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Abstract—We present a method to register kidneys from
Computed Tomography (CT) scans with and without contrast
enhancement. The method builds a patient-specific kidney
shape model from the contrast enhanced image, and then
matches it against automatically segmented candidate surfaces
extracted from the pre-contrast image to find the alignment.
Only the object of interest is used to drive the alignment,
providing results that are robust to near-rigid relative motions
of the kidney with respect to the surrounding tissues. Shape-
based features are used, as opposed to intensity-based ones,
and consequently the resulting registration is invariant to the
inherent contrast variations. The contributions of this work
are: a surface grouping and segmentation algorithm driven
by smooth curvature constraints; and a framework to register
image volumes under contrast variation, relative motion and
local deformation with minimal user intervention. Encouraging
experimental results with real patient images, all with various
kinds and sizes of kidney lesions, validate the approach.

Keywords-3D Registration, surface segmentation, shape model-
ing.

I. INTRODUCTION

Renal lesions are very common, and while most of them
are benign cysts, some are renal cell carcinomas. Identifica-
tion of the type of lesion requires measuring the brightness
differences between two (routine) CT scans: one taken
prior to the injection of a contrast agent (pre-contrast), and
another one taken after injection (post-contrast). Currently,
evaluating the level of contrast enhancement across cor-
responding image locations is a labor-intensive procedure,
which requires a radiologist to visually inspect and manually
match corresponding 3D points. Matching of regions is
necessary because kidneys move between the pre- and post-
contrast images due to respiration and patient’s bulk motion
over time. In addition, matching precision must be within
the voxel size for the test to be informative for diagnosis.

This paper presents a shape-based registration method that
enables determination of the level of contrast enhancement
for the entire kidney, and does so with minimum user
intervention. The approach builds a patient-specific 3D shape
model of the kidney using the post-contrast image. This
model is then matched against candidate surfaces extracted
from the pre-contrast image to find the alignment. Candidate
surfaces are automatically generated using a novel grouping

and segmentation approach, driven by iteratively redefined
curvature constraints. The algorithm reaches a solution when
several surfaces (built from the pre-contrast volume) agree
on the location of the model (built from the post-contrast
volume). Figure 1 shows a schematic overview of the
algorithm. The approach overcomes the limitation of existing
algorithms where all image structures influence the resulting
registration transformation. Experimental Results with 20
datasets of actual patients with renal lesions indicate that our
method efficiently (within seconds) produces highly accurate
(within voxel size) rigid registration results, useful for rapid
diagnosis.

II. RELATED WORK

The large variety of registration methods available in the
literature responds to the proportional number of imaging
modalities, the nature and domain of the registration trans-
formations and the specific needs and constraints of each
application [1]. Twining et al. [2] present a method for
group-wise registration, statistically modeling images using
an information theory approach, where the coding length of
a set of images is minimized, maximizing correspondence.
While their method would non-rigidly co-register full ab-
dominal volumes down to a canonical reference model, the
proposed objective is not robust to contrast variations.

Statistical modeling is also exploited by Pizer et al. [3],
but this time using medial representations to characterize the
geometry of anatomical structures from a class of objects.
Registration using this method requires segmentations for
both the pre- and post-contrast image structures. Instead,
our method requires segmentation from the post-contrast
image only, where the kidney is most salient, and avoids
segmentation on the pre-contrast image, where segmentation
may be impractical due to lack of contrast. Segmentations
are also needed by methods based on the Iterative Closest
Point (ICP) algorithm [4], [21]. Alternatively, when provided
with crude edgel information, ICP methods suffer from a
reduced basin of convergence to a sensible solution, so they
must be carefully initialized. This is precisely one of the
challenges addressed by the method presented here.

Mutual Information methods [5], [6] do take into account
intensity variations across image sets, but they generally treat



Figure 1: Algorithm overview. A 3D model is obtained from the post-contrast image. Surfaces are segmented from the
pre-contrast image and aligned to the model. A refinement stage is applied last.

all image contents equally, making the result sensitive to
relative motion. Sun et al. [7] acknowledge the effects of
contrast variations and propose a contrast-invariant similar-
ity metric but their method only works in 2D. Spherical
Harmonic-based shape models have also been proved effec-
tive; in [8], the authors propose a sampling-based search
algorithm that greedily minimizes surface distances using
coordinate gradient descent on the rotation parameters and
then jointly optimizing, but again, segmentations for both
datasets are needed.

