
Topic 4:Topic 4:

Local analysis of image Local analysis of image 

patchespatchespatchespatches

•• What do we mean by an image “patch”?What do we mean by an image “patch”?

•• Applications of local image analysisApplications of local image analysis

•• Visualizing 1D and 2D intensity functionsVisualizing 1D and 2D intensity functions



Local Image PatchesLocal Image Patches

So far, we have considered pixels completely independently

of each other (as RGB values or, as vectors [R, G, B])

In reality, photos have a great deal of structure

This structure can be analyzed at a local level (eg., small 

groups of nearby pixels) or a global one (eg. entire image)

pixelpixel



Local Image PatchesLocal Image Patches

Qualitatively, we can think of many different types of patches in an 

image

Patches corresponding to a “corner” in the image



Local Image PatchesLocal Image Patches

Qualitatively, we can think of many different types of patches in an 

image

Patches corresponding to an “edge” in the image



Local Image PatchesLocal Image Patches

Qualitatively, we can think of many different types of patches in an 

image

Patches of uniform texture



Local Image PatchesLocal Image Patches

Qualitatively, we can think of many different types of patches in an 

image

Patches that originate from a single surface



Local Image PatchesLocal Image Patches

Qualitatively, we can think of many different types of patches in an 

image

Or patches with perceptually-significant “features”



Local Image PatchesLocal Image Patches

When is a group of pixels considered a local patch?

The notion of a patch is relative. It can be a single pixel



Local Image PatchesLocal Image Patches

When is a group of pixels considered a local patch?

There is no answer to this question! 

The notion of a patch is relative. It can be a single pixel



Local Image PatchesLocal Image Patches

When is a group of pixels considered a local patch?

There is no answer to this question! 

The notion of a patch is relative. It can be the entire image



Local Image PatchesLocal Image Patches

We will begin with mathematical properties and methods that 

apply mostly to very small patches (e.g., 3x3)

… and eventually consider descriptions that apply to entire

images 



Topic 4:Topic 4:

Local analysis of image Local analysis of image 

patchespatchespatchespatches

•• What do we mean by an image “patch”?What do we mean by an image “patch”?

•• Applications of local image analysisApplications of local image analysis

•• Visualizing 1D and 2D intensity functionsVisualizing 1D and 2D intensity functions



Patches: Why Do We Care?Patches: Why Do We Care?

Many applications…

• Recognition

• Inspection

• Video-based tracking

• Special effects 



Face Recognition and AnalysisFace Recognition and Analysis

http://petapixel.com/2012/03/30/facial-recognition-software-guesses-age-based-on-a-photo/



TrackingTracking

M. Zervos, H. BenShitrit and P. Fua, Real time multi-object tracking using multiple cameras



Editing & Manipulating PhotosEditing & Manipulating Photos

Object removal from a photo

OriginalOriginal NewNew

(Criminisi et al, CVPR 2003)



Editing & Manipulating PhotosEditing & Manipulating Photos

Colorization of black and white photos

Original (B&W)Original (B&W) New (Color)New (Color)

(Levin & Weiss, SIGGRAPH 2004)



Editing & Manipulating PhotosEditing & Manipulating Photos

Scissoring objects from a photo 
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Giving Photos a “Painted” LookGiving Photos a “Painted” Look

From P. Litwinowicz’s SIGGRAPH’97 paper

“Processing Images and Videos for an

Impressionist Effect”



Topic 4:Topic 4:

Local analysis of image Local analysis of image 

patchespatchespatchespatches

•• What do we mean by an image “patch”?What do we mean by an image “patch”?

•• Applications of local image analysisApplications of local image analysis

•• Visualizing 1D and 2D Visualizing 1D and 2D image patches as intensity image patches as intensity 

functionsfunctions



Visualizing An Image Visualizing An Image as aas a Surface in 3DSurface in 3D

Gray-scale image

A gray-scale image is 

like a function I(x,y)



Image Image ⇔⇔ Surface in 3DSurface in 3D

Gray-scale image SurfaceSurface

And we can visualize this function in 3D



Image Image ⇔⇔ Surface in 3DSurface in 3D

Gray-scale image SurfaceSurfaceSurfaceSurface



Gray-scale image

Image Image ⇔⇔ Surface in 3DSurface in 3D

Image patchImage patch

The same 

applies to image 

patches



Gray-scale image

Image Image ⇔⇔ Surface in 3DSurface in 3D

Image patchImage patch

Surface patchSurface patch

Patches have their 

own coordinate 

system.



