
  
Abstract�Medical image segmentation is one of the most 

productive research areas in medical image processing. The 
goal of most new image segmentation algorithms is to achieve 
higher segmentation accuracy than existing algorithms. But the 
issue of  quantitative, reproducible validation of segmentation 
results, and the questions: What is segmentation accuracy ?, 
and: What segmentation accuracy can a segmentation 
algorithm achieve ? remain wide open. The creation of a 
validation framework is relevant and necessary for consistent 
and realistic comparisons of existing, new and future 
segmentation algorithms. An important component of a 
reproducible and quantitative validation framework for 
segmentation algorithms is a composite index that will measure 
segmentation performance at a variety of levels. In this paper 
we present a prototype composite index that includes the 
measurement of seven metrics on segmented image sets. We 
explain how the composite index is a more complete and robust 
representation of algorithmic performance than currently used 
indices that rate segmentation results using a single metric. 
Our proposed index can be read as an averaged global metric 
or as a series of algorithmic ratings that will allow the user to 
compare how an algorithm performs under many categories. 
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I.  INTRODUCTION 
 
 Image segmentation is no doubt one of the largest 
research areas in medical image processing. New 
algorithms, algorithmic techniques, methodologies and 
improvements to existing methods are continuously being 
proposed to segment medical images into their constituent 
organs and tissues. For newcomers to the field, clinicians 
interested in practical segmentation applications and even 
researchers in image processing it is difficult and even 
confusing to choose one segmentation technique over 
another and to understand the benefits and disadvantages of 
each method. Whether image segmentation is performed 
using statistics[1], fuzzy logic[2], neural networks[3], active 
contours[4], morphology[5], mathematical models[6], 
texture[7], any combination of the previous methods[8] or 
any other technique, depends on many factors, the main one 
being the nature of the medical images to be segmented 
(MR, CT, Xray, utlrasound, etc.). Other factors for choosing 
an algorithmic approach are: 1) available technology, 2) 
degree of segmentation automatization, 3) prior information 
available on the images, and 4)  number of organs and 
tissues to be segmented. Whatever the method, one of the 
main objectives of every segmentation is to achieve a high 

segmentation accuracy.  But to be able to measure the 
accuracy of any image segmentation method, the true 
segmentation of the images must be known. In the last 
decade, manual segmentations by clinical specialists were 
used as gold standard against which to compare automatic 
segmentations. However, manual segmentations are subject 
to error and cannot be precisely duplicated. For this reason, 
the McGill group [9]-[11] have developed an MRI simulator 
called Brainweb and have made available simulated MR 
head images where the true segmentation is known and so a 
quantitative validation of segmentation methods can be 
obtained. In [12], a Harvard group has also made available 
20 MR head image sets along with their segmentations to be 
used as standard test sets, however, in the Harvard images, 
the segmentations were performed manually. But even with 
the Brainweb and Harvard images available, it has proved 
hard to rate one image segmentation method against another, 
precisely because a unique definition of segmentation 
accuracy does not exist. Some of the many definitions of 
segmentation accuracy that can be established to rate an 
experimentally segmented image set against the true 
segmentation are: 1) number of coincident and/or non 
coincident segmented pixels, 2) number of coincident and/or 
non coincident segmented pixels on the boundaries of 
tissues or organs, 3) preservation of area, 4) preservation of 
perimeter, 5) preservation of the smoothnes or degree of 
curvature of the segmented boundary, 6) preservation of the 
statistics, 7) preservation of the entropy, 8) preservation of 
the center of mass, 9) preservation of the topology of the 
segmented regions, etc. In image segmentation literature we 
usually find simple metrics to quantitatively evaluate 
segmentation results: the Tanimoto Index[13], the Overlap 
Metric[14] and the Misclassification Rate[15], are a few of 
the error indices that are used. However, because these 
indices consist of a single metric to measure the 
segmentation accuracy or segmentation error, they do not 
represent a complete performance metric of segmentation 
algorithms. For example a number of different segmentation 
results can lead to the same Tanimoto Index, and a measure 
of the Misclassification Rate is hardly a precise indicator of 
segmentation accuracy. Our experience in medical image 
processing has led us to believe that a quantitative 
evaluation index must be proposed that truly captures the 
complex information contained in segmentation results, and 
that this evaluation index must be able to give the user a 
realistic idea of algorithmic performance at different levels. 
Without such an index, new segmentation algorithms will 
not be able to realistically compare or measure themselves 
against existing work, and the question of what 
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segmentation accuracy a segmentation algorithm can reach 
will continue under determined. 
 In this paper we propose a prototype composite index 
for the quantitative evaluation of image segmentation 
results. This prototype index is composed of seven metrics 
that are obtained from experimentally segmented image sets 
measured against the true segmentation of the same image 
sets. The seven metrics that are measured over the 
segmented regions in the images are: preservation of mean 
and standard deviation, preservation of perimeter and area, 
Tanimoto index, Overlap metric and Misclassification rate. 
  

