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Abstract
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Doctor of Philosophy
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University of Toronto, 2015

The problem of rigid motion segmentation of trajectory data under or-

thography has been long solved for non-degenerate motions in the absence

of noise. But because real trajectory data often incorporates noise, tracking

failures, motion degeneracies and motion dependencies, recently proposed

motion segmentation methods resort to non-trivial representations to achieve

state of the art accuracies, at the expense of a large computational cost. This

thesis proposes a method that dramatically reduces this cost (by two orders of

magnitude) with minimal segmentation accuracy loss (from 98.8% achieved by

the state of the art, to 97% achieved by our method on the standard Hopkins

155 dataset). Computational efficiency comes from the use of a simple but

powerful motion model that explicitly incorporates mechanisms to deal with

noise, outliers and motion degeneracies. Subsets of these motion models with

the best balance between prediction accuracy and model complexity are effi-

ciently ranked from a pool of candidates. Top scoring model combinations are

then merged using an averaging technique to produce the final segmentation

result.
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1 Introduction

Computer based Motion Segmentation (MS) refers to the problem of

grouping pixels, regions or trajectories into coherently moving sets. The

solution to the MS problem is important not only because it enables higher

level Computer Vision tasks, like 3D scene reconstruction or relative motion

estimation (including the relative motion of the camera with respect to the

world), but also because segmenting an image using independent motion

information appears to be a strong cue for visual based scene understanding.

In fact, it is well accepted that the human visual system relies on independent

motion perception to perform tasks that include coherence detection, structure

from motion [14], and even the interpretation of intentions and feelings [2],

with very specific regions of the brain (see [2] for details) devoted to these

rather complex perceptual tasks, many of which have been found to be

indispensable to the interpretation of independent motion.

It has also been hypothesized that minimal stimuli, such as a dynamic dot

display, is sufficient to discriminate between independently moving objects.

A dynamic dot display presents the projections of a set of 3D locations from

the different objects in the scene. The hypothesis was eventually confirmed

[33], suggesting that sparse trajectory data often suffices to perceive motion

independence. The principle was mathematically detailed for noiseless data

several years ago [8], and the use of trajectory data is now the de facto standard

within the MS community, motivated by the associated computational effi-

ciency and the availability of methods that estimate trajectories from a moving

scene by local image feature tracking [21, 31, 40, 44].

The process of going from a video sequence to a set of motion segmented

1



2 Introduction

Figure 1.1: From image frames to motion-segmented trajectories. Three frames
from a sequence from the Formula 1 dataset. Original images at the top row,
trajectories in the middle and segmented results at the bottom row.

trajectories is described with Figure 1.1. The top row of shows three of the

original frames. A feature tracking algorithm then detects [40] and tracks

[31, 44] salient points across all frames. The middle row shows the resulting

354 trajectories that survived the entire sequence which, together with the

number of independent motions, becomes the input to the MS algorithm. The

bottom row shows color-coded trajectories, according to the output labeling

produced by a MS algorithm.

For much of this thesis, a segment is a set of trajectories that is consistent

with the affine projection of 3D rigid motion. In 1.1, the segments correspond

to the three sets of trajectories consistent with different rigid motions.

The problem of MS of trajectory data is fundamental to the Computer

Vision community. A large number of contributions already exist, some that

have increased the understanding of the theory behind this problem, and some

others that have introduced methods that exploit the existing understanding to

provide solutions to the MS problem. The contributions of this thesis include

an improved solution that is highly accurate and that requires a fraction

of the computation time used by existing methods. Experimental results

also showed that the proposed method is also applicable to a wide range of

situations, including objects that slightly deform and sequences with many

outlier trajectories. Computational efficiency is achieved by combining the use
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Figure 1.2: Toy problem’s input 2D data. Two linear models and one punctual
model for N = 3.

of an efficient model fitting technique, together with the common assumption

of local coherence. Applicability to a wider range of problems is possible

thanks to the built-in robustness and the ability to deal with varying levels of

trajectory noise.

Before proceeding with the rest of the thesis, we think it is beneficial to

introduce a Toy Problem (TP) that is similar to MS in many of the most critical

aspects, but unlike the MS problem, can be drawn in 2D and may in fact

already evoke some intuition from the reader. This TP will also help introduce

the key difficulties of doing MS on non-trivial datasets.

1.1 Toy Problem

Assume W is a 2× P matrix that contains the 2D locations of p points

that originate as the noisy observations of a series of independent linear or

punctual phenomena, plus some outlier points. The toy problem consists on

finding subsets of points that are coherent with a set of linear or punctual

models, assuming that the number of independent models N is known a

priori.

Figure 1.2 shows a plot of an example W with p = 270 points and N = 3

independent sources: two linear and one punctual. Clustering these points

into three independent classes is relatively clear from visual inspection (Figure
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(a) (b)

Figure 1.3: Toy problem. a) Ground truth labeled data. b) Underlying models:
linear (blue and red line segments) and punctual (dark green dot).

1.3.a shows the ground truth labelling), except perhaps for points closest to

the intersection of the two linear phenomena, as well as for outlier points

(shown in black in Figure 1.3.a). However, visual inspection also reveals two

important aspects of the data. First that the magnitude of the noise is different

depending on the underlying class for each 2D point, and second, that in

some cases the data does not really align with a linear or a punctual model. In

particular, look at Figure 1.3.b, where the least-squares linear model fit to the

red-class points reveals that the true underlying phenomenon is very likely

non-linear. These and other issues are shared by the MS problem. A more

detailed list is presented next.

1.1.1 MS ' TP

The MS problem is similar to the TP in the following critical aspects.

1. Models of different capacities (i.e., different number of free parameters)

must be considered when fitting different subsets of trajectories due to

the common presence of motion degeneracies (cameras that only rotate,

planar objects, etc.). In the TP, linear and punctual models are available,

and certainly the linear model allows for one extra degree of freedom,

compared with the punctual model.

2. Motion dependencies (like the joints of an articulated object) create

situations where it is more difficult get an estimate of the magnitude of
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the noise, and where the uncertainty about the resulting segmentation

labeling grows. In the TP, the issue appears at the intersection of two

models, like the two linear models of the example.

3. The average magnitude of the noise is unknown and can be different

for different groups of trajectories due to varying imaging conditions

(loss of image contrast, illumination changes, etc.), as well as motion

properties (motion blur, deforming textures, etc.). The magnitude of the

noise for each point in the TP is a function of the underlying class.

