells us
the direction of maximum
change.

Its magnitude indicates the
rate of change (like in 1D).




Computing Directional Image Derivatives

15t order Taylor Series approximation

‘iCx\jﬁ - 1Co,0) +X _—(O 0) + j ———(o,o)

Now, if the function I(x,y)
was continuous, what is the
intensity I(x,y) along the
direction 6?




Computing Directional Image Derivatives

15t order Taylor Series approximation

ECx‘jy . ICo0) +X __(o 0) + j ——(o,o)

Now, if the function I(x,y)
was continuous, what is the
intensity I(x,y) along the
direction 6?

Walking in the direction of 6
can be done by multiplying a
constant times a unit vector:

p(t)=t *\[cos(e), sin(G)L

= Y

Unit vector!




Computing Directional Image Derivatives

15t order Taylor Series approximation

ECx‘jy . ICo0) +X __(o 0) + j ——(o,o)

Now, if the function I(x,y)
was continuous, what is the
intensity I(x,y) along the
direction 6?

So, we are really asking what
is what is the value of:
I( t cos(0), t sin(0))




Computing Directional Image Derivatives

15t order Taylor Series approximation

1Cx‘j3 . ICo0) +X __(o 0) + j ——(o,o)

Now, if the function I(x,y)
was continuous, what is the
intensity I(x,y) along the
direction 6?

So, we are really asking what
is what is the value of:
I( t cos(0), t sin(0))

' Ask the Taylor Series
approximation!




Computing Directional Image Derivatives

15t order Taylor Series approximation
XCx‘jy . ICo0) +X __(o 0) j ——(o,o)

Substituting:

a1 -Q 01
T(’c.cosq/-t.gfv%) = 2A(o0,0) + 1 - Co% . %})(,(0,0)ﬁ- {:-%\Y\g Sgto,o)

H*




Computing Directional Image Derivatives

15t order Taylor Series approximation
XCx‘jy . ICo0) +X __(o 0) j ——(o,o)

Substituting:

a1 -Q 01
T(’c.cpsq/-t.g\},%) = 2A(o0,0) + 1 - CO% . %})(,(O,o)«- {:-%\Y\g SEL0,0)

Or equivalently:

T Q2L
T(‘c-cosgﬂcsﬁr%) = d(0,0) t+ 4 (co% - %lx,(o,o% SN ey Lo,o))




Computing Directional Image Derivatives

15t order Taylor Series approximation
XCx‘jy . ICo0) +X __(o 0) j ——(o,o)

Substituting:
a1 1 -Q o1
T(’c.cosq/-t.gfv%) = 2A(o0,0) + 1 - Co% . %_)(,(0,0)4- {:-%\Y\g Sgto,o)

Or equivalently:
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Directional Derivative of I(x,y) in

- . | the direction of [cos(0), sin(0)]

H*




Computing Directional Image Derivatives

Directional derivative?



Computing Directional Image Derivatives

Directional derivative: rate of change in the given direction




Computing Directional Image Derivatives

What is it for the red dot?




Computing Directional Image Derivatives

Large and positive



Computing Directional Image Derivatives

Positive



Computing Directional Image Derivatives




Computing Directional Image Derivatives

Close to zero



Computing Directional Image Derivatives




Computing Directional Image Derivatives

Negative



Computing Directional Image Derivatives

Large and negative



Computing Directional Image Derivatives

; Q2
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Directional Derivative of I(x,y) in
the direction of [cos(0), sin(0)]
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Computing Directional Image Derivatives

L —(0,0)
oK ﬁ

SivS direction of [cos(0), sin(0)]

(o o)} )j’ogg } . Directional derivative in the

When is this maximum?

H*




Computing Directional Image Derivatives

_@E—(o &) 91 (o 0)].’&3& __, Directional derivative in the
DX ! ‘aﬁ ) SivS direction of [cos(0), sin(O)]
[cos% SW\%J = [(‘31(0,0) E(O,O):I —> Maximum
-1 ’bﬂ
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Computing Directional Image Derivatives

_@E—(o &) 91 (o 0)].’60& __, Directional derivative in the
DX ! ‘aj ) SivS direction of [cos(0), sin(O)]
[u»% SW\%J = [(‘31(0,0) E(O,O):I —> Maximum
-1 ’35

When is it zero?
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Computing Directional Image Derivatives

o1 (0,5) PR (0)0)]. cos) . D.irect.ional derivative-in the
DX "aj SivS direction of [cos(0), sin(0)]
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“OX ’35
or+wo ona |
) ) DY
[(,Oﬁ S)\S) N Sx (0,0) %(o’o)] —> Zero

H*




Computing Directional Image Derivatives

L —(0,0)
oKX ﬁ

\\ J
Y

SivS direction of [cos(0), sin(0)]

(o o)} )j’osq } . Directional derivative in the

Directional Derivative in any
direction can be computed
from these two!



