Topic 4:

Local analysis of image
patches

e What do we mean by an image “patch”?
e Applications of local image analysis
e Visualizing 1D and 2D intensity functions



Local Image Patches

So far, we have considered pixels completely independently
of each other (as RGB values or, as vectors [R, G, B])

In reality, photos have a great deal of structure

This structure can be analyzed at a local level (eg., small
groups of nearby pixels) or a global one (eg. entire image)



Local Image Patches

Qualitatively, we can think of many different types of patches in an
image

Patches corresponding to a “corner” in the image




Local Image Patches

Qualitatively, we can think of many different types of patches in an
image

Patches corresponding to an “edge” in the image




Local Image Patches

Qualitatively, we can think of many different types of patches in an
image

Patches of uniform texture




Local Image Patches

Qualitatively, we can think of many different types of patches in an
image

Patches that originate from a single surface




Local Image Patches

Qualitatively, we can think of many different types of patches in an
image

Or patches with perceptually-significant “features”




Local Image Patches

When is a group of pixels considered a local patch?

The notion of a patch is relative. It can be a single pixel



Local Image Patches

When is a group of pixels considered a local patch?

There is no answer to this question!

The notion of a patch is relative. It can be a single pixel



Local Image Patches

When is a group of pixels considered a local patch?

There is no answer to this question!

The notion of a patch is relative. It can be the entire image



Local Image Patches

We will begin with mathematical properties and methods that
apply mostly to very small patches (e.g., 3x3)

... and eventually consider descriptions that apply to entire
images



Topic 4:

Local analysis of image
patches

e Applications of local image analysis



Patches: Why Do We Care?

Many applications...
e Recognition
e |[nspection
e Video-based tracking

e Special effects



Face Recognition and Analysis

Attributes:
age_est:
age_min:
age_max:
face:
gender:
glasses:
lips:
mood:
smiling:
Rotations:
roll:

yaw:
pitch:

39 (19%)

31 (19%)

49 (19%)
true (94%)
male (88%)
false (81%)
sealed (61%)
happy (34%)
false (62%)

-0.61°
-2.9°
4.11°

http://petapixel.com/2012/03/30/facial-recognition-software-guesses-age-based-on-a-photo/



Tracking

M. Zervos, H. BenShitrit and P. Fua, Real time multi-object tracking using multiple cameras




Editing & Manipulating Photos

Object removal from a photo

Original

p :
fd -
o) :

(Criminisi et al, CVPR 2003)



Editing & Manipulating Photos

Colorization of black and white photos

New (Color)

Original (B&)_ |

(Levin & Weiss, SIGGRAPH 2004)



Editing & Manipulating Photos

Scissoring objects from a photo

composite image

source images




Giving Photos a “Painted” Look

From P. Litwinowicz’s SIGGRAPH’97 paper
“Processing Images and Videos for an
Impressionist Effect”




Topic 4:

Local analysis of image
patches

e Visualizing 1D and 2D image patches as intensity
functions



Visualizing An Image as a Surface in 3D

Gray-scale image

A gray-scale image is
like a function I(x,y)




Image < Surface in 3D

Gray-scale image 1 CX)ED Surface

And we can visualize this function in 3D



Image < Surface in 3D

Gray-scale image 1 C%}D Surface
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Image < Surface in 3D

Gray-scale image Image patch
? 4

ﬁ . The same
— applies to image

patches



Image < Surface in 3D

Gray-scale image Image patch

Pixe/\
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Patches have their
own coordinate
system.



BTW, notice image noise |

............................
................................

................................................................

T L e N L L I I LTI

lllll

|||||

e R B T RO I

.....




Visualizing a Row or Column as a Graph in 2D

Gray-scale image Graphin 2D
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Another way of visualizing image data is as a graph in 2D



Image row or column < Graphin 2D

Gray-scale image Graphin 2D
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And of course, we can do this for a 1D patch.