4. Unaccounted image formation processes (perspective effects, barrel

distortion, etc.) can result in trajectories whose motion deviates from the

model’s predictions. In the TP, the distribution of trajectories may only

be approximately linear (or punctual).

5. Some trajectories cannot be explained by any of the models (drifting

trajectories, tracking errors, etc.). Some 2D points of the TP are also

away from any of the true underlying models.

1.1.2 Solving the TP

A standard solution to the problem of robustly fitting a set of models to the

toy problem’s 2D data would be to use the Random Sampling and Consensus

(RANSAC) algorithm, which iterates three steps until most of the data has

been explained (or the maximum number of models have been reached):

first, fit a large number of models using the minimal number of randomly

sampled control points. Second, identify the model with the largest number

of data inliers. Third, refine the model estimate and remove the resulting set

of inliers from the dataset. At first glance, RANSAC appears as a sensible

option since it is specifically designed to deal with outliers, it can be stopped

after the first N subsets of inliers have been found, and it is computationally

very efficient. However, the standard RANSAC does not naturally extend to

problems where different types of models are necessary to efficiently describe

the data, and even if we assumed it did, RANSAC is by design a greedy

algorithm, meaning that the decision of keeping or discarding a model is

purely based on the (local) evidence of each model. In other words, RANSAC

fails to incorporate the knowledge of how a particular model interacts with

the other N − 1 models to jointly describe the data.
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(a) (b)

Figure 1.4: A spurious candidate model. a) Observed data with overlaid
model (blue line) and residuals (red lines). b) Histogram of signed residual
magnitudes. Note presence of may residuals of small magnitude.

A typical conundrum that originates from the greedy nature of RANSAC

occurs in situations like the one depicted in Figure 1.4.a, where the two

control points (in green) of a linear model are drawn from two independent

sources, rendering a model that coincidentally describes the data of both linear

phenomena with not very large residual magnitudes (red lines). Figure 1.4.b

shows a histogram of distances to the line. Distances are signed to reflect

which side of the line each point lies on. It is at this stage when RANSAC

must determine whether this histogram (or any other criterion based on the

residuals) is one of a valid model or not. Typically, the final call is based on a

dynamically determined inlier threshold (a fixed threshold is unfeasible for

data where the magnitude of the noise changes between classes). We argue

that this is a very difficult task, especially when only local evidence from a

single model is available.

Dynamic Estimation of the Magnitude of the Noise

The difficulty of the problem is only fully exposed when comparing the

histogram of the contaminated model of Figure 1.4.b with the equivalent his-

tograms of two clean model candidates that actually represent the underlying

phenomena (Figure 1.5.b and 1.5.d). Clearly, the later histograms show a

higher density of small magnitude residuals, but the correct magnitude of the

noise is certainly not obvious from this evidence alone.
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(a) (b)

(c) (d)

Figure 1.5: Two candidate models that align with the underlying linear phe-
nomena. Left: observed data with overlaid model (blue line) and residuals
(red lines). Right: histogram of signed residual magnitudes. Note that the
histogram shown in b) has no obvious gap between the magnitudes of the
inlier and the outlier residuals.

One of the key contributions of this thesis is an algorithm in which the

estimation of the magnitude of the noise of each model can be postponed to a

stage when the residuals of all N models are already available. This allows

simultaneous characterization of the residuals of all models and all trajectories

while also being able to determine the inlier subsets for each model. To achieve

this goal we propose an efficient mechanism that finds the best performing

model combinations from within a potentially very large set.
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(a) (b) (c)

Figure 1.6: A spurious linear model that explains the data of a punctual
phenomenon. a) Control points (green) and fitted model. b) Inlier subset
using an arbitrary threshold. c) Histogram of signed residual magnitudes.

Model Selection

In the context of the TP punctual and lineal models are used to explain the

data in W, but choosing the right model type is a non-obvious issue. A typical

problem occurs when the control points of a more loosely constraining model

(in this case a line model) coincidentally fits data from a more constrained

phenomenon (a punctual one) as shown in Figure 1.6.a. The model will ex-

plain the punctual phenomenon’s data well, together with some more data

from independent sources, as shown in Figure 1.6.b, rendering a contaminated

model. In addition, it is possible that sufficient support is found to keep the

model, given the large density of residuals with small magnitude (Figure

1.6.c).

Another contribution of this thesis is a mechanism that detects if a more

constraining model is sufficient to describe a subset of the data, without fitting

the less constraining one. The mechanism looks at the spatial distribution of

the residuals of the more constraining model and classifies it as sufficient or

not. The classification is formally based on epipolar geometry.

The overall strategy is to propose many individual models of varying

capacity, and then consider the most promising combinations of N models,

according to how accurately and efficiently they explain all the data. We use

(several of) these most promising N-model combinations to estimate the final

segmentation result.



2 Related Work

This chapter introduces the most relevant contributions in the field of MS.

The goal is to understand the relationship between different algorithms, as

well as to identify strengths and weaknesses. A taxonomy that facilitates the

classification of all these algorithms is proposed. Most of the related work

described here deals with segmentation of trajectories from rigid objects under

orthography. The ones that deviate from these assumptions are explicitly

noted but still included for completeness and to understand the difficulties.

A common notation for the problem of Rigid Motion Segmentation is

described next.

2.1 Notation

Let pi = [xw
i , yw

i , zw
i ]
> be the coordinates of a point in 3D space. If a camera

moves around this object (or if the camera is fixed and the object moves), then

the projection of pi at frame f can be computed in the following two steps.

First the point pi is transformed into camera coordinates via the following

Euclidean transformation:[
s f i

1

]
=

[
R f t f

01×3 1

] [
pi

1

]
= M f si, (2.1)

where R f and t f correspond to the rotation and translation components of

the motion for the f th frame, respectively. This transformation is commonly

referred to as the External Calibration Matrix.

In step two, assuming a scaled orthographic camera model, image coordi-

9



10 Related Work

nates can then be computed with the following linear transformation:

[
x f i

y f i

]
= s0

[
1 0 0

0 1 0

]
s f i, (2.2)

where s0 is a constant scale factor. Using a scaled orthographic projection is

useful, as a linear approximation to the true underlying non-linear perspective

projection, although it only holds true for objects with small relative depths

that are far from the camera. This transformation is typically referred to as

the Internal Calibration Matrix.