More recently, Heldmann et al. [9] proposed a method
to non-rigidly align multi-phase CT images of liver. They
point out similar difficulties (i.e., relative motion, contrast
variation), and their objective function includes an image
gradient alignment term, which is in principle similar to
our method, but instead we use image gradient information
to segment coherent surfaces as more robust features for
alignment. Conversely, Kwon et al. [10] extract local image
features from both images using a 3D corner descriptor;
corresponding features are then used to find the alignment,
balancing transformation smoothness and correspondence
certainty. Instead we use coherent surfaces as more robust
features to match.

III. REGISTRATION ALGORITHM

The outline of our framework is shown in Figure 1.
Different pipelines are used for the pre- and post-contrast
images. The post-contrast image is used to build a patient-
specific 3D shape model of the kidney using an off-the-
shelf segmentation algorithm (Sec. III-A). On the other
hand, the pre-contrast image is processed to extract edgel
surfaces (Sec. III-B) which are then matched against the

patient-specific 3D shape model. The surface segmentation
algorithm is one of the contributions of our work; it uses
iteratively redefined curvature constraints to group cohesive
sets of 3D edgels. A registration refinement stage is applied
last. The key idea to our framework is the efficient com-
bination of a bottom-up hypothesis generation mechanism
(surface segmentation), and a top-down evaluation procedure
(surface matching). Each of these steps are described next.

A. Model Segmentation (Post-contrast image)

Image segmentation is an effective way to build a de-
tailed patient-specific shape model, although the associated
difficulties often make this procedure unfeasible in practice.
However, because of the inherent contrast enhancement in
one of the images of our datasets, kidneys have enough
saliency for reliable segmentation.

The input to our segmentation algorithm, besides the
contrast enhanced image of course, is a rough bounding box
containing the kidney and a rough scribble on kidney tissue
in one slice. These two features can be moused in by an
operator within a few seconds. The output is a binary 3D
image where each voxel has a kidney or non-kidney label.

Segmentation is achieved using the Graph-Cuts [11]
framework, in which a 3D image is represented with a
graph. Each voxel becomes a node in the graph; we call
these voxel-nodes. In addition, two synthetic nodes represent
the foreground (i.e., kidney) and background (i.e., non-
kidney) classes, which are referred to as class-nodes. The
connectivity of the graph is as follows: each voxel-node
is connected to its neighbors using a 6-connected pattern.
Besides, each voxel-node is also connected to both class-



Figure 2: Segmentations of five kidneys from our dataset. Two views each.

nodes using two more edges, for a total of eight edges per
voxel-node.

While this graph architecture is standard for all images,
the information that drives the segmentation procedure is
stored in the edge potentials. Segmentation is achieved by
cutting the subset of edges with the smallest combined
potentials (min-cut) to separate the foreground and the
background nodes and their corresponding sub-graphs [12].
This formulation provides some intuition on what the prop-
erties of the edge potentials should be; edges that connect
neighboring voxel-nodes (ni and nj) should have potentials
proportional to the similarity between the image intensities
(I(x)) of their corresponding voxels (xi and xj). In our
implementation, this function is

q(ni, nj) = exp

(
− (I(xi)− I(xj))

2

2σ2

)
, (1)

where σ determines how quickly the strength of the potential
decreases as the intensity difference increases (in all our
experiments we used σ = 10).

On the other hand, edges that connect voxel-nodes with
the foreground/background class-nodes should have poten-
tials proportional to the likelihood of being part of the
foreground/background classes. In our case, these potentials
are computed using gray-level histogram distributions from
data samples of each class. The foreground class sample
is built from the moused-in scribble and its immediate 3D
neighbors. The background class sample comes from the
voxels on the moused-in bounding box of the kidney.

The method has been successfully used in this and many
other settings, although the technical details are out of
the scope of this paper. Figure 2 shows two views from
five segmentations using our potentials and an off-the-shelf
implementation [13]. Our experimental results showed that
correct segmentations were obtained for all of our contrast
enhanced images. Note that, due to the presence of lesions,
the kidneys have a wide variety of shapes.

B. Surface segmentation (Pre-contrast Image)

Unlike with the contrast enhanced images, segmentation
of the entire kidney from the pre-contrast image is not feasi-
ble in practice, due to the common presence of regions with
little or no contrast between the kidney and the surrounding

tissues. Instead, we propose computing segmentations of
some salient surfaces, which despite their partial coverage,
we hypothesized are sufficient for alignment. This hypothe-
sis was validated by our experimental results.