Today we’ll learn about

4.1. Today’s lecture is about modeling image data taking into
account more than one (potentially noisy) single pixel.

We will focus on 1D patches.
Methods include:

Computing derivatives of 1D patches using polynomial
fitting via Least-squares, weighted least squares and
RANSAC



where are we, and what will
come after?

eSubtopics:
1. Local analysis of 1D image patches (today)
2. Local analysis of 2D curve patches

3. Local analysis of 2D image patches



Local Analysis of Image Patches: Outline

As curve in 2D As surface in 3D

As graph in 2D
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Topic 4:

Local analysis of image
patches

eSubtopics:

1. Local analysis of 1D image patches



Topic 4.1:

Local analysis of 1D image
patches

e Taylor series approximation of 1D intensity patches
e Estimating derivatives of 1D intensity patches
Least-squares fitting
Weighted least-squares fitting
Robust polynomial fitting: RANSAC



Topic 4.1:

Local analysis of 1D image
patches

e Taylor series approximation of 1D intensity patches



Least-Squares Polynomial Fitting

Taylor approximation: Fit a polynomial to the pixel
Intensities in a patch

o All pixels contribute equally to estimate of
derivative(s) at patch center (i.e., at x=0)

t Intensity
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0 " Pixel (x)




Taylor-Series Approximation of I(x)

As graph in 2D

If we knew the derivatives of
I(x) at x=0, we can approximate

SN I(x) using the Taylor Series:
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Taylor-Series Approximation of I(x)

As graph in 2D
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If we knew the derivatives of
I(x) at x=0, we can approximate
I(x) using the Taylor Series: ,
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Taylor-Series Approximation of I(x)

As graph in 2D
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If we knew the derivatives of
I(x) at x=0, we can approximate
I(x) using the Taylor Series: ,
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The approximation is best at the

origin and degrades from there.




Taylor-Series Approximation of I(x)

The n-th order Taylor series
expansion of I(x), near the
patch center (x=0) can then

As graph in 2D

x._—-———_,
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AV,

Note that an
approximated value for
1(x) will depend on n+1

coefficients: the intensity
derivatives at 1(0)

be written in matrix form as:
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Taylor-Series Approximation of I(x)

As graph in 2D
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Taylor-Series Approximation of I(x)

As graph in 2D _ .
Example: 15t order approximation
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Taylor-Series Approximation of I(x)

As graph in 2D _ .
Example: 2" order approximation

2" order O&P‘Dvox‘\w\al'iovw

O{’_’T_
2 1(0)
Uz | 1 x 75X
i [ a1,
| ! x
T 4T
L X dT ;&@

ax ax




Taylor-Series Approximation of I(x)

As graph in 2D

And so on...
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Taylor-Series Approximation of I(x)

But do we know the derivatives?




Taylor-Series Approximation of I(x)

But do we know the derivatives?

No, but we can estimate them!




Taylor-Series Approximation of I(x)

And can we estimate them for the entire row?



Taylor-Series Approximation of I(x)

And can we estimate them for the entire row?
Yes, but pixel by pixel.

In fact...



Applying the same operation on multiple patches

A “sliding window” algorithm is a
common approach to patch-based
operations

The algorithm goes as follows:




Applying the same operation on multiple patches

A “sliding window” algorithm is a
common approach to patch-based
operations

The algorithm goes as follows:

1. Define a “pixel window” using a
window size and a window center.

Youw ™

IVITQMSI'”@




Applying the same operation on multiple patches

A “sliding window” algorithm is a
common approach to patch-based Vows 1~ I
operations b :

The algorithm goes as follows:

1. Define a “pixel window” using a .
window size and a window center.

2. Apply whatever operation in mind
to that patch
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3. Move the window center one pixel o T =
to define a new window pixel

4, Repeat steps 1-3




Applying the same operation on multiple patches

A “sliding window” algorithm is a
common approach to patch-based
operations

The algorithm goes as follows:

1. Define a “pixel window” using a
window size and a window center.

2. Apply whatever operation in mind
to that patch

3. Move the window center one pixel
to define a new window

4, Repeat steps 1-3

IVITQMSI'”@




Applying the same operation on multiple patches

A “sliding window” algorithm is a
common approach to patch-based
operations

The algorithm goes as follows:

1. Define a “pixel window” using a
window size and a window center.

2. Apply whatever operation in mind
to that patch

3. Move the window center one pixel
to define a new window

4, Repeat steps 1-3

’

Trtensit
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Applying the same operation on multiple patches

A “sliding window” algorithm is a
common approach to patch-based
operations

The algorithm goes as follows:

1. Define a “pixel window” using a .
window size and a window center.

'j

2. Apply whatever operation in mind
to that patch
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3. Move the window center one pixel N —
to define a new window

4, Repeat steps 1-3




Applying the same operation on multiple patches

A “sliding window” algorithm is a
common approach to patch-based
operations

The algorithm goes as follows:

1. Define a “pixel window” using a .
window size and a window center.

'j

2. Apply whatever operation in mind
to that patch
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3. Move the window center one pixel o —
to define a new window

4, Repeat steps 1-3




Estimating Derivatives For Image Row r

“Sliding window” algorithm:

* Define a “pixel window” centered
at pixel (w,r)

* Fit n-degree poly to window’s
intensities (usually n=1 or 2)

* Assign the poly’s derivatives at x=0
to pixel at window’s center

« “Slide” window one pixel over, so
that it is centered at pixel (w+1,r)

* Repeat 1-4 until window reaches
right image border




Estimating Derivatives For Image Row r

“Sliding window” algorithm:

* Define a “pixel window” centered
at pixel (w,r)

e Fit n-degree poly to window’s
Intensities (usually n=1 or 2)

* Assign the poly’s derivatives at x=0
to pixel at window’s center

« “Slide” window one pixel over, so
that it is centered at pixel (w+1,r)

* Repeat 1-4 until window reaches
right image border
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Estimating Derivatives For Image Row r

“Sliding window” algorithm:

* Define a “pixel window” centered
at pixel (w,r)

e Fit n-degree poly to window’s
Intensities (usually n=1 or 2)

* Assign the poly’s derivatives at x=0
to pixel at window’s center

« “Slide” window one pixel over, so
that it is centered at pixel (w+1,r)

* Repeat 1-4 until window reaches
right image border
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Estimating Derivatives For Image Row r

“Sliding window” algorithm:

* Define a “pixel window” centered
at pixel (w,r)

e Fit n-degree poly to window’s
Intensities (usually n=1 or 2)

* Assign the poly’s derivatives at x=0
to pixel at window’s center

« “Slide” window one pixel over, so
that it is centered at pixel (w+1,r)

* Repeat 1-4 until window reaches
right image border
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Estimating Derivatives For Image Row r

“Sliding window” algorithm:

* Define a “pixel window” centered
at pixel (w,r)

* Fit n-degree poly to window’s
Intensities (usually n=1 or 2)

« Assign the poly’s derivatives at x=0
to pixel at window’s center

« “Slide” window one pixel over, so
that it is centered at pixel (w+1,r)

* Repeat 1-4 until window reaches
right image border
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Estimating Derivatives For Image Row r

i

“Sliding window” algorithm: e
« Define a “pixel window” centered o .

at pixel (w,r) b

* Fit n-degree poly to window’s
Intensities (usually n=1 or 2) i

IR
« “Slide” window one pixel over, so kfﬂs,, R NANIAVENY J U
that it is centered at pixel (w+1,r) o

&! = i

« Assign the poly’s derivatives at x=0
to pixel at window’s center
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Topic 4.1:

Local analysis of 1D image
patches

e Estimating derivatives of 1D intensity patches:

e Least-squares fitting



Taylor-Series Approximation of I(x)

As graph in 2D

How to estimate the

MJ/\MS‘@ Taylor series

| approximation from
image data?