Topic 4.3:

Local analysis of 2D image
patches

e Image Gradient



The Image Gradient & Its Properties

In general the Image gradient is the vector of first derivatives

1(o, 3 1
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B Andthe directional derivative along a direction vector ‘v’
can then be defined as:

Dyxy) = VIGwy). v



The Image Gradient & Its Properties

The directional derivative:

o Dy&xvy)= VIGw). v
>, Is maximum when
=i s v= V1ky)

And zero whenvand V/L(x, 19) are orthogonal.



The Image Gradient & Its Properties

The directional derivative:

é‘ (6.5) DVQ(O‘O) = v IC)(.\OB Vv
J E Is maximum when
5T_’)x e v= VIGky)

And zero when v and VJ__(K, 19) are orthogonal,
in which case:

1 o
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T(teoD, tsw®)= A(0.0)



The Image Gradient & Its Properties
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Note then how the gradient
V1(xy) isthe normal
vector of the isointensity
curve (aka isophote)
through pixel (x,y).



The Image Gradient & Its Properties

1
N

yd

Note then how the gradient
V1(xy) isthe normal
vector of the isointensity
curve (aka isophote)
through pixel (x,y).



Great, but how do we compute v ICK.‘QB - from image data?



Computing & Visualizing Gradients

DL

Compute VI(’("’D - :a__l,.( 9 —(x, ,)] at each pixel.
DK B




Step 1: Compute a Grayscale Image

Start by computing a one-dimensional I(x,y) (grayscale image) by doing:

1(x,y) = 1/3 * (Red (x,y) + Green(x,y) + Blue(x,y))




Step 2: Compute the Partial Derivative along X

Then use a 1D derivative estimation method to evaluate = ——(x, ~D




Local Analysis of Image Patches: Outline

As graph in 2D

/\i(x)




Step 2: Compute the Partial Derivative along X

1
CLEa

How does look for the image below?




Step 2: Compute the Partial Deriv along X




Step 3: Compute the Partial Derivative along Y
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Repeat for




Step 2: Compute the Partial Derivative along X

DL

How does look for the image below?
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Step 3: Compute the Partial Deriv along Y
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The Gradient Magnitude

Or the length of VICX,VD :

2 Y
VIpl=\| 2t 2 (xy
\ (x V‘D\ \) ( ;:UJ)) "‘((Bj 9)

L

Tells us how quickly intensity is
changing in the neighborhood of pixel
(x,y) in the direction of the gradient.




Step 4: Compute Magnitude at Each Pixel
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The Gradient Orientation

The gradient orientation:

-1 [ 93
9: tan g’ Cx4) EC& 9)
Y %

Tells us the direction of greatest intensity change in the
neighborhood of pixel (x,y)




Step 5: Visualizing Magnitude & Orientation

One way of visualizing magnitude and orientation simultaneously:

red(109) = | Vl(x,.ﬁ) |'Siv% %lreev\(‘;(,\?): l \71Cx.vﬂ‘ cwosy  Yuelsy)zo




Looks like gradients are useful to find corners and edges, right?



Right



Topic 4.3:

Local analysis of 2D image
patches

e Edge detection & localization
e Gradient extrema

e Laplacian zero-crossings



Analysing Special 2D Image Patches

How do we mathematically characterize local image patches as corners
or edges?

Ed%cs
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Special Patches in 1D
3 speaial 4D patdhes
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Special Patches in 1D
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Special Patches in 1D
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Special Patches in 1D

How does an edge look in 1D?




Special Patches in 1D

How does an edge look in 1D?

H=IES

File Edit “iew Insert Tools ‘Window Help
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Detecting & Localizing 1D Edge Patches

The ideal edge can be modeled as a smooth step function

(which looks like an inflection point!)
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Detecting & Localizing 1D Edge Patches

The location of an edge is the same as the location of the max

(or min) of a1
cx JRL=TEY
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Detecting & Localizing 1D Edge Patches
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Or equivalently, the location of the zero-crossing of — IC;‘)
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Detecting & Localizing 1D Edge Patches

1

A third option is to find maximum and minimum in %LIC")

) Figure Mo. 3

Pairs Of extrema File Edit Wiew Insert/ Tools ‘Window Help
determine the
“beginning” and the
“end” of an edge.




Detecting & Localizing 1D Edge Patches

In summary, to identify an edge (or an inflection point) one can:

Find maxima or minima ) Figure No. 3 _ (o] x|
File Edit Wiew Insert Tools ‘Window Help
of I
a3 IDEz@&a/ "A A/ B0

aAX

2 T T T L]

Find zero crossings of

AZT |
dxt
0.5
Find maxima and 0
minima of 0l7j

— _|:|5 |
dax*

| | 1 | | |
5 10 14 20 25 30 35 A0




Alright, lets find some edges!



Algorithm #1

Pixels with maximum Gradient (magnitude)

E‘d%cs




Topic 4.3:

Local analysis of 2D image
patches

e Gradient extrema



Maxima?? In which direction?




Maxima?? In which direction?

We don’t know!



But not all is lost.