Our surface segmentation algorithm is initialized by
grouping cohesive sets of edgels from a small surface
neighborhood via connected components. The algorithm
then iterates between two steps: growing the patch according
to some shape constraints, and updating these constraints.
The steps are illustrated in Figure 3, using a real-data
example, and are explained in detail below. After each
run, the output is one segmented surface. The algorithm
is repeatedly executed to extract more surfaces. We found
that using a rough bounding box that contains the kidney
is beneficial to decrease the number of non-kidney surfaces
proposed by the algorithm, as well as the total computation
time.

1) Initialization: A seed edgel is randomly chosen (Fig.
3a). Initially, seeds are sampled from a uniform distribution
over all edgels, and it is possible that the selected seed
edgel may not lie on the kidney surface. Nonetheless, the
seed is used to grow a (kidney or non-kidney) surface as
follows. Using a 6-neighborhood, 3D connectivity pattern,
all edgels within a small radius of the seed are grouped,
forming the initial surface patch P . A sphere is least-squares
fit to this patch, optimizing for the radius and the position
of the origin (Fig 3b). This sphere defines the initial shape
model Q, which at this stage only captures a rough notion
of the curvature of P , but that in subsequent iterations will
become a more complex shape model.

2) Constrained growth: Using the same connectivity pat-
tern as in the previous step, we build a list L of edgels
that are neighbors to the currently segmented surface P .
These become the candidates for inclusion to P at the
current iteration. Each candidate is added to P only if closely
extrapolated by the surface model Q. After evaluating all the
candidates, the model Q is refit to the updated set of edgels
in P (Figures 3c, d, details below). The process of recruit
and refit is iterated. The algorithm stops when L is empty,
or when none of the voxels in L are closely extrapolated by
Q. At that point the current patch P is returned as the final
segmented surface (Fig. 3e, f).

Multiple surfaces are segmented by repeating this process



(a) (b) (c)

(d) (e) (f)

Figure 3: Surface segmentation: (a) Seed, in red; edgels in gray. (b) Initialization, model in red; initial patch in blue. (c-f)
Surface segmentation iterations, SH model in red; segmented surface in blue. (f) Rotated view of (e). Note that the SH
model is not expected to extrapolate to the entire kidney, but only to the neighboring voxels of the already fitted surface (in
blue), see text.

of sampling a seed edgel and growing a surface patch. To
encourage different surfaces to be extracted, we decrease
the likelihood of sampling seeds from edgels which lie on
previously extracted surfaces. The fitting algorithm, as well
as the type of model used in the growth of these segmented
surfaces are described next.

3) Patch modeling: Immediately after initialization, the
patch P is small by construction, and can usually be well
approximated by a spherical surface, but it grows after
each iteration and will eventually describe a more complex
geometry. The model Q must then be able to accommodate
shape variability within a certain level of detail. We found
that a Spherical Harmonics (SH) parameterized surface is a
reasonable modeling technique, as one can adjust the level
of detail by limiting the number of coefficients, much like in
Fourier analysis. Spherical Harmonics are a smooth, single-
valued family of functions. They can be used to describe
star-shaped [14] or simply connected 3D [15] objects. In
recent years, the computer vision community has used them
to perform various kinds of shape analysis and modeling

[16], [17], [18].
While a SH model defines a surface over the entire domain

of the sphere, it is important to notice that we do not
expect to use the SH model to extrapolate the surface well
away from the model’s support region. In fact, the example
in Figure 3 shows that, because the support region spans
only a local subset of the spherical angular domain, regions
that are distant from the support region are very loosely
constrained. However, because a SH model defines a smooth
function, its shape should extrapolate to voxels adjacent to
the patch, under the assumption that kidney surfaces are also
smooth. We are only using the SH model to approximate
the currently segmented patch and to extrapolate to its
immediate neighboring voxels.

4) SH model fitting: Given a set of 3D points {xi}Ni=1,
a SH model can be extracted as follows. First, the origin
of a polar coordinate system is placed at the center of the
sphere that provides the best least squares fit. Then, each
xi is represented in polar coordinates as si = (θi, ϕi, ri),
with θi ∈ [0, 2π) and ϕi ∈ [−π, π]. These points are then



approximated by a SH expansion of the form

ri ≈
L∑

`=0

∑̀
m=−`

cm` Y m
` (θi, ϕi), for i = 1, . . . , N, (2)

where cm` are coefficients weighting the indexed spherical
harmonic functions Y m

` . In matrix notation, Equation 2 can
be written as r ≈ Yc, with r = (r1, r2, . . . , rN )T , c an
M -vector consisting of the coefficients cmj

`j
, j = 1, . . . ,M ,

and Y a N × M matrix with the i, j entry is given by
Y

mj

`j
(θi, ϕi).