BTW, notice image noiseBTW, notice image noise



Visualizing a Row or Column Visualizing a Row or Column as a as a Graph in 2DGraph in 2D

Gray-scale image                       Graph in 2D

Another way of visualizing image data is as a graph in 2D



Image row or column Image row or column ⇔⇔ Graph in 2DGraph in 2D

Gray-scale image                       Graph in 2D

And of course, we can do this for a 1D patch.



Today we’ll learn aboutToday we’ll learn about

4.1. Today’s lecture is about modeling image data taking into 

account more than one (potentially noisy) single pixel.

We will focus on 1D patches.

Methods include:

Computing derivatives of 1D patches using polynomial 

fitting via Least-squares, weighted least squares and fitting via Least-squares, weighted least squares and 

RANSAC



where are we, and what will where are we, and what will 

come after?come after?come after?come after?

••Subtopics:Subtopics:

1. Local analysis of 1D image patches (today)

2. Local analysis of 2D curve patches

3. Local analysis of 2D image patches



Local Analysis of Image Patches: OutlineLocal Analysis of Image Patches: Outline

As graph in 2DAs graph in 2D As curve in 2DAs curve in 2D As surface in 3DAs surface in 3D



Topic 4:Topic 4:

Local analysis of image Local analysis of image 

patchespatchespatchespatches

••Subtopics:Subtopics:

1. Local analysis of 1D image patches

2. Local analysis of 2D curve patches

3. Local analysis of 2D image patches



Topic 4.1:Topic 4.1:

Local analysis of 1D image Local analysis of 1D image 

patchespatchespatchespatches

•• Taylor series approximation of 1D intensity patchesTaylor series approximation of 1D intensity patches

• Estimating derivatives of 1D intensity patches

Least-squares fitting

Weighted least-squares fitting

Robust polynomial fitting: RANSAC



Topic 4.1:Topic 4.1:

Local analysis of 1D image Local analysis of 1D image 

patchespatchespatchespatches

•• Taylor series approximation of 1D intensity patchesTaylor series approximation of 1D intensity patches

• Estimating derivatives of 1D intensity patches:

Least-squares fitting

Weighted least-squares fitting

Robust polynomial fitting: RANSAC



LeastLeast--Squares Polynomial FittingSquares Polynomial Fitting

Taylor approximation: Fit a polynomial Taylor approximation: Fit a polynomial to to the pixel the pixel 
intensities in a patchintensities in a patch

•• All pixels contribute equally to estimate of All pixels contribute equally to estimate of 
derivative(s) at patch center (i.e., at x=0)derivative(s) at patch center (i.e., at x=0)

IntensityIntensity

Pixel (x)Pixel (x)00
ww--ww



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D
If we knew the derivatives of 

I(x) at x=0, we can approximate 

I(x) using the Taylor Series:



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D
If we knew the derivatives of 

I(x) at x=0, we can approximate 

I(x) using the Taylor Series:

?



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D
If we knew the derivatives of 

I(x) at x=0, we can approximate 

I(x) using the Taylor Series:

The approximation is best at the 

origin and degrades from there.



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D The n-th order Taylor series 

expansion of I(x), near the 

patch center (x=0) can then 

be written in matrix form as:

Note that an 

approximated value for  

I(x) will depend on n+1 

coefficients: the intensity 

derivatives at I(0)



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D
Example: 0th order approximation



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D
Example: 1st order approximation



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D
Example: 2nd order approximation



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D
And so on…



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

But do we know the derivatives?But do we know the derivatives?



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

But do we know the derivatives?But do we know the derivatives?

No, but we can estimate them!



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

And can we estimate them for the entire row?And can we estimate them for the entire row?



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

And can we estimate them for the entire row?And can we estimate them for the entire row?

Yes, but pixel by pixel.

In fact…



Applying the same operation on multiple patchesApplying the same operation on multiple patches

A “sliding A “sliding window” window” algorithm is a algorithm is a 
common approach to patchcommon approach to patch--based based 
operationsoperations

The algorithm goes as follows:The algorithm goes as follows:
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1.1. Define a “pixel window” using a Define a “pixel window” using a 
window size and a window center.window size and a window center.

