
1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 1/11

Assignment #1: Image Matting & Compositing

Date handed out: 11/01/2014; Due date: 27/01/2014

PDF version

Overview
In this assignment you will implement and experiment with an interactive image matting tool. This tool was demonstrated in class in
Lecture 1 and will be discussed in detail next week. Apart from implementing a specific matting technique called Triangulation
Matting, the interface you will work with will also serve as an image manipulation front-end for future assignments. In fact, each
assignment will add more functionalities to this front end.

Right now, the goal of this assignment is two-fold:

To be come familiar with

the FLTK user interface design library and the FLUID user interface builder software
using the CDF Linux machines to write user interface code
using the VXL image processing library to read/write images, display them on the screen through the user interface
and access their pixel information
solving linear systems using some basic numerical routines in VXL

To implement your very first image analysis technique and get some cool results!

While the due date for the assignment is 2 weeks away, it is strongly advised that you try and complete Part A.1 of the
assignment within the next few days and use the rest of your time for Part A.2 and Part B. It will take some time to familiarize
yourself with the FLTK programming model, the VXL library, and the helper code that I have already written, so start
early!!! Once you "get the hang of it," the programming part of the assignment should not be that hard and there is very little
coding for you to do. But it will take you quite some time to internalize exactly what you have to do, and how.

NEW: At the bottom of this page you will find information about how to work on your assignment in VisualC++.

Triangulation Matting
The technique we will implement is based on a paper by Smith and Blinn that appeared in SIGGRAPH'96. You do not need to read or
look at this paper (it's not particularly well written...).

We are providing you with a full-blown implementation of the tool in executable form, along with a suite of test images, so that you
can run it yourself and see how it works (see the executables partA-2/bin/VisComp_full.exe and partA-2/bin/viscomp_full in the
assignment tarfile). The program should work for a variety of image formats (tif, jpeg, etc). I suggest you use very small images to test
things out first. In fact, the full-blown executable will only accept images whose largest dimension is less than 512 pixels. When you
write your own version, you can change the size of the maximum displayable image in the supplied source code (there is
documentation about that in the code). Also, if you are running the tool on CDF but working remotely from a home machine, the tool
will not run if your X server does not support the GLX extension.

Briefly, the tool works by first loading pictures of an object in front of two different backgrounds (they can be found in the partA-
2/test_images sub-directories):

http://www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/matting.pdf
http://www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/Smith-SIG96.pdf

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 2/11

You can think of these photos, called Composite 1 and Composite 2, as being the superposition of two different background images
with a single "foreground" image of the object.

Next, we load two more photos, called Background 1 and Background 2, that show only the backgrounds:

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 3/11

From this set of four photos, the matting algorithm computes two images: an Alpha Matte, that tells us which pixels in Composite 1 and
Composite 2 correspond to the foreground object and also estimate the "transparency" of those pixels and an Object photo, that is a
photo of the foreground object only (ie. all background information has been removed):

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 4/11

The Alpha Matte is a grayscale image, where the grayscale value indicates transparency (0 is fully transparent, 1 is fully opaque). For
example, the pixels of the glass vase have small grayscale values, indicating that the vase is semi-transparent, while the flowers have
alpha close to 1, indicating that the flower petals are not transparent at all. You can zoom in to get a better sense of the alpha values for
different parts of the image by changing the zoom settings in the UI.

Once the Alpha Matte and Object photos are computed, you can create new image composites through superposition of the Object
photo with a new background photo, according to the computed Alpha Matte:

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 5/11

Note how the background image appears to "show through" the vase.

Interactive vs. Non-Interactive (batch) Operation

The supplied program can be run in interactive mode (ie. UI windows are displayed and user works through menus and/or keyboard
accelerators), in batch mode (ie. user supplies a set of command-line options specifying the input and output images names) or both (ie.
some or all command-line options are specified and, after images are loaded, the UI windows are displayed as well). Type 'viscomp -
help' to see the command line options.