Typically the number of data points N is much larger
than the the number of coefficients M , and therefore a least
squares approach is used to solve for c. The regularized
objective function is:

Φ(c) = ‖Yc− r‖2 + c>Bc. (3)

The first term corresponds to the reconstruction error. The
second term is the regularizer that avoids overfitting by
constraining the amount of deformation of the reconstructed
surface. The matrix B is diagonal. The value of b11 is always
zero since c1 is related to a general surface scaling factor.
Entries bii = λ (with i = {1, 2, . . . ,M}) control the penalty
associated to ci as they deviate from zero. The coefficients
c that minimize (3) are given by

c = (Y>Y + B)−1Y>r. (4)

C. Surface classification

At this point we have a set of surface patches that have
been generated by the surface grouping algorithm described
above, along with the 3D kidney model obtained from the
post-contrast image. In order to determine whether any
of these surfaces belongs to the kidney, all surfaces are
putatively matched against the model. The problem is ap-
proached by first finding the transformation that maximizes
the overlap between the model and the candidate surface,
and then evaluating how much of an overlap there is.

1) Model-surface fitting: Let S be a candidate surface
with K edgels located at S = {sk}. The rigid transformation
parameters ([R̂|̂t]) that brings this surface into alignment
with the model are found using

[R̂|̂t] = argmin
[R|t]

∑
s∈S

ρ
(
D(Rs + t)

)
, (5)

where D(x) is (an approximation to) the shortest Euclidean
distance between x and the patient-specific 3D model, and
ρ(·) is the Geman-McClure robust estimator [19], used
to reduce the effect of outliers by limiting the maximum
penalty. A quasi-Newton optimization method is used to
find the (local) optimum set of parameters. To increase the
likelihood of convergence to the function’s global optimum,
the optimization procedure is repeatedly run with varying
initial guesses of the transformation parameters.

2) Overlap metric: Corresponding surfaces should coher-
ently overlap with the 3D shape model. To asses this overlap,
the candidate surface S is first aligned onto the model using
the parameters [R̂|̂t] obtained from Equation 5 and then its
edgels are evaluated using a function that rewards proximity
and penalizes misalignment, namely

f(s, [R̂|̂t]) =
[
1− ρ

(
D(R̂s + t̂)

)](
R̂ns · nms

)
. (6)

The first term monotonically decreases with increasing dis-
tance from the surface edgel to the model. The functions
D(·) and ρ(·) are the same distance and robust estimator
functions, respectively, defined above. The second term
penalizes misalignment between the edgel’s normal (ns) and
the model’s normal at the closest model point (nms

). The
cumulative evidence in support of the candidate surface as
being part of the model is

O(S) =
∑
s∈S

f(s, [R̂|̂t]). (7)

The surface with the largest overlap score (O(S)) provides
a good approximation to the transformation parameters
([R̂|̂t]). However, due to potential surface oversegmentation,
S may not be the only available kidney surface. The refine-
ment stage (below) improves the transformation parameters
by incorporating kidney edgels not present in S .

D. Refinement

In this stage the pre-contrast image edgels are first aligned
to the kidney shape model using the estimated [R̂|̂t], and then
the registration parameters are improved using those edgels
that are sufficiently proximal and in good alignment with
the shape model.

These two properties are evaluated using Equation 6.
Edgels for which f(s, [R̂|̂t]) > k, are considered suitable
and define the final support set Ŝ. We used k = 0.5 for all
our experiments.

The final registration transformation parameters are com-
puted using

[R∗|t∗] = argmin
[R|t]

∑
s∈Ŝ

ρ (D(Rs + t)) . (8)

The same optimization technique used to minimize Equa-
tion 5 was used here.

The average running time of the entire pipeline is kept
under one minute on a conventional desktop computer;
details are provided below.

