Local Analysis of 2D Curve Patches
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Topic 4.2:

Local analysis of 2D curve
patches

e Representing 2D image curves
e Estimating differential properties of 2D curves
e Tangent & normal vectors
e The arc-length parameterization of a 2D curve

e The curvature of a 2D curve



Local Analysis of Image Patches: Outline

As curve in 2D As surface in 3D

As graph in 2D
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Local Analysis of Image Patches: Outline

As curve in 2D As surface in 3D
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stimating Intensities & their Derivatives

igure No. 1 !
File Edit View Insert Tools Window Help

=0 == S A -

Input photograph Image intensities in cal 150

i : i 200 P T T T T T T T T e
R——
Z 1501 _
=
S
£ 100 =
=
=
= 5o «f

| | | | | | | | |
50 100 150 200 250 300 350 400 450
pixel position (column #)
Least-squares fit of intensities in patch of radius w=10 centered at row 11

200 & -+ - & F T T T
= 150 &
T 100 -
=
=

50— —
| | | | | | | | |
-10 -8 -6 4 - 0 i 4 6 8 10
pixel position within patch (x)
Estimated intensity at patch center (I(0))

200 T T T T T T T T |
= 1501 -
2
=
£ 100 —
]
=
- -

| | | | | | | | |
50 100 150 200 250 300 350 400 450
pixel position (column #)
Estimated 1st intensity derivative at patch center (dI{0)/dx)
T T T T T T T T
10~ =
=
[ z
£ o .
=
g 10+ —
a
ES | | | L L =

| | | |
50 100 150 200 250 300 3580 400 450
pixel position (column #)

Don’t go, or you’ll miss out!



Estimating Intensities & their Derivatives

Figure No. 1
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Representing & Analysing 2D Curves, why?

.

e Useful representation for:
e Object boundaries
* |sophote regions (groups
of pixels with the same
intensity)

-nbﬁ.



Representing & Analysing 2D Curves, how?

m T

-nbﬁ.

Math is our friend:

Provides an unambiguous
representation

Enables computation of
useful properties



2D Image Curves: Definition

A parametric 2D curve is a
continuous mapping

y: (a;b) -> RZ
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2D Image Curves: Definition

Example: a boundary curve
t = pixel # along the boundary
ok x(t) = x coordinate of the tt" pixel

y(t) = y coordinate of the t" pixel




2D Image Curves: Definition

To fully describe a curve we need
the two functions x(t) and y(t),
called the Coordinate Functions.




2D Image Curves: Definition

A closed 2D curve is a continuous
mapping
V:(a,b) ->R?
/l N value of

value of paramee )
ol mg\mﬁimg pa amefer ot end

where t->(x(t), y(t))

such that (x(a), y(a)) = (x(b), y(b)).




Smooth 2D Curves

A curve is smooth when...



Smooth 2D Curves

A curve is smooth when all
the derivatives of the
Coordinate Functions exist

Ay, dY
iy at

{_)@, all vt



Derivatives of the Coordinate Functions

The 15t and 2"9 derivatives of
X(t), y(t) are extremely
informative about the shape of a
curve.




Topic 4.2:

Local analysis of 2D curve
patches

e Estimating differential properties of 2D curves

e Tangent & normal vectors



The Tangent Vector

Notation:

v(t) = (x(t), y(t)) * V(t) maps a number (t) toa 2D
point (x(t), y(t)).

e This type of function is called
a vector-valued function.



The Tangent Vector

y(t) Suppose we know Y(0).

¥(0) = (x(0), y(0)) ~ How can we approximate Y(t)?



The Tangent Vector

y(t) Suppose we know Y(0).

¢ V(0) = (x(0), y(0)) How can we approximate y(t)?
|

hint?




The Tangent Vector

y(t)
%%@) o\%@> Suppose we know Y(0).

¢ V(0) = (x(0), y(0)) How can we approximate y(t)?

| Using the derivative (tangent)!




The Tangent Vector

dx ;5 d
O\ 100+ L (BO20)

¢ V(0) = (x(0), y(0)) How can we approximate y(t)?

| Using the derivative (tangent)!




The Tangent Vector

V(t) &° Prediction of y(t)
Good! But not great.

y(0) = (x(0), y(0)) Can we do any better?

If so, how?



The Tangent Vector

V(t) &° Prediction of y(t)

y(0) = (x(0), y(0))

Good! But not great.

Add more information
about the curve, like the

2nd 3rd or the nt
derivative!

Familiar?



The Tangent Vector

V(t) &° Prediction of y(t)

y(0) = (x(0), y(0))

Good! But not great.

