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•• Representing 2D image curvesRepresenting 2D image curves
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• Tangent & normal vectors 

• The arc-length parameterization of a 2D curve

• The curvature of a 2D curve
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Don’t go, or you’ll miss out!
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Representing & Representing & AnalysingAnalysing 2D 2D Curves, why?Curves, why?

• Useful representation for:

• Object boundaries

• Isophote regions (groups 

of pixels with the same 

intensity)



Representing & Representing & AnalysingAnalysing 2D 2D Curves, how?Curves, how?

Math is our friend:

• Provides an unambiguous 

representation 

• Enables computation of 

useful properties



2D Image Curves: Definition2D Image Curves: Definition

A parametric 2D curve is a 

continuous mapping

γ : (a,b) -> R2

where

t -> (x(t), y(t))



2D Image Curves: Definition2D Image Curves: Definition

Example: a boundary curve

t = pixel # along the boundary

x(t) = x coordinate of the tth pixel

y(t) = y coordinate of the tth pixel



2D Image Curves: Definition2D Image Curves: Definition

To fully describe a curve we need 

the two functions x(t) and y(t), 

called the Coordinate Functions.



A closed 2D curve is a continuous 

mapping

γ : (a,b) -> R2

2D Image Curves: Definition2D Image Curves: Definition

where t -> (x(t), y(t))

such that (x(a), y(a)) = (x(b), y(b)).



Smooth 2D Smooth 2D CurvesCurves

A curve is smooth when...



Smooth 2D Smooth 2D CurvesCurves

A curve is smooth when all 

the derivatives of the 

Coordinate Functions exist



Derivatives of the Coordinate FunctionsDerivatives of the Coordinate Functions

The 1st and 2nd derivatives of 

x(t), y(t) are extremely 

informative about the shape of a 

curve.curve.
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The Tangent Vector The Tangent Vector 

Notation:

• γ(t) maps a number (t) to a 2D 

point (x(t), y(t)).
γ(t) = (x(t), y(t))

• This type of function is called 

a vector-valued function.



The Tangent Vector The Tangent Vector 

Suppose we know γ(0).

How can we approximate γ(t)?γ(0) = (x(0), y(0))

γ(t)
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How can we approximate γ(t)?γ(0) = (x(0), y(0))

γ(t)

hint?
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Using the derivative (tangent)!
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The Tangent Vector The Tangent Vector 

γ(0) = (x(0), y(0))

γ(t)
Suppose we know γ(0).

How can we approximate γ(t)?

Using the derivative (tangent)!Using the derivative (tangent)!



The Tangent Vector The Tangent Vector 

γ(0) = (x(0), y(0))

γ(t)
Good! But not great.

Can we do any better?

If so, how?

Prediction of γ(t)

If so, how?



The Tangent Vector The Tangent Vector 

γ(0) = (x(0), y(0))

γ(t)
Good! But not great.

Add more information 

about the curve, like the 

2nd, 3rd,… or the nth

Prediction of γ(t)

2nd, 3rd,… or the nth

derivative!

Familiar?



The Tangent Vector The Tangent Vector 

γ(0) = (x(0), y(0))

γ(t)
Good! But not great.

Add more information 

about the curve, like the 

2nd, 3rd,… or the nth

Prediction of γ(t)

2nd, 3rd,… or the nth

derivative!

This is a Taylor-Series 

approximation



The Tangent Vector The Tangent Vector 

γ(0) = (x(0), y(0))

γ(t)

Formally: the 1st order Taylor-Series 

approximation to γ(t) near γ(0) is:

, so



The Tangent Vector The Tangent Vector 

γ(0)

γ(t)
Definition. 

The tangent vector at γ(t) 

is equal to the first 

derivative of the function, 

at that point. In this case:

1st order Taylor-

Series approximation 

of γ(t) at t=0



The Tangent Vector The Tangent Vector 

γ(0)

γ(t)
In general, the derivative of a 

vector valued function is the 

derivative of the n coordinate 

functions, so if 

The derivative of f at (t) is:



Effect of Curve Parameter on the TangentEffect of Curve Parameter on the Tangent

We can parameterize a curve γ in 

(infinitely) many different ways, for 

instance:

1. Make t the number of pixels 

between γ(0) and γ(t)

2. Make t the actual length of the 2. Make t the actual length of the 

curve between γ(0) and γ(t), in 

meters (or inches, or light-years).