II.  METHODOLOGY 
 
 We use one Brainweb simulated MR image set and one 
Harvard MR image set to quantitatively evaluate two 
segmentation algorithms. We will call the Brainweb image 
set,  test set 1, and the Harvard image set, test set 2. For both 
test sets the greyscale MR images and the true 
segmentations were available.  We programmed two 
segmentation algorithms, one that segments regions in an 
image using image statistics, which we call segmenter 1 and 
another one that segments regions using a combination of 
statistics and fuzzy logic, which we call segmenter 2. Our 
current objective is to program more segmentation 
algorithms to develop a framework for the composite 
quantitative assessment of segmentation performance for the 
most widely used algorithmic techniques. 
 
A. Segmentation and Division in Image Regions 

 
 We first segmented the white matter in both test sets 
with both segmenters. We then divided the resulting 
segmented images and the true segmentation images with a 
regular grid into 16 square regions. To add precision to our 
quantitative evaluation, we decided, in our current prototype 
framework,  to measure the composite index 16 times on 
every image, that is, we measured the composite index on 
every square region in the images.  This distributed 
approach gives a much more precise error measurement, 
since errors throughout the images will not cancel out, and 
also, this allows us to take into account intra-image 
variabilities. We measured the 7 metrics of the composite 
index on each of the 16 regions in 43 central images of each 
segmented image set. 

 
B. Metrics 1-2. Preservation of the Mean and Standard 
Deviation in the Image Regions 
 
 For test set 1 we have three segmentations: the true 
segmentation, the segmentation provided by segmenter 1 
(statistical) and the segmentation provided by segmenter 2 
(statistical plus fuzzy logic).  The images in the 3 segmented 
sets are also divided into 16 regions each. Region by region 
we compare the mean and standard deviation in the true 
segmentation vs the mean and standard deviation  of the 

image regions in the two experimental segmentations. For 
each region in the experimental segmentations we obtain 2 
measures: the absolute difference between the mean of the 
white matter and the mean of the true white matter (the 
white matter in the true segmentation), and also the absolute 
difference between their standard deviations.  We repeat the 
measurement of absolute difference in mean and standard 
deviation for the regions of test set 2 and its two 
experimental segmentations .When the value of mean and 
standard deviation metrics is cero, perfect preservation of 
region statistics is achieved. 
 
C. Metrics 3-4 Preservation of Area and Perimeter in the 
Image Regions 
 
 We repeated the same steps as for Metrics 1-2, this time 
measuring, region-wise, the absolute difference in area and 
perimeter between both test sets and their two 
segmentations.  A measurement of cero indicates perfect 
area and perimeter preservation of segmented white matter. 
 
D. Metrics 5-7 Measurement of Common Error Indices 
 
 In order to maintain a comparative measure with many 
of the existing segmentation validation results, we add the 
Tanimoto Index, the Overlap Metric and the 
Misclassification Rate to our composite index. These 
indices, as we did with metrics 1-4 are measured 16 times 
on every image for all experimentally segmented image sets. 
Values of the Tanimoto Index and the Overlap Metric of one 
indicate perfect agreement between the experimental and 
true segmentations[13][14]. An MCR of cero indicates a 
perfect segmentation[15]. 

 
III.  RESULTS 

 
A.  Figures and Tables 

 
Fig. 1 shows one segmentation example for each test 

set, Figs. 1a and 1e show the original Brainweb (test set 1) 
and Harvard (test set 2) images to be segmented, 1b and 1f 
show the true segmentations also provided by the McGill 
and Harvard sites. Figs. 1c and 1g show the white matter 
segmentation obtained with our statistical segmentation 
algorithm (segmenter 1), finally Figs 1d and 1h show the 
white matter segmentation obtained by the statistical/fuzzy 
segmentation algorithm (segmenter 2).  All images in Fig.1 
show the grid we use to subdivide the images in 16 regions. 