Add more information
about the curve, like the

2nd 3rd or the nt
derivative!

This is a Taylor-Series
approximation



The Tangent Vector

Formally: the 1%t order Taylor-Series
approximation to y(t) near y(0) is:
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The Tangent Vector

1(0) ¢+ +(50.%0) Definition.
The tangent vector at y(t)

is equal to the first
¢ v(0) derivative of the function,
at that point. In this case:

é/lst order Taylor- —OI—U‘-C{Q = ( [{-), (‘f))

Series approximation OlJt
of y(t) at t=0




The Tangent Vector

vit) 7(0) + %_(%(O),%L&) In general, the deri\(ati\{e of a
vector valued function is the
derivative of the n coordinate

¢ v(0) functions, so if

| WCG) - (gt&))““ ) QV\("H>

The derivative of f at (t) is:

ol df olf,
ATy My L, O ()
dt \ (dlc (o), dt )



Effect of Curve Parameter on the Tangent

)
We can parameterize a curve yin

(infinitely) many different ways, for
instance:
(%—’%Lo), %C@)
7ylo) = (x(@,ﬂ(")) 1. Make t the number of pixels
between y(0) and V(t)
2. Make t the actual length of the
curve between y(0) and Y(t), in
meters (or inches, or light-years).




Effect of Curve Parameter on the Tangent

F&)

(%—’%Lo), %C@)

’3’(0) rod (x(l)),j("))

We can parameterize a curve yin
(infinitely) many different ways, for
instance:

1. Make t the number of pixels
between y(0) and V(t)

2. Make t the actual length of the
curve between y(0) and Y(t), in
meters (or inches, or light-years).

But the key property is that the
direction of the tangent remains
unchanged, regardless of the scale of
the parameter.



Effect of Curve Parameter on the Tangent

F&)

The direction of the tangent remains
)) unchanged, regardless of the scale of

X
(& the parameter.

Alo) = ( Co%ﬂf"’)

Really?

Can we prove it?




Effect of Curve Parameter on the Tangent

Proof:

Let’s parameterize the curve yin two ways:

1. Take t = the number of pixels between y(0) and V(t)

2. Take s =f(t) as the parameter, where f(t) is simply any
differentiable function.



Effect of Curve Parameter on the Tangent

Proof:

Let’s parameterize the curve yin two ways:

1. Take t = the number of pixels between y(0) and V(t)

2. Take s =f(t) as the parameter, where f(t) is simply any
differentiable function.

dy [ 9x, 98
In 1, we know the derivative of yissimply —=1{ 4+ 4+

dt



Effect of Curve Parameter on the Tangent

Proof:

Let’s parameterize the curve yin two ways:

1. Take t = the number of pixels between y(0) and V(t)

2. Take s =f(t) as the parameter, where f(t) is simply any
differentiable function.

dy [ 9x, 98
In 1, we know the derivative of yis simply J%— =\ g+ d+

In 2, the chain rule tells us that if s=f(t) and y(s) then:

d7 dx df dy dt\ _df [dx  dy
;\T:(o\s dt "ds dt ) T dt \ ds  ds

which correspond to



Effect of Curve Parameter on the Tangent

Proof:

Let’s parameterize the curve yin two ways:

1. Take t = the number of pixels between y(0) and V(t)

2. Take s =f(t) as the parameter, where f(t) is simply any
differentiable function.

C}(Df OlX d%
In 1, we know the derivative of yis simply J%_ = d{_ oH:

In 2, the chain rule tells us that if s=f(t) and y(s) then:
do _(dx.db dy d8\ _df [dx  d9
o (o\s dt s d ) T

multigliahe I
scaay ds



The Unit Tangent Vector

Definition. The Unit Tangent is:

¥
I
dhags b T iicﬂ.
,[ Ievxg-\-\» =1 \l i\l‘c)}(-ﬂ >.
T(o)

ylo) = (x(00, ()

The unit tangent vector
does not depend on the
choice of the parameter t




The Arc-Length of a Curve

How can we approximate the
length of a curve?



The Arc-Length of a Curve

| @vxﬂJrL\ At ” (03 ”

Ole)



The Arc-Length of a Curve

Take small enough steps (of
size /At) and add!

FOd+ At - 2y (v)

(st At

| Q\Aﬂﬂ\ At “ (03 ”

Ole)



The Arc-Length of a Curve

Take small enough steps (of

2}
size AAt) and add! (G(A)c\ F ot OT+ Céﬂ

salE: 3t = (at)|]

FOd+ At - 2y (v)

(st At
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The Arc-Length of a Curve




The Arc-Length of a Curve

(4G Y) -
v (Leng) Iy (20)
St

This is called a piece-wise-linear
length approximation.