Applying the same operation on multiple patchesApplying the same operation on multiple patches



A “sliding A “sliding window” window” algorithm is a algorithm is a 
common approach to patchcommon approach to patch--based based 
operationsoperations

The algorithm goes as follows:The algorithm goes as follows:

1.1. Define a “pixel window” using a Define a “pixel window” using a 
window size and a window center.window size and a window center.

2.2. Apply whatever operation in mind Apply whatever operation in mind 

Applying the same operation on multiple patchesApplying the same operation on multiple patches

2.2. Apply whatever operation in mind Apply whatever operation in mind 
to that patchto that patch

3.3. Move the window center one pixel Move the window center one pixel 
to define a new windowto define a new window

4.4. Repeat steps 1Repeat steps 1--33
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Estimating Derivatives For Image Row rEstimating Derivatives For Image Row r

“Sliding window” algorithm:“Sliding window” algorithm:

•• Define a “pixel window” centered Define a “pixel window” centered 
at pixel (at pixel (w,rw,r) ) 

•• Fit nFit n--degree poly to window’s degree poly to window’s 
intensities (usually n=1 or 2) intensities (usually n=1 or 2) 

•• Assign the poly’s derivatives at x=0           Assign the poly’s derivatives at x=0           
to pixel at window’s center to pixel at window’s center to pixel at window’s center to pixel at window’s center 

•• “Slide” window one pixel over, so “Slide” window one pixel over, so 
that it is centered at pixel (w+1,r)that it is centered at pixel (w+1,r)

•• Repeat 1Repeat 1--4 until window reaches 4 until window reaches 
right image borderright image border
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Topic 4.1:Topic 4.1:

Local analysis of 1D image Local analysis of 1D image 

patchespatchespatchespatches

•• Taylor series approximation of 1D intensity patchesTaylor series approximation of 1D intensity patches

•• Estimating derivatives of 1D intensity patches:Estimating derivatives of 1D intensity patches:

•• LeastLeast--squares fittingsquares fitting

• Weighted least-squares fitting

• Robust polynomial fitting: RANSAC



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D

How to estimate the 

Taylor series 

approximation from 

image data?image data?



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D

Surprise! 

The nth degree Taylor 

approximation can be approximation can be 

estimated using a linear 

system of equations 

(which we can represent 

in matrix form).

This is Least Squares!



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D We know that the 

Taylor series is:



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D We know that the 

Taylor series is:

The derivatives are unknown



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D We know that the 

Taylor series is:

But the coefficients are known



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D The n-th order Taylor series 

expansion of I(x), near the 

patch center (x=0) can then 

be written in matrix form as:



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D The n-th order Taylor series 

expansion of I(x), near the 

patch center (x=0) can then 

be written in matrix form as:



TaylorTaylor--Series Approximation of I(x)Series Approximation of I(x)

As graph in 2DAs graph in 2D The n-th order Taylor series 

expansion of I(x), near the 

patch center (x=0) can then 

be written in matrix form as:

2w+1 equations to 

estimate n+1 

unknowns



As graph in 2DAs graph in 2D

LeastLeast--Squares Polynomial Fitting of I(x)Squares Polynomial Fitting of I(x)

The equations define the system:



LeastLeast--Squares Polynomial Fitting of I(x)Squares Polynomial Fitting of I(x)

We could then do v=Xd to get 

an estimate for all pixels in the 

patch in (-w, …, 0, …, w)



LeastLeast--Squares Polynomial Fitting of I(x)Squares Polynomial Fitting of I(x)



00thth--Order (Constant) Estimation of I(x)Order (Constant) Estimation of I(x)



00thth--Order (Constant) Estimation of I(x)Order (Constant) Estimation of I(x)



00thth--Order (Constant) Estimation of I(x)Order (Constant) Estimation of I(x)



00thth--Order (Constant) Estimation of I(x)Order (Constant) Estimation of I(x)



00thth--Order (Constant) Estimation of I(x)Order (Constant) Estimation of I(x)



00thth--Order (Constant) Estimation of I(x)Order (Constant) Estimation of I(x)



11stst--Order (Linear) Estimation of I(x)Order (Linear) Estimation of I(x)



22ndnd--Order (Quadratic) Estimation of I(x)Order (Quadratic) Estimation of I(x)



22ndnd--Order (Quadratic) Estimation of I(x)Order (Quadratic) Estimation of I(x)

Note how all pixels in the window contribute 

equally to the estimate around the center of 

the window!