Most papers use a compact representation for the projections of all points

in all frames. This is achieved by stacking the x f i and y f i coordinates of all

F frames into column vectors and then grouping all those P vectors into a

2F× P matrix, as in:

W =



x11 · · · x1P

y11 · · · y1P
...

. . .
...

xF1 · · · xFP

yF1 · · · yFP


. (2.3)

This matrix is typically referred to as the observation matrix. The goal

of the motion segmentation problem is to group trajectories (columns of W)

according to the independent motion of the objects in the scene.

2.2 Taxonomy

In an attempt to structure the presentation of the existing contributions, a

taxonomy based on the main underlying principle of each method is proposed.

Several classes of practical solutions were identified, such as Factorization-

based methods, or Random Sampling based methods, to name two. Notice

that some methods do not perfectly align with any of the proposed classes,

and others do so to more than one. While most papers introduce a practical

(or algorithmic) solution to the problem of MS, some others aim to increase

the theoretical background or the understanding of the problem without an

implementation of the proposed principles. A different class is included for

these theoretically inclined papers.
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2.2.1 Matrix factorization

Matrix factorization methods are based on the fact that an observation ma-

trix can be decomposed into motion and structure matrices using standard

matrix factorization techniques. Some of the theory behind these methods is

presented here as it provides intuition regarding the nature of the problem.

These were some of the first practical motion segmentation methods.

Tomasi and Kanade first presented the underlying theory behind the

earliest motion segmentation algorithms in 1990. Their paper [45] shows

that in the absence of noise and under orthography, the observation matrix

is highly rank deficient. In fact, for a single rigidly moving object, one can

decompose an observation matrix into:



x11 · · · x1N

y11 · · · y1N
...

. . .
...

xF1 · · · xFN

yF1 · · · yFN


2F×P

=



iT
1 tx1

jT
1 ty1
...

...

iT
F txF

jT
F tyF


2F×4

[
s1 . . . sN

1

]
4×N

= MS (2.4)

where vectors i>f and j>f are the first two rows of the f th-frame’s rotation

matrix, and tx f and ty f are the x and y components of the translation. By

inspection, Equation 2.4 shows that M and S are of at most rank 4, which then

implies that W is at most rank 4. This rank constraint limits the dimensionality

of the subspace in which trajectories from a single rigid object lie, enabling

motion segmentation via Matrix Factorization.

By means of singular value decomposition (SVD) one can factorize W as:

W = UΣV> = (UΣ
1
2 )(Σ

1
2 V>) = (UΣ

1
2 A)(A−1Σ

1
2 V>) = MS, (2.5)

which leads to: M = UΣ
1
2 A and S = A−1Σ

1
2 V>. Constraints can be derived to

find the matrix A, given that paired rows of M (i f and j f ) must be orthogonal

and of equal length.

Years later, Costeira and Kanade [8, 9] reported that when W contains two

independently moving objects, the recovered shape is, in general, a linear

combination of the subspaces of the two motions, but their main contribution
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was the introduction of the Shape Interaction Matrix Q = VV>, with V equal

to the singular vectors associated to non-zero singular values (from the SVD:

UΣV> = W). This matrix provides information about whether trajectories

belong to the same rigid object, regardless of the underlying structure [9].

The work from Boult and Brown [4] deepens the analysis of the rank of W.

In particular, they study the effects of linearly dependent motions and propose

a segmentation algorithm based on the rank of subsets of the observation

matrix created by clustering the columns of V (the same V as above). Their

algorithm uses two constraints. First, subsets of independent objects must

have rank lesser than four, and second, the combined rank of all the subsets

should be equal to the rank of the entire observation matrix.

In the early 2000s, Zelnik-Manor and Irani [62] observe that the shape

interaction matrix of two objects will have a block diagonal only when both

motions are linearly independent, otherwise, the off-diagonal blocks are non-

zero. The solution they propose involves first computing the inner product

of all trajectories: Q = W>W, since the angles between trajectory vectors

of points from the same object should be, on average, smaller than those

between trajectories of different objects. Second, they compute a similarity

matrix of trajectories using a subset of the most dominant eigenvectors V of Q

using q̂ij = ∑k e−‖vk(i)−vk(j)‖2
, hoping that the within-object variation would

be removed by the rank deprivation. They demonstrate that Q̂ is (almost)

block diagonal even for partially dependent motions.

Bregler, Hertzmann and Biermann [5] extend the idea of matrix factoriza-

tion of Costeira and Kanade and apply it to non-rigid objects to factorize the

observation matrix W into a weighted motion basis matrix. The idea is that a

generative model of a particular structure can be a linear combination of basis

structures. The assumption is that only a finite number of linear deformations

ever occur. Once the basis structures are computed, their weights can be

varied to observe the modes of deformation. As with all other factorization

methods, the effects of noise are destructive and even a few outliers can

quickly overweight the cohesive information of many inliers. Llado, Del Bue

and Agapito [30] extend this idea to non-rigid 3D factorization, but now from

perspective images, with a very similar approach.

Observations All these methods are of great theoretical relevance and under-

standing them provides great intuition on the motion segmentation problem.
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Their computational feasibility makes them particularly attractive, and so does

their mathematical elegance. On the other hand, since most real world feature

tracking algorithms produce noisy trajectories and are prone to generate out-

liers, most of these algorithms are, by themselves, of restricted practical use.

In the presence of noise, shape interaction or affinity matrices will be mainly

composed by non-zero entries, making segmentation non-trivial. Degenerate

motions or degenerate surfaces might be merged and jointly described, and

outliers often lead to contaminated motion models. Most of these drawbacks

are due to the immediate use of all input trajectories to generate motions

without any analysis. In other words, the underlying constraint used here is

the linear independence between trajectories of differently moving objects, but

because the linear subspaces are created without reasoning about the structure

of the noise or the presence of outliers, or without considering that partial

dependency may occur, these methods are of limited practical use.

2.2.2 Subspace separation

These algorithms are similar in essence to the matrix factorization ones, but in

these contributions, the subspaces that explain the origin of individual trajec-

tories are built prior to doing segmentation and, in some cases, acknowledge

the presence of noise and existence of outliers.