9%
S(t) = /_\‘c[|g—(07|[ t Aap)) O
Bt [2T (a9 |+ -

And what if we make the steps smaller and smaller?

At ->0



The Arc-Length of a Curve

Then we get the following definition!
The arc-length s(t) of the curve y(t) is
given by:

S (4) = (\\ “3(.)|d



The Arc-Length of a Curve

For example, lets think about the circle

What do we expect



The Arc-Length of a Curve

For example, lets think about the circle

Proportional to the radius and the number of pixels in the circle



The Arc-Length of a Curve

Example: The arc length of a circle with radius r, whose curve
equation can be written as:

V(t) = r ( cos(t), sin(t) )

oY (f) = ¥ <,.gwxjc, cost)
d.b g J

Y
unit vectors

o\l = ¥
Ay

then

s(t)= (\\ CO(w||d



The Arc-Length of a Curve

Example: The arc length of a circle with radius r, whose curve
equation can be written as:

V(t) = r ( cos(t), sin(t) )
aY ol
\\gép\\

Now, substituting on the definition, we get:

1
s () = f\\ (&Qlo\w - gr‘du:\(‘t
0



The Arc-Length of a Curve

Example: The arc length of a circle with radius r, whose curve
equation can be written as:
y(t) = r ( cos(t), sin(t) )

aY =l
L) \

Now, substituting on the definition, we get:

_E
s (t) = (\\ 25|l dw < grdu@

Proportional to the radius... yes!
Proportional to the number of pixels in the circle... yes!



The Arc-Length of a Curve

Now, can we parameterize the function y(t) using the arc-length
function itself?



The Arc-Length of a Curve

Now, can we parameterize the function y(t) using the arc-length
function itself?

Yes!
s () = (“ él(uﬂl\o\m



The Arc-Length of a Curve

Now, can we parameterize the function y(t) using the arc-length
function itself?

Yes!
s () = (“ él(uﬂl\o\m

A parameterization y(s) where the curve parameter is the arc-
length is (thoughtfully and originally) named the arc-length
parameterization.



The Arc-Length of a Curve

Now, can we parameterize the function y(t) using the arc-length
function itself?

Yes!

Lets use the circle again as an example. We know that the arc-
length of a circle is s(t) =rt, or for short s = rt.

Which means that + = —— , SO the arc-length parameterization

1St (cos 2 =) SW\—>



The Arc-Length of a Curve

Arc-length parameterization of the circle.
.S
Using Y(s) = r(cos -SF ) SW\T) the following holds:

A

y(t) = (x(t), y(t))

Yy




The Arc-Length of a Curve

Now, we know that the arc-lengthis < (t) = f\\ (UOI\

o

We also know that an arc-length parameterization y(s) is one
where the curve parameter is the arc-length

Knowing these two facts, a property we can derive is that y(s) is
an arc-length parameterization of a curve if and only if

i
S




The Arc-Length of a Curve

Y(s) is an arc-length parameterization of a curve if and only if

gy
“3_{[ =L Proof: Ay 9T A4S (choin rule)
gr  as ot ¢
— &y _ 9y d [ (|9
= 5{31 ds dt (;wdtcmlldQ
e oy _ Y . “ é_[
ot ds Tt

@ﬂ%l%”%ll' &
= €)=



The Arc-Length of a Curve

Y(s) is an arc-length parameterization of a curve if and only if

<

=1

This is a very useful property of
arc-length parameterized curves,
because the tangent -estimated
as the derivative of the curve- is
always a unit-tangent!



The Unit Normal Vector

Let’s look at the normal vector now

T&) |

T0)
’J(D) = (x(D),j(O))




The Unit Normal Vector

&
\ a|wo:93 has Today we learnt that the unit tangent is
[ I(’JV\_Q"‘\» :'—i Ollb" l
T(%) = ,—-({-k-‘) ¢
T(0) n “ é‘%(ﬂ“ |

ylo) = (x(o0, ()

How do we estimate the Unit Normal?




The Unit Normal Vector

F&)

a IWO_.” S has
[ I (’,V\\g"-\\- :‘—1-

T ()
’3’(0) rod (x(l)),j("))

Today we learnt that the unit tangent is

dF o .
TH) = —&
at \\ ‘E'E_(ﬂ
ax

R

As the orthogonal vector to T(t).

The (unit) normal vector N(t) is the
counter-clockwise rotation of T(t) by
90 degrees.