Your Tasks
For this assignment you will have to do the following:

Familiarize yourself with the FLTK tooklit (see Part A.1 of the assignment below)
Familiarize yourself with the triangulation matting algorithm (to be discussed in class next week)
Run your own triangulation matting experiments, by taking pictures with your digital camera (at home, outside, or anywhere else
you'd like) and applying the matting algorithm to them (see Part B.1 of the assignment below)
Implement the triangulation matting algorithm and integrate it into the supplied "starter code" (see Part A.2 of the assignment)
Answer a set of written questions about the triangulation matting process (see Part B.2 of the assignment)
Extend the "crippled" interface in the starter code to match the functionality of the full-blown implementation (see Part A.3 of the
assignment)

I suggest you use the above order in tackling these tasks. Specifically:

You should start getting familiar with FLTK as soon as possible; this part of the assignment is very easy, and does not depend on
the matting procedure in any way.
You can use the supplied "solution" executables for doing your experiments; you do not have to wait for your own
implementation to be ready. See the top of file 320/Matting/partA-2/README.1st for a brief description of how to run it (also
available here).

http://www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/README.1st

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 6/11

You will not be able to answer some of the written questions without having first implemented the algorithm, and without having
run your own experiments. I suggest you leave some of these questions for the end of the assignment.
You can test your matting implementation by running it in batch mode first. This way you don't have to worry about the
interactive component of the interface.
The additions to the UI you need to do are straightforward and fairly minimal, and they do not depend on your matting
implementation per se. You can tackle these at any time.

Part A: Programming Component (70 Points)

Part A.0: Unpack the Helper Code
The updated helper code is packaged into the tarfile matting.tar.gz. If you got a copy of the started code prior to Monday Jan 13 at
10pm, the binary viscomp_full will not run, and partA-2 will not compile. Please download this new version. The following sequence
of commands creates a directory called CS320 in your home directory on CDF and unpacks the code:

> cd ~
> tar xvfz matting.tar.gz
> rm matting.tar.gz

This will create the directory ~/CS320 along with files and subdirectories needed for the assignment. All the code that you turn in
should be in those directories as well, exactly as specified in the details below.

Part A.1: Getting familiar with FLTK and FLUID (10 points)
This part of the assignment will help you get familiar with the FLTK toolkit and FLUID, a program for interactively creating user
interfaces.

Dot file initialization

In order to use any of the toolkits required for the course, you need to set up your Unix environment. To do
this, you will need to modify your .cshrc file so that it correctly defines certain environment variables. A
sample file can be found in directory 320/Matting/partA-1. You can take a look at it and then use it modify
your .cshrc file, located in your home directory, accordingly.

After you have modified your .cshrc file, execute the following commands at the shell to make the new
settings take effect:

> source .cshrc
> rehash

To test whether your paths are now set correctly, try running the command

> fluid

You should now see the main window of fluid on your screen. If you get an error instead (e.g., "command
not found"), your paths are still not set up correctly. In this case, it is strongly advised that you replace your
own .cshrc file with the sample file and try again. If things still don't work, make sure you are working on a
CDF machine running Linux.

The FLTK and FLUID documentation

One of your tasks in this assignment is to get as familiar as possible with FLTK and FLUID. Fortunately,
there is a wealth of on-line documentation about these tools. The starting point for the documentation is here.

Note that there is A LOT of documentation here, so it is important to take it easy and be selective about what
you read. As you become more and more familiar with these tools throughout the course, you can venture
into some of the more advanced topics covered in the manual.

The first thing to read are Chapters 1 and 2 of the FLTK documentation. In Chapter 1, ignore all sections
about "Building and Installing FLTK Under ...". All software has already been installed so you don't have to

http://www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/matting.tar.gz
http://www.fltk.org/documentation.php/doc-1.1/toc.html

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 7/11

worry about all this.

You should become thoroughly familiar with the "First FLTK Program" discussed in Chapter 2. It is
strongly advised that you copy the program into the directory 320/Matting/partA-1 (call the program
hello.cxx), compile it, and run it. To do the compilation, you can use the Makefile located in that directory
simply type

> make hello

This should run the compiler with all the necessary flags and create an executable that you can run from your
shell. While you are not required to turn in anything related to this program, it is highly unlikely that you will
be able to complete the rest of the assignment if you cannot get through this stage. (Note: if you want to see
what the command 'make hello' really does, type 'make -n hello' and this will display the sequence of
compilation steps that are executed.)

UPDATE: The supplied makefile in the directory /CS320/Matting/partA-1/ is designed for the CubeView
program. To compile hello using the same makefile you must add the following section:
hello: hello.o
 $(CC) -o hello hello.o $(LDFLAGS)
which is quite similar to the linker section of CubeView (see file for details). The key is to place the libraries
after the executable and the object file names (common practice, details here).