Topic 4.1:Topic 4.1:

Local analysis of 1D image Local analysis of 1D image 

patchespatchespatchespatches

•• Taylor series approximation of 1D intensity patchesTaylor series approximation of 1D intensity patches

•• Estimating derivatives of 1D intensity patches:Estimating derivatives of 1D intensity patches:

• Least-squares fitting

•• Weighted leastWeighted least--squares fittingsquares fitting

• Robust polynomial fitting: RANSAC



Weighted Least Squares Polynomial FittingWeighted Least Squares Polynomial Fitting

Scenario #1:Scenario #1:

•• Fit polynomial to ALL pixel intensities in a patchFit polynomial to ALL pixel intensities in a patch

IntensityIntensity

Pixel (x)Pixel (x)00 ww--ww



Weighted Least Squares Polynomial FittingWeighted Least Squares Polynomial Fitting

Scenario #2:Scenario #2:

•• Fit polynomial to Fit polynomial to all the pixel all the pixel intensities in intensities in the the patchpatch

•• Pixels contribute to estimate of derivative(s) at Pixels contribute to estimate of derivative(s) at 
center according to a weight function center according to a weight function ΩΩ(x)(x)

IntensityIntensity

Pixel (x)Pixel (x)00 ww--ww



Polynomial Fitting: A Linear FormulationPolynomial Fitting: A Linear Formulation



Polynomial Fitting: A Linear FormulationPolynomial Fitting: A Linear Formulation



Weighted LeastWeighted Least--Squares Estimation of I(x)Squares Estimation of I(x)



Weighted LeastWeighted Least--Squares Estimation of I(x)Squares Estimation of I(x)



Weighted LeastWeighted Least--Squares Estimation of I(x)Squares Estimation of I(x)



Weighted LeastWeighted Least--Squares Estimation of I(x)Squares Estimation of I(x)

We could then do v=Xd to get We could then do v=Xd to get 

an estimate of I(x) for all pixels 

in the patch in (-w, …, 0, …, w). 



Topic 4.1:Topic 4.1:

Local analysis of 1D image Local analysis of 1D image 

patchespatchespatchespatches

•• Taylor series approximation of 1D intensity patchesTaylor series approximation of 1D intensity patches

•• Estimating derivatives of 1D intensity patches:Estimating derivatives of 1D intensity patches:

• Least-squares fitting

• Weighted least-squares fitting

•• Robust polynomial fitting: RANSACRobust polynomial fitting: RANSAC



Robust Polynomial FittingRobust Polynomial Fitting

Scenario #3:Scenario #3:

•• Fit polynomial only to SOME pixel intensities in a patchFit polynomial only to SOME pixel intensities in a patch
(the “inliers”)(the “inliers”)

IntensityIntensity

Pixel (x)Pixel (x)00
ww--ww



Robust Polynomial FittingRobust Polynomial Fitting

But how can we tell between inliers and outliers?But how can we tell between inliers and outliers?

IntensityIntensity

Pixel (x)Pixel (x)
ww--ww



Robust Polynomial FittingRobust Polynomial Fitting

We can’t. At least not before we fit a model.We can’t. At least not before we fit a model.



Polynomial Fitting Using RANSACPolynomial Fitting Using RANSAC

Here’s our problem: find the inliers, fit a polynomial to them:Here’s our problem: find the inliers, fit a polynomial to them:

IntensityIntensity

Given:Given:

•• n = degree of polyn = degree of poly

•• p = fraction of inliers p = fraction of inliers 

•• t = fit thresholdt = fit threshold

•• pp = success probability= success probability

Pixel (x)Pixel (x)00

•• ppss = success probability= success probability

ww--ww



RANSAC AlgorithmRANSAC Algorithm

Example: Line fitting using RANSAC (i.e., n=2 unknown Example: Line fitting using RANSAC (i.e., n=2 unknown 
polynomial coefficients)polynomial coefficients)

•• Step 1: Randomly choose n pixels from the patchStep 1: Randomly choose n pixels from the patch