The method proposed by Fan, Zhou and Wu [11] came first (2004). They

build upon the theory of independent motions lying within orthogonal sub-

spaces, presented by Wu, Zhang, Huang and Lin [57], where the span of a

set of trajectories is characterized using a projection matrix. With this repre-

sentation, both the distance between two subspaces and the membership of

a trajectory to a particular subspace can be easily estimated. Their contribu-

tions include an objective function that encourages orthogonality between all

shape subspaces, and at the same time, evaluates the goodness of fit for each

trajectory to its preferred model. The optimization of the objective function is

done using a genetic algorithm method and a special case deals with partially

dependent motions (that are non-orthogonal).

Yan and Pollefeys [59] have a number of contributions on the understand-

ing and development of the theory on articulated motions (see Section 2.2.5

for a random-sampling based contribution). In this paper, the authors build

motion subspaces by first projecting all the trajectories into a low-dimensional
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space and then fitting a manifold to the neighborhood of each point. The

argument is that most neighboring points lie on a nearby underlying subspace.

Clustering is then performed on an affinity matrix built using a distance

metric between the estimated local subspaces of each pair of points.

The work from Rao, Tron, Vidal and Ma [35] aims at solving the problem

of MS in the presence of outlier trajectories (from non-rigid objects, or from

randomly moving or drifting tracks), as well as incomplete trajectories, where

the position of the feature point is not available for all frames. The problem is

formulated as a robust subspace separation where a matrix is partitioned into

sub-matrices such that each sub-matrix is maximally rank deficient. This is

achieved by minimizing a surrogate function to the rank of a matrix, using

the general purpose segmentation by coding and compression algorithm from

[32].

The work from Zappella, Llado, Provenzi and Salvi [60] is an upgrade to

the Local Subspace Affinity (LSA) work of Yan and Pollefeys [59], pointing out

that LSA could use two improvements: the first one is the ability to work with

incomplete trajectories, and the second one is the possibility to automatically

estimate the main parameter in LSA, which has to do with the magnitude of

the noise and is used to determine the effective rank of the observation matrix.

Automatic estimation of this parameter is achieved by maximizing the entropy

of an affinity matrix that is computed from the rank-limited reconstructions

of the trajectory data. Please refer to Section 7.3 for details on estimating the

number of motions, as this contribution is more relevant to that topic than to

the original problem of MS.

The method by Elhamifar and Vidal [10] uses the very simple but pow-

erful principle of sparse representation. In their method, every trajectory is

represented as a weighted linear combination of a very limited set of other

trajectories. The weights then are used as the entries of an affinity matrix

which is, in turn, spectral-clustered to obtain the final segmentation result.

This method is one of the most cited recent MS algorithms, partly because

of the elegance of the approach, but also because the reported segmentation

accuracy was almost 3 times better than the state of the art at the time of

publication. The method is robust to outliers and handles motion degenera-

cies well, however, estimating the sparse representation is a computationally

expensive process.
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Observations One of the most noteworthy contributions of these papers is

simply acknowledging that the inner product of trajectories (the angle between

the two) fails to reflect the true geometric constraints of multi-view geometry,

but that accurate subspace modelling does, including that of partially depen-

dent motions. Another message from the papers in this section is about the

potentially large benefit of finding robust ways to estimate the underlying

subspaces and their effective dimensionality, particularly when solving the

MS problem in its most general context (i.e., under the presence of motion

degeneracies, structured and unstructured noise, outliers, etc.).

2.2.3 EM-based methods

Expectation Maximization (EM) is an iterative algorithm used to find (locally

optimal) maximum likelihood estimates of parameters in probabilistic models.

In the context of motion segmentation, EM typically alternates between estima-

tion of statistics of the model parameters (E-step) and trajectory assignments

(M-step).

Vasconcelos and Lippman [52] proposed one of the first EM algorithms

for motion segmentation. Their algorithm works directly on image pixels.

They model motion as realizations of a stochastic process characterized by

a Gaussian mixture density with as may components as there are motions.

Model assignments are the hidden variables. The goal is to find values for

the motion parameters that maximize the likelihood of the observed data.

Their likelihood model includes a goodness of fit term and there is also a

spatial coherence prior implemented with a Markov random field. Since the

algorithm works at the image level, no notion of structure can be incorporated,

and therefore only 2-D affine motions are modeled.

Gruber and Weiss [16, 17, 18] exploit the benefits of a probabilistic model

representation to enhance motion segmentation solutions by including tempo-

ral and spatial coherence prior models. Their approach resembles techniques

based on factorization of an observation matrix (W) but under a factor analysis

framework. Temporal coherence is introduced by modelling the first (speed)

and second (acceleration) derivatives of the location of a point at each frame.

The spatial coherence prior is based on the assumption that neighboring

points should belong to the same motion model and is enforced using a 2-D

graphical model. Maximum likelihood motion parameters are estimated using
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EM.

Sugaya and Kanatani [42] acknowledge and address the issue of degenerate

motions by dealing with them first, using a special EM algorithm, and then

extracting the general 3-D ones using a more general EM algorithm. They

call this procedure multi-stage learning. The degenerate motion learning

process assumes all motions are in a 2-D affine space allowing for planar

motions and changes in scale only. The resulting segmentation is processed

by the second stage, which in turn uses a 3D affine model. The claim is that,

if motions are really degenerate, the solution found by the first stage (with

degenerate constraints) will not be modified (or affected) by the second stage

(with non-degenerate constraints).

A probabilistic model is also proposed by Lakdawalla and Hertzmann

[27]. Their formulation is quite simple. Describe camera parameters, structure,

motion, texture and lighting with one big likelihood model and optimize

to obtain a maximum a posteriori estimate. They assume constant internal

camera parameters, but they estimate external camera parameters for each

frame. Texture is modelled with RGB using the Lambertian lighting equation,

which also models the direction of light. Smoothness priors for surface,

rotation, translations and scaling regularize the model. Conjugate gradient is

used to optimize (for over a week).

Observations The graphical model representation of these algorithms allow

the use of alternative and complementary sources of information. Prior

models can be naturally included as well. On the downside, iterative (EM-like)

algorithms converge to a local optimum that strongly depends on the quality

of the initial guess.

2.2.4 Algebraic methods

The following algorithms are motivated by mathematically elegant properties

that arise due to the nature of the motion segmentation problem.

The work of Wolf and Shashua [56] is a great example as they tackle the

problem of two-body segmentation from two-frame trajectory data under

perspective projection using only expressions elegantly derived from the

Epipolar Constraint p′Fp = 0. Their paper introduces a way to non-linearly

represent the simultaneous epipolar constraint of two objects (as the product
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of two single object ones), and based on this equation they derive a series

of properties that provide information about the segmentation label of each

trajectory, the location of the Epipoles and the number of trajectories necessary

to estimate all these unknowns.