Building a sample interactive application with FLUID

Now that you've completed Chapter 2 and ran the sample program, you are ready to dive into fluid, which is
the main tool we will be using to create user interfaces. You will learn the basics of fluid by creating, step-by-
step, a simple interactive application that is described in detail in Chapter 9 of the FLTK manual.

At this point, you should skip Chapters 3-8 of the FLTK manual and go straight to Chapter 9. The chapter
contains a brief tutorial that guides you step-by-step through the construction of a simple graphical viewer
called CubeView.

The main task in Part A.1 of the assignment will be to create a fully-functional version of the CubeView
program. To help you with this process, we are providing a partially-completed version of the program that
you will have to finish up yourselves, guided by the tutorial in Chapter 9.

Step 1: Notice the files CubeView.h, CubeView.cxx , CubeMain.cxx and Makefile in the "partI"
subdirectory. These files provide the partial code you will need to get a complete implementation of
CubeView running. Compile them by typing

> 320/Matting/partA-1
> make

and make sure that the only errors generated are because of the CubeViewUI.cxx file that you haven't created
yet.

Step 2: Run 'fluid' from the 320/Matting/partA-1 directory and go through all steps in the Chapter 9 tutorial
(you can skip the section called "The CubeView Class" for now). Note that all the code under the heading
"The CubeView Class" is included in the helper files you downloaded so you don't need to type it in
yourself. Basically, your main task will be to run fluid and use it to create the CubeViewUI class and
associated files, as described in the chapter. Once you are done following all the instructions in the tutorial,
be sure to save your work by selecting File->Save As, naming the output file CubeViewUI.fl, and saving this
file in the partA-1 directory. Naming is important so be sure to save the file with this exact name. To generate
the code implementing the CubeViewUI class, select the File->Write Code menu option in fluid. Again,
make sure that all the files you create go in the partA-1 directory.

Once fluid has generated the code implementing the class, you need to compile it by running 'make
CubeViewUI.o' and making sure that it compiles correctly.

Step 3: You are now ready to create an executable version of the program. To do this you need to link
together the CubeMain.o CubeViewUI.o and CubeView.o object files to create an executable called
CubeView. The supplied Makefile should do this for you by running 'make' again. You are done!

http://stackoverflow.com/questions/8640642/gcc-link-order-changed/8640681

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 8/11

What we will be looking for in the 320/Matting/partA-1 directory:

The CubeView executable
That the CubeView executable and related object files can be compiled/created by just
typing 'make' at the Unix prompt while in that directory
The file CubeViewUI.fl that you created with fluid

Part A.2: Implementing the Triangulation Matting Algorithm (50 points)
The goal of this part of the assignment is to implement the triangulation matting algorithm to be discussed in class. The algorithm takes
four RGB images as input (Composite 1, Background 1, Composite 2, Background 2) and produces two images as output---a
grayscale Alpha Matte, and an RGB Object image.

Your starting point: The file 320/Matting/partA-2/README.1st gives a fairly complete description of the starter code.
There are a lot of different components to the already-provided code, which is a lot to wade though, so you need to concentrate
on the parts directly relevent to the assignment. Three files are the most important, which implement the matting class. These
files are under the src/matting subdirectory:

First look at src/matting/matting.h. This file is where the class methods are defined, which provide the interface between
the interactive UI and the matting algorithm. All methods are fully implemented except for the compute() method and the
compute_composite() method.
Then look at the process_args() function in file src/main.cxx. This shows how these methods are used when running the
program in batch mode.
Your goal is to implement those two methods. A portion of the code is already in src/matting/matting_algorithm.cxx.
Your task for this part of the assignment is to complete that code.
The file matting.cxx contains the class constructor and various utility functions which you may need.
(40 points) The behavior of the compute() method should be as follows:

If the four input images (held in the class members back_1_, back_2_, comp_1_, comp_2_) have already been
specified, the method computes the alpha matte and the object image and places them in the members alpha_ and
object_, respectively.
The method returns true if the computations were performed correctly and false if there was a problem (eg., not all 4
required input images are available)
You can select "Triangulation Matting->Run Algorithm" from the menu of the solution executable to see what the
result of this computation should be.