Taylor-Series Approximation of I(x)

As graph in 2D

Surprise!

| The nth degree Taylor
| approximation can be
W 5 T estimated using a linear
system of equations
(which we can represent
in matrix form).

This is Least Squares!




Taylor-Series Approximation of I(x)

We know that the
Taylor series is:

As graph in 2D
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Taylor-Series Approximation of I(x)

As graph in 2D

We know that the
Taylor series is:

The derivatives are unknown



Taylor-Series Approximation of I(x)

As graph in 2D We know that the
- Taylor series is:
N L
=

But the coefficients are known




Taylor-Series Approximation of I(x)

The n-th order Taylor series
expansion of I(x), near the
patch center (x=0) can then

As graph in 2D
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st
AV,

be written in matrix form as:

2 1.2 L]
R T




Taylor-Series Approximation of I(x)

As graph in 2D The n-th order Taylor series
- expansion of I(x), near the
;‘5 N patch center (x=0) can then
C/i‘/"zﬂi% be written in matrix form as:
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Taylor-Series Approximation of I(x)

As graph in 2D The n-th order Taylor series
- expansion of I(x), near the
;‘5 N patch center (x=0) can then
C/i‘/";ﬁx be written in matrix form as:

| 1(x) [_\ X Féxl Jéx? ;\L\xﬂ

@@V X € (’W)VU

2w+1 equations to
estimate n+1
unknowns
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Least-Squares Polynomial Fitting of I(x)

As graph in 2D

The equations define the system:
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Least-Squares Polynomial Fitting of I(x)

Exa W\P\a

|- xd|

THukion a5 colled O
leost - squaves fik

We could then do v=Xd to get
an estimate for all pixels in the
patch in (-w, ..., O, ..., W)



Least-Squares Polynomial Fitting of I(x)
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Ot-Order (Constant) Estimation of I(x)

S Pec/iat\ Case.:
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Ot-Order (Constant) Estimation of I(x)

S Pec/iat\ Case.:
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Ot-Order (Constant) Estimation of I(x)

S Peoia\ Case.:
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Ot-Order (Constant) Estimation of I(x)
Speaa\ case: [
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Ot-Order (Constant) Estimation of I(x)
Speaa\ case: [
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Ot-Order (Constant) Estimation of I(x)

S Peoia\ Case.:
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15-Order (Linear) Estimation of I(x)
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2"d-Order (Quadratic) Estimation of I(x)

S Pac/iat\ Case.:
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2"d-Order (Quadratic) Estimation of I(x)

Note how all pixels in the window contribute
equally to the estimate around the center of
the window!



Topic 4.1:

Local analysis of 1D image
patches

e Estimating derivatives of 1D intensity patches:

e Weighted least-squares fitting



Weighted Least Squares Polynomial Fitting

Scenario #1:

e Fit polynomial to ALL pixel intensities in a patch
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Weighted Least Squares Polynomial Fitting

Scenario #2:
e Fit polynomial to all the pixel intensities in the patch

 Pixels contribute to estimate of derivative(s) at
center according to a weight function Q(x)

t Intensity

ooooooooooooooooo




Polynomial Fitting: A Linear Formulation
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Polynomial Fitting: A Linear Formulation
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Weighted Least-Squares Estimation of I(x)
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Weighted Least-Squares Estimation of I(x)
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Weighted Least-Squares Estimation of I(x)
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Weighted Least-Squares Estimation of I(x)
Patel  (Zwsh pixels)
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We could then do v=Xd to get
an estimate of I(x) for all pixels
in the patchin (-w, ..., 0, ..., w).