IV. EXPERIMENTAL RESULTS

To test the proposed approach, a set of 20 studies from
real patients with some type of kidney lesion was used.
To increase the efficiency of the images’ dynamic range,
we followed the standard procedure of scaling volumetric
attenuation in (Hounsfield units HU) with a truncated linear
function to compute image intensities; a window level of



Figure 4: Box-plot of the distribution of distances between matched edgels. The results of 18 out of the 20 test cases have
more than three quarters of the validation surface samples closer to the segmented model than the largest voxel size

40HU and a window width of 400HU were used. Post-
contrast images were also processed with bilateral filtering
[20] to smooth consistent regions while preserving edges.
The average size of a rough bounding box that contains a
kidney is around 120x120x60 voxels, with a voxel size of
1x1x2.5mm.

Experiments were run using a non-optimized implementa-
tion running on a Pentium IV desktop at 3.8 GHz with 2 GB
of RAM and we found that the average running time could
be kept under one minute. This time includes executing all
the necessary image pre-processing steps (10-20 seconds),
computing the 3D patient-specific model from the contrast
enhanced image (2-5 seconds), running the surface segmen-
tation module on the pre-contrast image several times (under
1 second per surface), and finding the final alignment (1-3
seconds).

The manual input required by the algorithm was provided
by a user with no medical training other than the ability to
identify the renal anatomy on a CT scan. This input consists
of rough bounding boxes containing the kidney in both pre-
and post-contrast images, as well as a scribble on the kidney
in a single slice of the post-contrast image.

Edges are computed using a standard Canny edge de-
tection algorithm, which uses 3D derivative-of-Gaussian
kernels to compute gradients, followed by non-maximum
suppression.

For the surface segmentation algorithm, the number of
coefficients used in the spherical harmonics model implicitly
determines the level of detail of the reconstructed surface.
We empirically found that the algorithm performed best with
m = 25 coefficients (Equation 2) regularized by λ = 0.025
(Equations 3 and 4) for this type of data. This combination
of parameters exhibits good extrapolation properties on the
smoother regions (of both kidneys and the surrounding struc-
tures) while preventing the surface segmentation procedure
from under segmenting. The quasi-Newton BFGS method

was used to fit the sphere parameters (i.e., the center and
radius) for the surface segmentation algorithm. The same
method was used to optimize the parameters of the alignment
between candidate surfaces and the 3D model.

1) Quantitative validation: The whole registration
pipeline was applied to each of the 20 image pairs in
our dataset. To quantitatively evaluate the quality of the
resulting transformation, all the detected edgels from the pre-
contrast image were evaluated using Equation 6. Edgels with
O(sk, [R̂|̂t]) > kv , were labelled as kidney surface inliers,
and defined the validation set T . The threshold kv was even
more tightly defined (kv = 0.9) in order to more clearly
assess the alignment. The distance from an edgel in T (from
the pre-contrast image) to the closest edgel from the seg-
mented model (from the post-contrast image) was computed.
Ideally, a perfectly registered image pair should produce zero
distances between corresponding edgels. Figure 4 shows a
box plot of edge-to-model distances, where 18 out of the
20 test cases have three quarters of the validation surface
samples closer to the segmented model than the (largest)
voxel size.

The same figure shows two failure cases; the first one due
to an abnormal structure of size comparable to the kidney
itself, which altered most of the pre-contrast image edge
information and led to a poor model fit. The second one
presents an extremely narrow kidney, inaccurately modeled
using the current level of detail.

2) Qualitative validation: Aligned sets were given to a
specialized radiologist (a co-author), who provided feedback
on the accuracy of the registered sets. According to the
expert, the method provides the means to much more rapidly
identify and locate higher risk regions. Two series of the
resulting registered images are shown in Fig. 5. The leftmost
column corresponds to the pre-contrast images, and columns
to the right show post-contrast images progressively more
strongly overlaid. For reference, contours of the kidneys



Figure 5: Qualitative validation: overlaid alpha-blended registered images. The leftmost column corresponds to the pre-
contrast images, and columns to the right show post-contrast images progressively more strongly overlaid. For reference,
contours of the kidneys from the low-contrast images are displayed on all overlays.

from the low-contrast images are displayed on all overlays.

V. SUMMARY

We present a method to register kidneys from volumet-
ric images (CT scans) by finding the alignment between
automatically segmented surface patches and a 3D model.
We also present an algorithm to automatically segment
coherent and smooth surfaces from edgel maps. Our non-
optimized implementation runs within seconds on a single
CPU, and requires minimal user intervention. Validation was
performed using image pairs from real patients with different
degrees of kidney damage. Quantitative validation showed
that most registration errors are smaller than the largest voxel
size for 90% of the test cases. In the clinical domain, the
results were qualitatively validated by an expert radiologist
as useful for diagnosis.
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