(10 points) The behavior of the compute_composite() method should be as follows:
If the alpha and object images have already been computed (held in class members alpha_ and object_) , the method
should combine a new background image (supplied in the parameter new_background) with the already-computed
object_ image, and place the result in the parameter new_composite.
The method returns true if the computations were performed correctly and false if there was a problem (eg., the
alpha and object images have not been computed yet)
You can select "Triangulation Matting->Create Composite" from the menu of the solution executable to see what
the result of this computation should be.

If the compute() method is implemented correctly, you should be able to run the algorithm and save its results using the
command-line invocation:

viscomp -no_gui -mback1 <back1> -mback2 <back2> -mcomp1 <comp1> -mcomp2 <comp2> -mobj <obj> -malpha
<alpha>

this will save the results in two images, <alpha> and <obj>.

If the compute_composite() method is also implemented correctly, you should be able to get the results of this function as well
by adding two more command-line options to the above command line:

-mnewback <newback> -mnewcomp <newcomp>

If your implementation uses additional files (eg. for callbacks, or if you split your implementation over multiple files under the
matting/ directory) make a list of these files in the file src/ADDITIONS, along with a 1-2 sentense explanation of what is in
them.

Part A.3: Completing the User Interface (10 points)

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 9/11

The last step in PartA of your assignment is to extend the "incomplete" user interface of your starter implementation so that it matches
the functionality of the full version. The starter implementation has the following components missing (you can run both versions to
verify what needs to be implemented):

(5 points) The "Triangulation Matting->Save" menu. You need to create the menu and implement callbacks that save the
algorithm's results.
(5 points) The right drop-down menu in the "Matting Display Control" window. You need to add the drop-down menu and add
the callbacks needed to get the behavior exhibited by the full version.

Both of these functionalities should be implemented through fluid by running fluid on the file 320/Matting/partA-
2/src/VisCompUI.fl. As stated in the README.1st file, any callbacks you implement must be placed in the student_callbacks
directory.

Part B: Non-Programming Component (30 points)
This part of the assignment is meant to assess your detailed understanding of the matting algorithm and to have you perform some
matting experiments of your own!!

Part B.1: Conduct your own Triangulation Matting experiment (10 points)
Use your own digital camera to capture a set of images suitable for the triangulation matting procedure, and run the algorithm on those
images.

Specifically, you need to

capture 5 JPEG images with your camera (Background 1, Background 2, Composite 1, Composite 2, New Background)
use them as input to the matting program (either your implementation or the fully-functional executable we supplied) to create 3
output images (Alpha Matte, Object, New Composite)
place all 8 images in the directory 320/Matting/partB
CAUTION: you should name these images back1.jpg, back2.jpg, comp1.jpg, comp2.jpg, alpha.jpg, object.jpg,
newback.jpg, newcomp.jpg.
answer the questions in file 320/Matting/partB/Written.txt (also available here) about how these images were taken

Note that the question of how you acquire your 5 input images will require some thinking/planning on your part!! The number of
points you get for this part of the assignment will be based on how good your matting results are or, if they aren't, on your assessment
of why it was not possible to get better results.

If you do not have a digital camera and cannot borrow one from a friend, let me or the TAs know RIGHT AWAY and we will try to
make suitable arrangements.

Part B.2: "Debugging" the Triangulation Matting process (20 points + 10 extra-
credit points)
The triangulation matting algorithm does not always behave as one would expect from a quick glance of the photos at the beginning of
this assignment! Here you need to answer a set of questions that examine what can go wrong and, more importantly, why.

You can find the questions in the file 320/Matting/partB/Written.txt (also available here). Write all your answers in that file.

Part C: Packing Everything Up and Turning It In
Once you are done with the above, edit the file 320/CHECKLIST.txt (also available here) to specify which components of the
assignment you have completed, along with notes about parts that you were not able to complete, if any.