- This  golution WMimimizes
the  2-norw (e e length)

OE e wexﬂ\/\le& € Yoy .
veckor 1 g

—~ L y’?,.
(Z{—fl,;ﬁit“‘/{)l >

C=1



Topic 4.1:

Local analysis of 1D image
patches

e Estimating derivatives of 1D intensity patches:

e Robust polynomial fitting: RANSAC



Robust Polynomial Fitting

Scenario #3:

e Fit polynomial only to SOME pixel intensities in a patch
(the “inliers™)

Q< //Ou,‘\‘h"(’,‘",’
@ 1 Intensity
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w w

0 " Pixel (x)



Robust Polynomial Fitting

But how can we tell between inliers and outliers?

t Intensity
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Robust Polynomial Fitting

We can’t. At least not before we fit a model.



Polynomial Fitting Using RANSAC

Here’s our problem: find the inliers, fit a polynomial to them:

Given:
* n = degree of poly ®
e p = fraction of inliers
* t = fit threshold @ 1 Intensity
* P, = success probability
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RANSAC Algorithm

Example: Line fitting using
polynomial coeffi

RANSAC (i.e., n=2 unknown
cients)

« Step 1: Randomly choose n pixels from the patch
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RANSAC Algorithm

Step 2: Fit the poly using the chosen pixels/intensities
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RANSAC Algorithm

Step 3: Count pixels with vertical distance < threshold t
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RANSAC Algorithm

P (2\/\/-{*]) D Dllxetg

« Step 4: If there aren't ‘@such pixels, REPEAT
(not more than Ktimes)
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RANSAC Algorithm

How about these two?

O 1 Intensity O
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RANSAC Algorithm

Step 4: If there are “enough” such pixels, STOP
Label them as “inliers” & do a least-squares fit
to the INLIER pixels only
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RANSAC Algorithm

Step 4: If there are “enough” such pixels, STOP
Label them as “inliers” & do a least-squares fit
to the INLIER pixels only
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RANSAC Algorithm

Eventually, after “enough” trials, there must be some
likelihood of having chosen n+1 inliers to fit the model.
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RANSAC Algorithm

Eventually, after “enough” trials, there must be some
likelihood of having chosen n+1 inliers to fit the model.

How many trials are enough then?



RANSAC Algorithm

Given: (9 What should 1€ be 7
* n = degree of poly
_ ) . * PYO‘OGIOW'llb WL O\’\OS'»E. an )'\A\,l-(,\/
e p = fraction of inliers e
" e\
e t = fit threshold Probolorl " P \
r Y\ ~ r
* P = success probability e iﬁ e Onse (e e
Prrefg PY\H

ht |

: Pro\o ot [%S+ L outlier C/\AOS/(,h'. l-—P
s Pmb at least 1 outliev chostn 1 all

K.
 Aals - (g—p)
3. Count pixels whose vertical
distance from poly is < t | d

Repeat at most K times:
1. Randomly choose n+1 pixels

2. Fit n-degree poly

4. If there are at least
(2w+1)p pixels, EXIT LOOP

a. Label them as inliers

b. Fit n-degree poly to all
Inlier pixels 0




RANSAC Algorithm

Given: (9 What should 1€ be 7
* n = degree of poly
_ ) . * PYO‘OGIOW'llb WL O\’\OS'»E. an )'\A\,l-(,\/
e p = fraction of inliers e
" e\
e t = fit threshold Probolorl " P \
r Y\ ~ r
* P = success probability e iﬁ e Onse (e e
Prrefg PY\H

ht |

: Pro\o ot [%S+ L outlier C/\AOS/(,h'. l-—P

« Prob at least 1 outliev chostn 1 all
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Repeat at most K times:
1. Randomly choose n+1 pixels

2. Fit n-degree poly

3. Count pixels whose vertical a
distance from poly is < t ratuee P“‘”\O“\O‘\"b (- \Ckwl)
, 0. ni K
4. If there are at least ovectss probalaility p= 1~ Cl-p P
(2w+1)p pixels, EXIT LOOP : @J talcing \0%5 ow Lotk sides

a. Label them as inliers

b. Fit n-degree poly to all
Inlier pixels