Effect of Curve Parameter on the TangentEffect of Curve Parameter on the Tangent

We can parameterize a curve γ in 

(infinitely) many different ways, for 

instance:

1. Make t the number of pixels 

between γ(0) and γ(t)

2. Make t the actual length of the 2. Make t the actual length of the 

curve between γ(0) and γ(t), in 

meters (or inches, or light-years).

But the key property is that the 

direction of the tangent remains 

unchanged, regardless of the scale of 

the parameter.



Effect of Curve Parameter on the TangentEffect of Curve Parameter on the Tangent

The direction of the tangent remains 

unchanged, regardless of the scale of 

the parameter.

Really?Really?

Can we prove it?



Proof:

Let’s parameterize the curve γ in two ways:

1. Take t = the number of pixels between γ(0) and γ(t)

2. Take s = f(t) as the parameter, where f(t) is simply any 

differentiable function.

Effect of Curve Parameter on the TangentEffect of Curve Parameter on the Tangent
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In 1, we know the derivative of γ is simply

In 2, the chain rule tells us that if s=f(t) and γ(s) then:



The Unit Tangent VectorThe Unit Tangent Vector

Definition. The Unit Tangent is:

The unit tangent vector 

does not depend on the 

choice of the parameter t



The ArcThe Arc--Length of a CurveLength of a Curve

How can we approximate the

length of a curve?



The ArcThe Arc--Length of a CurveLength of a Curve



The ArcThe Arc--Length of a CurveLength of a Curve

Take small enough steps (of 

size ∆t) and add!
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Take small enough steps (of 

size ∆t) and add!



The ArcThe Arc--Length of a CurveLength of a Curve



The ArcThe Arc--Length of a CurveLength of a Curve

This is called a piece-wise-linear 

length approximation.

And what if we make the steps smaller and smaller? 

∆t -> 0



The ArcThe Arc--Length of a CurveLength of a Curve

Then we get the following definition!

The arc-length s(t) of the curve γ(t) is 

given by:



The ArcThe Arc--Length of a CurveLength of a Curve

For example, lets think about the circle

What do we expect



The ArcThe Arc--Length of a CurveLength of a Curve

For example, lets think about the circle

Proportional to the radius and the number of pixels in the circle



The ArcThe Arc--Length of a CurveLength of a Curve

Example: The arc length of a circle with radius r, whose curve 

equation can be written as:

γ(t) = r ( cos(t), sin(t) )

then

unit vectorsunit vectors

so



The ArcThe Arc--Length of a CurveLength of a Curve

Example: The arc length of a circle with radius r, whose curve 

equation can be written as:

γ(t) = r ( cos(t), sin(t) )

Now, substituting on the definition, we get:



The ArcThe Arc--Length of a CurveLength of a Curve

Example: The arc length of a circle with radius r, whose curve 

equation can be written as:

γ(t) = r ( cos(t), sin(t) )

Proportional to the radius… yes!

Proportional to the number of pixels in the circle… yes!

Now, substituting on the definition, we get:



The ArcThe Arc--Length of a CurveLength of a Curve

Now, can we parameterize the function γ(t) using the arc-length 

function itself?



The ArcThe Arc--Length of a CurveLength of a Curve

Yes!

Now, can we parameterize the function γ(t) using the arc-length 

function itself?



The ArcThe Arc--Length of a CurveLength of a Curve

Yes!

Now, can we parameterize the function γ(t) using the arc-length 

function itself?

A parameterization γ(s) where the curve parameter is the arc-

length is (thoughtfully and originally) named the arc-length 

parameterization.



The ArcThe Arc--Length of a CurveLength of a Curve

Yes!

Lets use the circle again as an example. We know that the arc-

Now, can we parameterize the function γ(t) using the arc-length 

function itself?

Lets use the circle again as an example. We know that the arc-

length of a circle is  s(t) = rt, or for short s = rt.

Which means that               , so the arc-length parameterization 

is: 



The ArcThe Arc--Length of a CurveLength of a Curve

Arc-length parameterization of the circle.