 
B. Region-wise Measurement of the Seven Metrics 

 
Figs 2-3 show the composite quantitative evaluation of 

the two experimental segmentations of region 6 of test set 1. 
Fig 2 shows the normalized values of the seven metrics 
measured on region 6 over the 43 images in the segmented 
set produced by segmenter 1. Fig 3 shows the same results 
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Fig 1. a), e)  Original images from test set 1 and  test set 2. b), f) True Segmentations. c), g) Results of segmenter 1. d), h) Results of segmenter 2. 
 

for segmenter 2. Figs 4-5 show the normalized values of the 
seven metrics for region 6 along the 43 segmented images 
by segmenters 1 and 2 on test set 2. As can be seen on Figs 
2-5, the metrics of  absolute difference of mean, σ, area and 
perimeter between the experimental and true segmentations 
take values close to cero, meaning there is a good 
preservation of statistics and geometry on the segmented 
results of both segmenters. The values of the Tanimoto 
index and Overlap Metric also take values close to 1, 
indicating good agreement between experimental and true 
segmentations. Finally the MCR is close to 0 as expected. 
But on closer examination of the composite index applied to 
test set 1, one might conclude that segmenter 1 better 
preserves the area and the perimeter than segmenter 2, even 
though the values of the Tanimoto index are very similar. 
For test set 2 both segmenters have similar behaviour with 
respect to area and perimeter preservation. Over test set 2, 
segmenter 1 outperforms segmenter 1 on MCR values.  

 
IV.  DISCUSSION 

 
 The proposed prototype index allows us to realistically 
compare the performance of segmenter 1 and 2. According 
to the composite index, segmenter 1 better preserves the area 
and perimeter of segmented test set 1 than segmenter 2, even 
though both segmenters have similar Tanimoto indices and 
Overlap Metrics. We only present the results for one 
segmented region, because applying the composite index 
region-wise over the images gives a more precise 
measurement of segmentation results. The distributed 
application of the index allows the user to identify problem 
zones in the images and to detect the algorithm�s weak 
points. The prototype index must be included in a complete 
validation framework that specifies, among other things, the 

right methodology for segmentation validation, including a  
description of how the composite index is measured and 
reported. Our next step will be to incorporate measures of 
the segmented boundary curvature, and preservation of 
entropy and topology. 
 

V.  CONCLUSION 
 
 In this paper we present our initial results towards a 
complete framework for the quantitative validation of 
segmentation algorithms. We introduce a prototype 
composite index consisting of seven validation metrics. Our 
proposed index can be read as a global metric or as a series 
of algorithmic ratings that will allow the user to compare 
how an algorithm performs under many categories. The 
composite index allows users to make statements of the 
form: While segmentation algorithm 1 performs better in 
area and perimeter preservation, algorithm 2 better preserves 
boundary curvature and tissue statistics. To complete the 
validation framework we will program some of the more 
popular image segmentation algorithms, trying to represent 
all algorithmic categories. We plan on comparing active 
contour models, neural networks, statistical algorithms, 
fuzzy algorithms, segmentation by texture and 
morphological operators. We will segment the same test 
images using all the algorithms and will then assign a 
composite index to each segmentation result. We will also 
incorporate additional metrics to the composite index.  We 
believe a validation framework is relevant and necessary for 
uniform, and realistic comparisons of current and future 
segmentation algorithms. Such comparisons are not possible 
with the single metric indices that are currently used in 
literature for quantitative segmentation evaluation.  



 
Fig 2. Quantitative results of composite index for segmenter 1 compared to 
the true segmentation of test set 1 (region 6).  above) Absolute difference in 
mean, σ, perimeter and area, below) Tanimoto, Overlap Metric and MCR. 

 
 
Fig 3. Quantitative results of composite index for segmenter 2 compared to 
the true segmentation of test set 1 (region).  above) Absolute difference in 
mean, σ, perimeter and area, below) Tanimoto, Overlap Metric and MCR. 

 
Fig 4. Quantitative results of composite index for segmenter 1 compared to 
the true segmentation of test set 2 (region 6).  above) Absolute difference in 
mean, σ, perimeter and area, below) Tanimoto, Overlap Metric and MCR. 

 
Fig 5. Quantitative results of composite index for segmenter 2 compared to 
the true segmentation of test set 2 (region 6).  above) Absolute difference in 
mean, σ, perimeter and area, below) Tanimoto, Overlap Metric and MCR. 
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