The Unit Normal Vector

&)
Qlwoﬂs has Today we learnt that the unit tangent is
[ IG“\S'M\- _1. d IJ‘ l
T(‘é‘) = ,———C—E) °
T(0) m \

’3’(0) rod (x(l)),j("))

As the orthogonal vector to T(t).
The (unit) normal vector N(t) is the
counter-clockwise rotation of T(t) by

90 degrees.
| ax
NG = —; o ( m 2, J;&Q
\(d**) at



The Unit Normal Vector

Aside: what are orthogonal vectors?

Vectors a and b are orthogonal if and only if their dot
product is zero. So if a = [a,, a,], and b = [b,, b ], then a
and b are orthogonal if and only if:

(a a,) [bx ] =ab,+ab, =0



The Moving Frame

Putting the unit Tangent and the unit

Normal together we get:
The Moving Frame, defined as the pair

of orthogonal vectors {T(t), N(t)}




The Moving Frame

For example, the circle

/\\/ T(g)
( %ﬂa) “6(8):6(60‘95"“%>
A N T(9) = (,.gh\%\c,oscb>
\)/ " n(9) = (—(.039)’9“%)

|




The Moving Frame

Noteworthy:

1. As we change the parameter t, the
moving frame rotates

2. The faster the frame rotates, the
more “curved” the curve is

3. The speed at which the moving
frame is rotating can be estimated
using a 15t order Taylor-series near
t=0.




Topic 4.2:

Local analysis of 2D curve
patches

e Estimating differential properties of 2D curves

e The curvature of a 2D curve



Arc-Length Parameterization: T(s) & N(s)

7s)

We know that: Jf
The unit tangentis: T (S) = ——(5)
as

And that the unit normal is the 90-deg
counter-clockwise rotation:

N(s) = ( 226, O"%s))

Note that we use ”"s” as the parameter to
denote arc-length parameterizations. And we
arc-length parameterizations because the
expressions are simpler (see last slide of this
lecture for comparison).



Defining the Curvature at a Point

T)

<)

Theorem. Definition of curvature.

If s is the arc-length of a curve, then

dT (s) = k(9 N L)

ds
dN () = k() TCY
50 = K91

Cur\/a‘hﬁﬂ- ‘l'dh%@’*
(a sca }a\r) (a V(’,C/'l'OI)



Defining the Curvature at a Point

The traditional way of writing the 15t order
Taylor approximation of the moving frame is:

iT(s)/,\)(S)j = {T(O))N(O)} 1
¢ dlig), ¢
lg'ols“' g;—g{)f

T

<)

But if we use the curvature k(s), it becomes

XTCSW,NCS)} = }T@, NCO)S +

dT(s) = k(3. NLS) (2 S. k(o) -N(0) ,
ds

IN(s) = -k(5)-TCY -S- ILCO) TCO) 3
as



Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

SLTm,vJGc)j = 1T, ) |+ 3 £-k(S)-N(S) -+ k(0)- TC0) §

{PY‘OOQ O£ ’U/\tomvn {:’w Some
clexr 109 = (U\(ﬂ, v CS)) wC),vi )



Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

SLTm,vJCJc)j = 1T, ) |+ 3 £-k(S)-N(S) -+ k(0)- TC0) §

{PY‘OO£ O£ ’l‘\’\f'omm {Zov some.
clexr 109 = (U\(ﬂ, v CS)) wC),vi )

dT ey [ Au olv
. T\’\f,\/\ ES—-CS) = ( a—S(S)) ag’(b))



Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

SLTm,vJCJc)j = 1T, ) |+ 3 £-k(S)-N(S) -+ k(0)- TC0) §

{PY‘OOQ O£ ’l“/\f,OY’“e,vn {Zov ome

ek T = (0, v0)) we) vy

. Thew %;LCS) = ( 3\%0), %lé@)

. Levg%k of TE) 21 V@:—Q
derivochive of (leng)™ =0 =5



Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

SLTm,vJGc)j = 1T, ) |+ 3 £-k(S)-N(S) -+ k(0)- TC0) §

{PY‘OOQ O£ ’l“/\f,OY’“ﬂVY\ {Zov some.
clexr 109 = (U\('ﬂ, v CS)) wC),vi )

dT ey [ Au olv
. T\’\f,\/\ ES—-CS) = ( a—S(S)) ag’(b))

+Length o TC) 2 ¥ =

der\'vor'l‘hh& 0.? ( ‘év\g-l-k) = =0 2)
a

0 O—l—s—-(U\QCS) tvo(s) ) =0 =™



Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

SLTm,vJGc)j = 1T, ) |+ 3 £-k(S)-N(S) -+ k(0)- TC0) §

{PY‘OO£ O£ ’[“/\f,OY"{,VY\ pov some.
Lok T = (w9, v 6)) wC, v )

dT ey [ Au olv
. T\’\f,\/\ 'JS—-CS) = ( a—S(S)) a;’()))