IntensityIntensity

Pixel (x)Pixel (x)00
ww--ww



RANSAC AlgorithmRANSAC Algorithm

Step Step 2: Fit the poly using the chosen pixels/intensities2: Fit the poly using the chosen pixels/intensities

IntensityIntensity

Pixel (x)Pixel (x)00
ww--ww



RANSAC AlgorithmRANSAC Algorithm

Step Step 3: Count pixels with vertical distance < threshold t3: Count pixels with vertical distance < threshold t

Pixel (x)Pixel (x)00
ww--ww



RANSAC AlgorithmRANSAC Algorithm

•• Step 4: If there aren’t “enough” such pixels, REPEATStep 4: If there aren’t “enough” such pixels, REPEAT
(not more than K times)(not more than K times)

Pixel (x)Pixel (x)00
ww--ww



RANSAC AlgorithmRANSAC Algorithm

How about these two?How about these two?

IntensityIntensity

Pixel (x)Pixel (x)00
ww--ww



RANSAC AlgorithmRANSAC Algorithm

Step Step 4: If there are “enough” such pixels, STOP4: If there are “enough” such pixels, STOP
Label them as “inliers” & do a leastLabel them as “inliers” & do a least--squares fitsquares fit
to the INLIER pixels onlyto the INLIER pixels only

IntensityIntensity

Pixel (x)Pixel (x)00
ww--ww



RANSAC AlgorithmRANSAC Algorithm

Step Step 4: If there are “enough” such pixels, STOP4: If there are “enough” such pixels, STOP
Label them as “inliers” & do a leastLabel them as “inliers” & do a least--squares fitsquares fit
to the INLIER pixels onlyto the INLIER pixels only

IntensityIntensity

Pixel (x)Pixel (x)00
ww--ww



RANSAC AlgorithmRANSAC Algorithm

EventuallyEventually, after “enough” trials, , after “enough” trials, there must be some there must be some 
likelihood of having chosen n+1 inlierslikelihood of having chosen n+1 inliers to fit the model.to fit the model.

IntensityIntensity

Pixel (x)Pixel (x)00
ww--ww



RANSAC AlgorithmRANSAC Algorithm

EventuallyEventually, after “enough” trials, , after “enough” trials, there must be some there must be some 
likelihood of having chosen n+1 inlierslikelihood of having chosen n+1 inliers to fit the model.to fit the model.

How many trials are enough then?How many trials are enough then?



RANSAC AlgorithmRANSAC Algorithm

Repeat at most K times:Repeat at most K times:

1.1. Randomly choose n+1 pixelsRandomly choose n+1 pixels

Given:Given:

•• n = degree of polyn = degree of poly

•• p = fraction of inliers p = fraction of inliers 

•• t = fit thresholdt = fit threshold

•• ppss = success probability= success probability

1.1. Randomly choose n+1 pixelsRandomly choose n+1 pixels

2.2. Fit nFit n--degree polydegree poly

3.3. Count pixels whose vertical Count pixels whose vertical 
distance from poly is < tdistance from poly is < t

4.4. If there are at least If there are at least 
(2w+1)p pixels, EXIT LOOP(2w+1)p pixels, EXIT LOOP

a. Label them as inliersa. Label them as inliers

b. Fit nb. Fit n--degree poly to all degree poly to all 
inlierinlier pixelspixels 00



RANSAC AlgorithmRANSAC Algorithm

Repeat at most K times:Repeat at most K times:

1.1. Randomly choose n+1 pixelsRandomly choose n+1 pixels

Given:Given:

•• n = degree of polyn = degree of poly

•• p = fraction of inliers p = fraction of inliers 

•• t = fit thresholdt = fit threshold

•• ppss = success probability= success probability

1.1. Randomly choose n+1 pixelsRandomly choose n+1 pixels

2.2. Fit nFit n--degree polydegree poly

3.3. Count pixels whose vertical Count pixels whose vertical 
distance from poly is < tdistance from poly is < t

4.4. If there are at least If there are at least 
(2w+1)p pixels, EXIT LOOP(2w+1)p pixels, EXIT LOOP

a. Label them as inliersa. Label them as inliers

b. Fit nb. Fit n--degree poly to all degree poly to all 
inlier pixelsinlier pixels