Let’s simply use large magnitude gradients



Step #1: Compute Gradient Magnitude

Using a gradient magnitude image lVICx,M




Step #2: Find Pixels with High Gradient Mag

Mark all the pixels with lVI\ >S as edges.




Step #2: Find Pixels with High Gradient Mag

Trivial, works, but:
Edges are not well-localized (i.e. they are thick)
We have to choose a threshold (how?)




Step #2: Find Pixels with High Gradient Mag

Can we do better?




Step #2: Find Pixels with High Gradient Mag

Can we do better? How about zero crossings from the
second derivative?




Topic 4.3:

Local analysis of 2D image
patches

e Laplacian zero-crossings



Algorithm #2: Find Extrema of 15t Derivative

Here! Look! Extremal!



Step 1: Compute 2" order Image Derivative

T_
Compute the 2" order derivative 9




Step 2: Compute 2" order Image Derivative

Compute the 2" order derivative




Step 3: Compute The Image Laplacian

2 ¢
D1 o1

—r~

2
Form the Laplacian \/ T =

Dx* 9y

Laplacian: scalar, analog to second derivative




Step 4: Find the Laplacian Zero Crossings

Finding zero crossings is much easier than finding extrema
because...



Step 4: Find the Laplacian Zero Crossings

Finding zero crossings is much easier than finding extrema
because it’s a local property!

Consider a 3x3 patch:




Step 4: Find the Laplacian Zero Crossings

Finding zero crossings is much easier than finding extrema
because it’s a local property!

Consider a 3x3 patch: ®

|

assume
how can we tell if there was a zero crossing in the patch?




Step 4: Find the Laplacian Zero Crossings

Finding zero crossings is much easier than finding extrema
because it’s a local property!

+

HO®
Consider a 3x3 patch: |[©®H|®
+ @ "‘J

NO zero crossing




Step 4: Find the Laplacian Zero Crossings

Finding zero crossings is much easier than finding extrema
because it’s a local property!

®
o
/ @J

zero crossing!

Consider a 3x3 patch:

VISl
SIS




Step 4: Find the Laplacian Zero Crossings

Finding zero crossings is much easier than finding extrema
because it’s a local property!

®
o
/ @J

zero crossing!

Consider a 3x3 patch:

VISl
SIS

If at least one pixel has a Laplacian of different sign
than the Laplacian of the center pixel, then a zero
crossing occurred!



Step 4: Find the Laplacian Zero Crossings

Finding zero crossings is much easier than finding extrema
because it’s a local property!

PEO| BBLO| |lok® ceNE
ORO| e ol oo
J0e | ®Bole| Emo SICIE)

Other examples.

If at least one pixel has a Laplacian of different sign
than the Laplacian of the center pixel, then a zero
crossing occurred!



Step 4: Find the Laplacian Zero Crossings

Not all zero crossings are created equal!

©

@

The strength of the zero crossing can be defined as the
difference between the ® and the © values.



Step 4: Find the Laplacian Zero Crossings

Zero-crossings whose strength is greater than a threshold.




Step 4: Find the Laplacian Zero Crossings

Laplacian with zero-crossings overlaid




Topic 4.3:

Local analysis of 2D image
patches

e Painterly rendering



Giving Photos a “Painted” Look

Case study: From P. Litwinowicz’s SIGGRAPH’97 paper
“Processing Images and Videos for an
Impressionist Effect”




Giving Photos a “Painted” Look

How would you do it?




Step 1: Stroke Scan-Conversion

Stroke photo
. e é‘. o R

e Stroke: A short line drawn over the photo
e Strokes are drawn every k pixels

e Strokes drawn at a fixed angle (45 deg.)

e Strokes take color of their origin pixel

e Stroke length is chosen at random



10N

Stroke Scan-Conversi

Step 1

Stroke photo

Original photo

MOH0 0 0 0 0 oM

o)
o

o)
o)
o)
o)
o)
O ¢
of

but jagged edges not cool

Vi

Cool



Step 2: Edge Detection

Orlglnal photo Edge |mage

5|
.
‘Y .-_r;:‘.’_ _r
R

Edge detection step: For every pixel in original photo
e Compute image gradient at the pixel
e Compute gradient magnitude (in the range 0-255)
e |f magnitude > threshold, label pixel as an “edge pixel”
e Compute gradient orientation
e Compute the vector v perpendicular to pixel’s gradient




Step 3: Stroke Clipping

Motivation: To avoid “spill-over” artifacts, strokes are clipped
at edges detected in the image (i.e., a stroke should not
cross an edge pixel)

Original stroke Clipped stroke




Step 3: Stroke Clipping Results

Orlgmal Stroke Photo | Cllpped Stroke Photo

Cooler, but still not van Gogh!

Strokes are all oriented: boring



Step 4: Incorporating Edge Orientation

Toss the 45-degree angle strokes
Draw strokes in the direction normal to the gradient!

Cllpped Stroke Photo __ Orlented Stroke Photo

v.G. would be proud!