Vidal and Hartley [53] propose an algebraic method for motion segmenta-

tion of point trajectories under all kinds of projections for both non-degenerate

and degenerate motions. Their method requires projecting each trajectory onto

a 5 dimensional space, arguing that in order to segment motions, it is enough

for them to be different along one dimension alone. Then, a 5-dimensional

polynomial of degree n is fitted to the data, with n equal to the expected

number of motions. Their motivation is that a set of n hyper-planes can be

represented by the product of n linear polynomials, one for each plane. Then

the derivative of this polynomial is evaluated at each point, as it provides the

normal of the hyper-plane in which it lies. A similarity matrix is populated

using a distance metric between the normals of each pair of points. Spectral

clustering is then used to do the segmentation.

The method proposed by Rao, Yang, Wagner and Ma [36] is the quadratic

extension of Vidal and Hartley’s work. They argue that the hyper-plane

first derivatives are not enough for classification since most of the motion

constraints (epipolar or homography) are of quadratic nature. Therefore

gradients, Hessians and tangents are analyzed as segmentation features in a

very similar framework.

Goh and Vidal’s work [15] is based on an existing embedding technique

called Locally Linear Embedding which essentially provides non-linear dimen-

sionality reduction, from which features for each trajectory are then computed.

Segmentation is achieved by clustering these features using k-means.

Observations Despite the mathematical elegance of these methods, some of

them create very large systems of equations that appear highly unstable to

noise. Even the authors themselves discuss the destructive effects of noise or

outliers in the data. Still, these methods provide some intuition with respect

to the relatively low-dimensional manifold in which the trajectories of each

object lie.
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2.2.5 Random sampling methods

Some authors acknowledge that existing tracking algorithms are not ideal. Due

to appearance or illumination changes, motion blur or other imaging artifacts,

automatically generated tracks have inaccuracies (noise) or completely drift

from one frame to another (outliers). The solutions in this section include

sampling mechanisms that provide robustness against these issues.

Torr’s work [48] provides the aforementioned robustness, but he is also

one of the first to acknowledge the issue that degenerate motions (i.e. pure

camera rotations) or degenerate shapes (i.e. planes) require different motion

models than their general 3-D counterparts, and he addresses it. His approach

is based on the study of model capacity. The result is the so-called geometric

robust information criterion (GRIC) that balances between a robust metric for

goodness of fit versus the dimension and total number of parameters of the

motion model. The proposed segmentation algorithm has two stages. First,

candidate motions are instantiated using RANSAC for both homographies

(2-D) and fundamental matrices (3-D) and their GRIC score is computed. The

best model is kept and its corresponding matches removed, repeating until

all matches are exhausted. The second stage involves assigning samples to

candidate motion models. A cost function that accounts for the goodness of

fit, the dimension and the number of parameters of the model is minimized

to obtain the segmentation.

Schindler and Suter propose a couple of very similar, theoretically sound,

random sampling based methods. Their first paper [37] deals with two-view

structure and motion estimation, their following [38] extends the work to

full trajectories, but they are both very similar. One of the key features is

acknowledging that the magnitude of the noise should be estimated to ac-

curately distinguish inlier subsets. They also mention that an outlier model

is necessary. Similarly to Torr, the proposed algorithm has two stages. The

first one generates candidate models using RANSAC, also instantiating homo-

graphies and fundamental matrices. The difference with respect to Torr’s is

that the magnitude of the noise is also estimated and likelihoods are assigned

to determine an inlier set, keeping only motion models with a reasonably

large number of inliers. The second part of the algorithm deals with the

assignment of points to candidate motion models. To that end, they propose

an objective function that balances the goodness of fit with the complexity of
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the model, which is then optimized to find the most likely segmentation. A

sound, information theory-based framework is used in [38] to motivate and

solve the problem of model selection.

Tong, Tang and Medioni [46] deal with the problem of motion segmenta-

tion from potentially mismatched features between image pairs. The proposed

method uses 4-D tensor voting to estimate a subspace manifold using a

smoothness prior. Once the manifold is estimated, the membership probabili-

ties of each trajectory to each manifold can be computed. These probabilities

are then used to influence the sampling probabilities of a RANSAC method to

generate the final set of motion models.

The early work of Yan and Pollefeys on motion segmentation [58] is focused

on describing the representation of motions that originate from articulated

objects. The idea is that the performance of RANSAC can be improved by

using priors that influence the frequency each point is used to estimate models.

The prior model is built by computing the inner products between pairs of

trajectories. The intuition is that the least shared subspace, the lesser the

value of the inner product. The remainder of the method is similar to all the

other RANSAC-based approaches, and unfortunately, the articulated motion

segmentation theory is not further exploited in the paper.

Li [29] proposes a mixture of fundamental matrices method that works

almost the same way a mixture of gaussians does. First fundamental matri-

ces are instantiated using RANSAC and the 8-point algorithm. Following,

membership probabilities for each point to a motion model (or fundamental

matrix) are computed by minimizing an objective function that includes a

metric for goodness of fit and the complexity of the entire model.

The work from Laptev, Belongie, Perez and Wills [28] aims to exploit

periodic motion for segmentation. Their approach is limited by a series of re-

strictive assumptions (constant camera translation, constant object translation,

etc.), but it is included here as the approach also uses the idea of recovering

motion models, as well as the frequency of the periodic motion, using vanilla

RANSAC.

Observations Random sampling techniques are a reasonable way to accom-

modate outliers, which is one of the common features of all these papers.

However it is now clear that that the field of motion segmentation is notori-

ously more mature by the time of publication of some of these papers, as the
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authors clearly understand the true issues behind the problem: the need of

multiple types of models, online estimation of the noise, and the possibility

of partially dependent models, to name just a few. Without a doubt, a robust

solution must have all these elements. Moreover, authors start tackling the

problem of multiple plausible interpretations of the same data, using general

model selection criteria.

2.2.6 Planar approximations

The following contributions deal with recovery of planar motion avoiding the

problem of recovering structure . They are presented here to acknowledge

their existence but are considered outliers from this review. First is the work

by Kumar, Torr and Zisserman [26] who present a method where motion

segmentation is achieved using a layered model. The algorithm first learns

2-D templates of the projections of rigid structures and then uses them to

compute their most likely location at each frame. Since no 3-D model is built,

only fronto-parallel rotations are modelled.