Using                                                 the following holds:γ(s) =

γ(t) = (x(t), y(t))

t

γ(t) = (x(t), y(t))



The ArcThe Arc--Length of a CurveLength of a Curve

Now, we know that the arc-length is

We also know that an arc-length parameterization γ(s) is one 

where the curve parameter is the arc-length

γKnowing these two facts, a property we can derive is that γ(s) is 

an arc-length parameterization of a curve if and only if



The ArcThe Arc--Length of a CurveLength of a Curve

γ(s) is an arc-length parameterization of a curve if and only if



The ArcThe Arc--Length of a CurveLength of a Curve

γ(s) is an arc-length parameterization of a curve if and only if

This is a very useful property of 

arc-length parameterized curves, 

because the tangent -estimated because the tangent -estimated 

as the derivative of the curve- is 

always a unit-tangent!



The Unit Normal VectorThe Unit Normal Vector

Let’s look at the normal vector now



The Unit Normal VectorThe Unit Normal Vector

Today we learnt that the unit tangent is

How do we estimate the Unit Normal?



The Unit Normal VectorThe Unit Normal Vector

Today we learnt that the unit tangent is

As the orthogonal vector to T(t).As the orthogonal vector to T(t).

The (unit) normal vector N(t) is the 

counter-clockwise rotation of T(t) by 

90 degrees.



The Unit Normal VectorThe Unit Normal Vector

Today we learnt that the unit tangent is

As the orthogonal vector to T(t).As the orthogonal vector to T(t).

The (unit) normal vector N(t) is the 

counter-clockwise rotation of T(t) by 

90 degrees.



The Unit Normal VectorThe Unit Normal Vector

Aside: what are orthogonal vectors?

Vectors a and b are orthogonal if and only if their dot 

product is zero. So if a = [ax, ay], and b = [bx, by], then a

and b are orthogonal if and only if:

ax ay bx = axbx + ayby = 0

by



The Moving FrameThe Moving Frame

Putting the unit Tangent and the unit 

Normal together we get: 

The Moving Frame, defined as the pair The Moving Frame, defined as the pair 

of orthogonal vectors  {T(t), N(t)}



The Moving FrameThe Moving Frame

For example, the circle



The Moving FrameThe Moving Frame

Noteworthy:

1. As we change the parameter t, the 

moving frame rotates

2. The faster the frame rotates, the 

more “curved” the curve is

3. The speed at which the moving 

frame is rotating can be estimated frame is rotating can be estimated 

using a 1st order Taylor-series near 

t=0.
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ArcArc--Length Parameterization: T(s) & N(s)Length Parameterization: T(s) & N(s)

We know that:

The unit tangent is:

And that the unit normal is the 90-deg

counter-clockwise rotation:

Note that we use ”s” as the parameter to 

denote arc-length parameterizations. And we 

arc-length parameterizations because the 

expressions are simpler (see last slide of this 

lecture for comparison).



Defining the Curvature at a PointDefining the Curvature at a Point

Theorem. Definition of curvature.

If s is the arc-length of a curve, then



Defining the Curvature at a PointDefining the Curvature at a Point

The traditional way of writing the 1st order 

Taylor approximation of the moving frame is:

But if we use the curvature k(s), it becomes



Defining the Curvature at a PointDefining the Curvature at a Point

The 1st order Taylor-series approximation becomes:
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The 1st order Taylor-series approximation becomes:



Defining the Curvature at a PointDefining the Curvature at a Point

The 1st order Taylor-series approximation becomes:

And the scaling constant is k(s)
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And the scaling constant is k(s)

What is this constant saying?



Defining the Curvature at a PointDefining the Curvature at a Point

The 1st order Taylor-series approximation becomes:

And the scaling constant is k(s)

What is this constant saying?

How much of the Normal do we need to 

add to the Tangent T(0) to approximate 

the tangent at T(t).



Interpreting the Sign of the Curvature k(s)Interpreting the Sign of the Curvature k(s)



Interpreting the Absolute Value of k(s)Interpreting the Absolute Value of k(s)

What is the intuition of the above equation then?

The equation is saying, look we can approximate γ(s) (by 

approximating the Tangent and the Normal) using a circle that:

• passes through γ(0),• passes through γ(0),

• is tangent to T(0), and

• passes through γ(s)



The ArcThe Arc--Length Parameterization & k(s)Length Parameterization & k(s)

Example: the curvature of a circle of radius r.

Parametric equation: g(t) = r (cos t, sin t).

Arc-length parameterization

First derivativeFirst derivative

Second derivative



The Circle of The Circle of Curvature k(s)Curvature k(s)



k(t) for Nonk(t) for Non--ArcArc--Length ParameterizationsLength Parameterizations