Pack up your portion of the code with the following commands:

> cd ~/CS320
> tar cvfz assign1.tar.gz Matting/CHECKLIST.txt Matting/partA-1/* Matting/partB/{WRITTEN.txt,*.jpg}
Matting/partA-2/bin/viscomp Matting/partA-2/src/{VisCompUI.fl,Makefile,ADDITIONS} Matting/partA-2/src/matting

http://www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/WRITTEN.txt
http://www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/WRITTEN.txt
http://www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/CHECKLIST.txt

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 10/11

Matting/partA-2/src/student_callbacks

Finally, you should use CDF's assignment submission system to submit your assignment:

> submit -c csc320h -a Assign1 assign1.tar.gz

Note that the system has been configured (1) to accept only files whose name is assign1.tar.gz and (2) to not accept submissions that
are more than 4 days late. Just do 'man submit' at the unix prompt to get more info on this process.

In evaluating your assignment, the first thing we will look for are the files CHECKLIST.txt and WRITTEN.txt.

Then we will make sure that your code compiles (just by typing "make" in the partA-1/ and partA-2/src directories).

Then we will run your code on test examples in both the interactive and the non-interactive modes.

Finally, we will look at your code. It must be well commented: if the TA has doubts about the correctness of a specific
implementational feature and there is not enough documentation/comments for the TA to decide, you will lose points.

Notes on VXL
In this course, we will be using the VXL library for representing and manipulating images. This is a library developed by dozens of
computer vision researchers over many years, so it has very broad coverage in terms of functionality. As a consequence, the
documentation is quite extensive. The best place to start is to look at Sam Hasinoff's old 320 page (from a previous instance of the
course). There you will find introductory notes on VXL, pointers to the top-level documentation tree, as well as pointers to the two
VXL modules that are directly relevant to you for this assignment: the vil library for representing images and the vnl library for
numerical computations. Your TA will cover the basic structure and organization of VXL, and go over simple image manipulation
functions. Another good source of information is, of course, the starter code!

VXL has several modules
VCL, a C++ compatibility library that provides standard classes such as strings, vectors, and I/O in a completely platform-
independent manner.
VNL, a numerical algorithms library
VBL, a basic templates library
VIL, the image library we will be using during the course
VGL, a geometry library for defining and manipulating geometric objects such as vectors, curves, and surfaces
VUL, a utility library which provides functions such as command line parsing.

For now, you should become familiar with the VIL component of VXL, pay special attention to the vil_image_view class,
which you will use to store and manipulate images. You should also look at the loading and saving functions (from the starter
code), and get a general idea of what kind of functions for manipulating images are available.
It is sometimes difficult to find documentation for a specific function starting from the top-level of the documentation hierarchy. I
have found that google is perhaps the fastest way to get to the documentation of a specific VXL function!

Using Visual C++ Under MS Windows (Win2k, WinXP, Vista, Windows 7)
If you want to work in windows, and you got a copy of the starter code prior to this announcement, you must re-download the
starter code. The new one has updated options that work with the new libraries.

However, your implementation MUST run on the Linux CDF machines and can only be submitted for linux.

Both fltk and VXL have been ported to windows, making the choice of operating system completely transparent: the code I am
providing compiles without any changes on both Linux and Windows 7 (using VisualC++ 8). You should, in principle, be able to
work in Visual C++, copy your code to your CS320 directory on CDF, compile using the supplied linux makefile, and run. Give
yourself some extra time if you choose to do this. Ssometimes, bugs that do not seem to affect a program in VC++ cause coredumps on
linux (and vice-versa).

If you plan to work with VC++ download the file 320CodeLib.zip (1.8GB !!!, almost 10 GB uncompressed!!). It contains the entire
compiled VXL and FLTK distributions for 64-bit machines. This should work on your Windows computer with VC++ 8.0 (2005)
installed, but I will not offer any support if you encounter problems with it. Alternative you may download sources for both VXL and
fltk and compile them yourself. This distribution contains the latest libraries but older ones have worked. Once you decompress this
library, add a system variable called 320CodeLibPath that points to the root of the decompressed files (instructions below) and the

http://www.cs.toronto.edu/~hasinoff/
http://www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/320CodeLib.zip

1/14/14 CSC320 Assignment 1: Image Matting

www.cs.toronto.edu/~mangas/teaching/320/assignments/a1/ 11/11

Visual Studio project should compile without issues. The provided code may work with more recent releases of Visual C++/Visual
Studio and with Windows 8 but there are no warantees on that end either.

To create a user system variable hit the "windows" key and type the word 'path' (without the quotes). This will open the Environment
Variables window. Then press new (green box in the image below) and enter the name '320CodeLibPath' (without quotes) and the
path where you decompressed the libraries.