Briassouli and Ahuja [6] propose a Fourier transform (FT) based motion

segmentation technique. They argue in favor of using FT due to its illumina-

tion invariance properties. Quotients of FT coefficients between frames are

used to estimate translation. Then FT coefficients are mapped to a polar coor-

dinate system to estimate rotations. Again, off-plane rotations will produce

inaccurate results.

Observations The planar assumption is too restrictive to do general motion

segmentation, although when used in small, local patches, it may provide a

good initial guess to other more robust methods.

2.2.7 Theory papers

The papers presented below are important because of the relevance of their

theoretical contributions towards the understanding of the field over their

practical methods, or for historical reasons.

The work of Ullman [50] is an example of both. The paper explains some of

the first technical details known about the recovery of 3-D structure from 2-D

images. At the same time it shows how computer vision from the early 80s was

much more related with human perception (compared to today), as the visual
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system was used to motivate and explain methods and even to evaluate results

from computer vision research. One of the most interesting contributions of

this paper is a list of features, inspired on the human visual system, that a

motion and structure recovery algorithm should have: i) the model should

grow in detail, or precision as more information (frames) becomes available, ii)

methods should be robust to non-rigidity, iii) they should be able to deal with

short viewing periods, and iv) they should have the possibility to integrate

other sources of 3-D information. Also interesting is to observe that many

of today’s methods attempt to provide some of these features, but not often

is it more than one and usually in a very limited way. On the technical

contributions part, Ullman introduces a method where rigidity, measured as

the preservation of the distance between all pairs of points, is maximized

to generate a 3-D model that describes a series of observations – a premise

that motivated recent work on non-rigid structure from locally rigid motion

[43]. The author suggests a motion segmentation algorithm based on the same

principle.

Kanatani [23] is interested in analyzing the capacity of models that explain

any type of data, not just trajectories. The importance of carefully selecting a

model with the right capacity is explained through a series of simple examples.

For instance, whether to fit an ellipse or a line to a cloud of points with linear

correlation: a particularly related issue to the model selection problem for

simultaneous segmentation of degenerate and non-degenerate motions. The

solution is based on the geometric Akaike information criterion (GAIC), which

balances the geometric goodness of fit with a penalty for the complexity of the

model. Some issues still remain, however, since the GAIC requires knowing

the covariance matrix of the noise. But once this matrix estimated (up to scale,

at least) the GAIC of different models can be used to identify the best model

from those available.

Besides the random-sampling model-instantiation method (see Section

2.2.5 for details) introduced by Torr [48], this paper is also one of the first

few to discuss the issue of model selection. In the proposed solution, motion

model memberships for each trajectory are estimated via maximization of the

Geometric Robust Information Criterion (GRIC).

Finally, Jia and Martinez [22] develop some theory on low rank matrix

factorization, particularly with respect to the effects of noise. Their argument

is that the estimation of the subspace of a matrix whose vectors are similar
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is more sensitive to noise than that of a matrix in which its vectors clearly

describe the directions of variation. This is relevant to the problem of motion

segmentation as it aligns with the notion of saliency of a motion model.

Observations More than 30 years have passed since Ullman published the

seminal paper mentioned above, and the community is still working to achieve

Ullman’s ideal motion perception algorithm. Interestingly, most papers pre-

sented so far try to provide one (and unfortunately only one) of these features,

i.e. Schindler [37] models the degree of non-rigidity by estimating the magni-

tude of the noise, Lakdawalla et al. [27] integrate light and texture as other

sources of 3-D information, just to name a couple. Probably, a reasonable way

to think of the motion segmentation problem could be on how to integrate

Ullman’s ideal algorithm features.

The combined capacity of a set of motion models is almost always dictated

by effective rank of the observation matrix and often defines the type and

number of individual motion models used to explain each set of coherently

moving trajectories. At the same time, the mechanisms to compute the neces-

sary capacity of an individual motion model are very related to the problem

of noise estimation. Arguably, all these dependencies are bidirectional and

typically under-constrained, since one can always model additional tracking

noise, for instance, using a richer motion model.

2.3 Applications

The following are just a few examples that use the notion of motion

towards a more general purpose: image segmentation, feature tracking and

video retrieval. Shi, Belongie, Leung and Malik [39] propose a graph-cut

based image or video segmentation method. The similarity metric between

spatially and temporally neighboring pixels includes texture, color and motion

estimation. Sivic, Schaffalitzky and Zisserman [41] propose grouping of

features from objects in video sequences with the goal of automatic video

retrieval. In their work, first planar and then epipolar geometries are estimated

via RANSAC to automatically generated tracks across neighboring frames.

The goal is to merge cohesive sets of tracks, which are then used as features

that must be identified to group video sequences with similar image content.

Buchanan and Fitzgibbon [7] propose a feature tracking method with priors
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based on multi-view geometry. The predicted locations are computed by

fitting a local motion model to subsets of tracked features. The prior model is

a Gaussian distribution centered at the predicted location. Finally, Furukawa

and Ponce [13] propose a model with sophisticated engineering to reconstruct

highly detailed 3-D models from 2-D images using photometric and epipolar

constraints.

2.4 Benchmark Datasets

Tron and Vidal [49] noticed that almost all papers in the area show test

results on different sets of sequences and propose a unifying benchmark

dataset of images and their corresponding trajectories called the Hopkins 155,

which includes degenerate, non-degenerate, independent, partially dependent

and articulated motions. Some sequences also have some degree of perspective

effects.

Zhou, Tang and Wang [3] introduce the Collective Motion Database in

a paper that measures crowd collectiveness. The scenes in this dataset are

challenging and often non rigid, but they provide a challenging environment

for any MS algorithm. The dataset contains only images but trajectories can

be estimated using any of the available feature tracking methods.

Both of these (and a few other) datasets or sequences are used to evaluate

our work.
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3 Method Overview

This chapter is an overview of the main contribution of this thesis: a solu-

tion to the problem of orthographic rigid motion segmentation of trajectory

data (hereafter referred to as the MS problem), that is computationally efficient

as well as competitively accurate. The method works under the assumption

that the number of independent motions N is known.N Number of independent
motions in the scene.

3.1 Algorithmic Description of the Problem

The input to our method is a 2F × P matrix of trajectory data W that
W Matrix of trajectory data.

represents the x and y image coordinates of P feature points tracked over
P Number of trajectories in
the sequence.