+Length o TC) 2 ¥ =

der\'vor'l‘hh& 0_? ( ‘év\g-l-k) = =0 2)
a

0 O—TS—(MQCS) tvo(s) ) =0 =™

AV N -
| Qu&)-%‘”@) £ V(). 5HO) =0 =



Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

SLTm,vJGc)j = 1T, ) |+ 3 £-k(S)-N(S) -+ k(0)- TC0) §

{PY‘OO£ O£ ’[“/\f,OY"{,VY\ pov some.
Lok T = (w9, v 6)) wC, v )

dT ey [ Au olv
. T\’\f,\/\ 'JS—-CS) = ( a—S(S)) a;’()))

+Length o TC) 2 ¥ =

der\'vor'l‘hh& 0_? ( ‘év\g-l-k) = =0 2)
a

0 O—TS—(MQCS) tvo(s) ) =0 =™

AV N -
| Qucs}%"\(ﬂ £ V(). 5HO) =0 =

[gl&(;) dv g H““w =0

as A Vs



Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

} T, ~C+)j = 1T, ) |+ 3 £-k(S)-N(S) -+ k(0)- TC0) §
Boof of theoron g, g
cLex 71 («% = (U\('S’)) v CS)) wC),v()
. Thew %;LCS) = ( 3\%0), %%Cﬂ)
. L¢v34k of TE) 21 st=—9
der\'va—l-wt 0_? (‘e,v\g-l-k)z-:O =
o —é—(U\QCS)-(-v?“G)):O =D

as
AV N -y
| Qu&)-%‘”@) £ V(). 5HO) =0 =

N
ATy dugy dyig [|4¢)] =0
ds das A v(s)

Je—TC)



Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

} T, ~c+)j = 1T, ) { + 34: (6)-N(S) - +-k(0) - TCo)
dT, {A“\(;) AVL)H\AO) =0

ds as A v(s)

“e—TC)



Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

} T, ~c+)j = 1T, ) { + 3{.lcco).w(o))-f-k@}.TCo) §
dlg {a‘w(;) AVL)H‘“’) =0 =

ds as A v(s)

“e—TC)
OlT 2.5 15 Or-\'\/\oﬁcha\ o TG) =D

dl —(s) 15 oollinear with N(S)
dg

And the scaling constant is k(s)
28
aT o) =z k(9. N L)
ds




Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

SLTm,vJCJc)j = 1T, ) |+ 3 £-k(S)-N(S) -+ k(0)- TC0) §

And the scaling constant is k(s)

<
El_t(s) = k(). NCs)

ds

What is this constant saying?




Defining the Curvature at a Point

The 1%t order Taylor-series approximation becomes:

SLTm,vJGc)j = 1T, ) |+ 3 £-k(S)-N(S) -+ k(0)- TC0) §

And the scaling constant is k(s)

<
El_t(s) = k(). NCs)

ds

What is this constant saying?

How much of the Normal do we need to
add to the Tangent T(0) to approximate
the tangent at T(t).




Interpreting the Sign of the Curvature k(s)

dT (g = k(9. NG gg@ - -k(§)- T

X() ¢V

K(s) >0

7 Curve bonds
curve bends m +he 0()[)031"\‘6
m the direction direction 1Crow\

of +he wormal e wormal



Interpreting the Absolute Value of k(s)

SLTCJJ,VJ(})} = iTCo},NMS + 3 b-k(e)-N(o) - t-k(0) - TCo) i

What is the intuition of the above equation then?

The equation is saying, look we can approximate Vy(s) (by
approximating the Tangent and the Normal) using a circle that:
e passes through y(0),

e istangent to T(0), and
e passes through y(s)

T(9)

. The radins 0f lhe civcle & VKCS’)




The Arc-Length Parameterization & k(s)

Example: the curvature of a circle of radius r.

Parametric equation: g(t) =r (cos t, sin t).
L S 2
Arc-length parameterization W(S} =\ (COS—;»S“" r >
. d 7 S S N -
First derivative g— (s) = (’S\W Py CDS?) = TCQ)

Second derivative C€) ~ ,L( cos—— _S\m~—> N(s)
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The Circle of Curvature k(s)
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k(t) for Non-Arc-Length Parameterizations
| . Prove  Hhat if 70() ;(xcn, Y cﬂ)

-u«\e Curvature  oF ’D’C‘D 15 Sivem
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