F frames. The output is a P× (N + 1) binary labelling matrix L that uses a

F Number of frames in the
sequence.

L Binary matrix of motion-
segmentation labels using
one-hot encoding.

one-hot encoding to indicate that trajectories belong to one of N inlier motion

model classes, or to an outlier class. Note that besides the trajectory data and

the number of independent motions, no other information is available to the

algorithm (e.g., no image data is available).

Figure 1.1 (on page 2) shows the inputs and outputs of the algorithm using

a few frames from an example sequence. The original images are shown

on the top row, the trajectories from the corresponding frames are shown in

the middle row. The images at the bottom show the algorithm’s output as

color-coded trajectories overlaid on a gray-scale version of the original images.

As mentioned in Chapter 2, the solution to the MS problem under ideal

conditions (noise- and outlier-free trajectories, completely rigid underlying

objects, non-degenerate motions or structures, and orthographic projection)

is trivial using the Shape Interaction Matrix-based method [8, 9], but almost

25
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none of these conditions are met in real-world sequences. The proposed

algorithm is designed to efficiently motion-segment noisy trajectories under

the presence of a large number of outliers and with degenerate motions and/or

structures. Rigidity and orthographic projections are both theoretically still

necessary conditions, although our experiments show very good segmentation

performance for sequences with highly non-rigid deformations and under

slight perspective effects (see Chapter 7 for details).

The proposed method can be divided into three stages. A brief outline

is provided next, with the goal of providing the reader with an idea of how

the algorithm is structured. Reasoning about each sub-problem and some

motivation for each of the design choices is left to a more detailed overview,

presented in Sections 3.3-3.5. Full algorithmic and mathematical details are

available in Chapters 4 to 6.

3.2 Short overview

The first step addresses the problem of instantiating plausible hypotheses

of models of motion. To achieve this goal, spatially local subsets of trajectories

are used to estimate the parameters of what we call a spatially local model

of rigid motion M. Ideally, a good motion model should be capable of
M Spatially local model of
motion.explaining the motion of all of the trajectories from a single rigid object. The

model instantiation method is based on the Random Sampling and Consensus

(RANSAC) paradigm, for robustness to outliers, and incorporates the notion

of model selection, to allow for degenerate and non-degenerate motions or

structures. Several of these local models are instantiated from many different

image regions to build the set C of candidate motion models.
C Set of candidate local
models of motion.The second step is about finding subsets of N motion hypotheses (from

C) that most accurately explain the motion of trajectories from all N classes.

A tuple of N motion models constitutes what we call a Model Combination

Tj = (Mj1 , Mj2 , . . . , MjN ). A list of all candidate model-combinations S=
T Tuple of N motion
models, a.k.a. Model
combination.

S Tuple of all candidate
model combinations.

(T1, T2, . . .) is then built, either by random sampling from the candidate set C,

or by exhaustive combinatorial listing (of all the (|C|N ) possible combinations),

potentially rendering a very large set S.

Each model combination Tj ∈ S is then efficiently evaluated using a func-

tion O(Tj) that promotes prediction accuracy and penalizes model complexity.

The objective function O(Tj) implicitly uses a segmentation labeling Lj to
Lj Labelling associated to
model combination Tj.
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determine the prediction accuracy from the best model. The labeling Lj is

determined by minimum Euclidean distance from each trajectory to a model

Mi ∈ Tj.

A small subset of the highest ranking model combinations is then re-

ranked, using a second objective function O′(Tj) that simultaneously fits a

noise model for each class. This time, the labelling L′ j is determined by maxi-

mum likelihood using the estimated noise model. And while computationally

more expensive, this approach renders increased segmentation accuracy by

modelling trajectories with varying levels of noise per class and per frame.

The third step combines the set of labelings {L′j} from the best ranked

model combinations into a final segmentation result. The parameters of the

resulting motion models are recovered last, using the resulting segmentation

labels and a Matrix Factorization based method.

The remainder of this chapter provides a more detailed overview of the

entire system and further explains how each section of the algorithm allows

deviations from a specific subset of the ideal conditions.

Side notes are used every time a new variable is introduced, in order

to facilitate future reference. An index of variables and their definitions is

available on Page xi of the Thesis’s Preamble.

3.3 Stage 1: Spatially-Local Instantiation of Motion Models

The first stage of the algorithm requires instantiating plausible hypotheses

of spatially local models of rigid motion (M). The input to this stage is the

whole observation matrix of trajectory data (W). A parameter determines how

many local motion models (i.e., how many Mis) must be estimated (between

50 and 100 in our implementation), defining the size of the candidate model

set C, which is the output of this stage. The model instantiation algorithm is

repeatedly executed to estimate the parameters of each candidate model using

small subsets of trajectories from a locally-coherent, spatial neighborhood.

Local coherence has been used in the context of MS in the past, for instance

as a regularizer for 2D affine motion [52] or as a prior for motion segmentation

[16, 17, 18]. We also believe that there is an increased chance of finding

trajectories of the same class within a spatially coherent region. To estimate

each model M ∈ C, a disk-shaped region is randomly chosen. The location of
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this region is sampled from a uniform distribution over the image space and

its radius is also sampled from a uniform distribution over a range mostly

determined by the size of the image. This disk-shaped region defines the

subset of locally coherent trajectories Ŵ that will contribute towards the
Ŵ Subset of spatially local
trajectories.estimation of the model M.

A good motion model should accurately explain the motion of all of the

inlier trajectories in Ŵ, but a better model would also spatially extrapolate

well, explaining the motion of the rest of the trajectories that originate from

the same (and only the same) underlying rigid object.

3.3.1 Motion Modeling

Motion modeling is a key component to many segmentation algorithms [26, 28,

29, 37, 38, 46, 48, 58] because trajectory labels can be assigned based on model

prediction accuracy. And while the understanding of the problem is thorough,

and the literature abundant, a reliable general method remains elusive, mostly

because of the various difficulties associated to motion-encoding data: noise

(structured or not), outliers, motion degeneracy, motion dependency, etc.

Our method assumes an affine camera model1, allowing for orthographic,

weak perspective or para-perspective projection, so the parameters of a motion

model could be straightforwardly estimated using linear least squares (like

matrix factorization [45], Equation 2.5), from the subset Ŵ. However, despite

limiting this subset to a spatially-local neighborhood, trajectories in Ŵ may

still originate from more than one rigidly moving object, which suggests that

the method must be robust to a potentially large number of outliers. The

presence of outliers rules out the direct application of least squares techniques

to Ŵ.

Traditionally, the Random Sampling and Consensus (RANSAC) algorithm

[12] has been a popular choice for robust estimation of the parameters of

models of motion [29, 46, 47, 48, 58, 59], but the standard RANSAC has two

important drawbacks in the context of MS. The first one is that it is limited to

a single model type –one can estimate the parameters of either degenerate or

non-degenerate motions– and the second one is that it requires a criterion to

do inlier detection.

1an independent affine projection is used per frame and per class to facilitate estimation. The
risk is potential model over-fitting which translates in reduced MS accuracy.
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The issue of multiple model types has been dealt with in the past [37, 38,

48]. These methods instantiate both degenerate and non-degenerate motion

models and leave the problem of model selection [23] to a later stage. An

exception is [42], where a non-degenerate (3D Affine) model is initialized

using the result of fitting a degenerate (2D Affine) one. Then the 3D Affine

model is further optimized to maximize prediction accuracy of trajectory data.

The assumption is that, if in fact the object (or the motion) is degenerate, the

parameters of the degenerate model will not change after upgrading to a non-

degenerate one and optimizing. Unfortunately, it is mathematically possible

(and common in practice) for a non-degenerate motion model to describe the

motion of two articulated motions [59], in which case the aforementioned

method may result in under-segmentation.

Our solution is a modified version of RANSAC that fits a 2D Affine model

using 3 trajectories [19] and then analyzes the residual distribution, from the

differences between the observations and the model predictions. When the

trajectories in Ŵ do in fact, originate from a degenerate motion, the model

is appropriate and the residual distribution is similar to the distribution of

the noise in the data (which we assume isotropic and of small magnitude). If

the motion is non-degenerate, the planar model is insufficient and the unac-

counted relative depth will manifest as a residual distribution that lies along a

line [20], the Epipolar Line. In this case, the parameters needed to upgrade the

degenerate model into a non-degenerate one can be directly estimated from

the residual distribution, making the process computationally very efficient.

Regarding inlier detection, our criterion is based on the magnitude of the

residuals, defined as the distance between the 2D model prediction and the

observation for the planar model, or as the shortest distance from the estimated

epipolar line (segment) to the observation, for the 3D model. Using this

definition, model predictions become model inliers if their residual magnitude

is smaller than a dynamically defined threshold. The threshold is determined

as the start of the first residual-magnitude gap that is significantly larger than

all other residual-magnitude gaps. See Figure 3.1 for a real-data example.

This criterion is applied at every frame, and a trajectory becomes an inlier if

its predictions satisfy the inlier criterion in at least half of the frames in the

sequence.

The inlier detection criterion described above makes two assumptions.



30 Method Overview

Figure 3.1: Inlier Detection. Plots show one frame of ground-truth color-coded
residuals (the result of subtracting the 2D affine model predictions from the
observations). The inlier detection criterion is based on magnitude gaps
between residuals. Left: inlier residuals from a degenerate motion (blue dots)
and outliers (green ‘x’s). The automatically determined inlier threshold is
shown as a black circle. Right: inlier residuals from a non-degenerate motion
(black) and outliers (red). The automatically fitted epipolar line segment is
shown in light blue. Red residuals are too far from the line segment.

First, that the magnitude of trajectory noise must be smaller than the magni-

tude of the motion differential between independently moving objects, and

second, that a salient magnitude gap can be reliably identified. The first

assumption is very often true, as it lies close to the very definition of motion

independence of corresponding points between pairs of images [22]. The

second assumption is more frequently violated, since it is possible that large

gaps may occur by pure serendipity, creating spurious gaps, or gaps may dis-

appear due to noisy trajectories. Still the consequences of casual gap-finding

difficulties are ameliorated by the integration of the criterion across all frames

in the sequence.

Furthermore, it must also be kept in mind that the motion instantiation

algorithm is run many times to create a pool of motion models (C), from which

only the best few subsets of size N are selected to do the final segmentation

result, as explained next.
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3.4 Stage 2: Model Selection

The second stage of the algorithm is about generating model combinations

T and then ranking them according to a metric that prefers combinations

that better model the data and that do so more efficiently. The idea is not

new [23, 29, 37, 38], but most of the existing methods do so greedily, mainly

for computational efficiency, and suffer the consequences of potential loss of

accuracy.

In our method, model combinations (T) are generated either by random

sampling from the candidate motions set C or by exhaustively listing all

possible (|C|N ) combinations of size N from C. We define S = {T1, T2, . . .} as

the set that contains all the model combinations that will be considered.

Each model combination Ti ∈ S is then ranked according to a metric

that evaluates how good the models in Ti = {Mi1 , Mi2 , . . . , MiN} are at

characterizing all of the trajectory data for the N independently moving objects

of the scene. An outlier model [48] is also available to capture trajectories

that cannot be explained by any of the models in Ti. The evaluation metric

promotes prediction accuracy while penalizing model complexity, modeling

redundancy and excessive use of the outlier class.

The input to this stage is the set of candidate models C, as well as the

parameter that determines the number of model combinations to draw (limited

above by CN
|C|), implicitly determining the size of S. The output is a subset

from S that includes the highest ranking model combinations, as well as the

associated evaluation scores.

Evaluating the overall prediction accuracy of a given model combination

Ti requires determining which model predicts each of the trajectories. The

trivial solution to this problem consists of assigning the label that corresponds

to the model Mj ∈ T that produces the smallest Euclidean residual, for each

trajectory (and without any consideration of spatial coherence).

However, while finding minimum Euclidean distances is computationally

inexpensive, using this type of metric requires assuming that the underlying

trajectory noise has an isotropic distribution of equal magnitude across all

independent motions. In practice, this assumption is often violated, typically

due to deviations from the orthographic projection (perspective effects), non-

rigidness, or other uncounted image formation effects (like radial distortion).

An alternative way of dealing with this problem consists of estimating the



32 Method Overview

parameters of a joint model that better captures the distribution of the noise

for each motion at each frame, like a 2D Normal distribution, and then assign

labels using the model with maximum likelihood. Certainly, this approach

accounts for noise distributions of different magnitudes, and captures some of

the structure of the distribution, but requires running an iterative algorithm

(Expectation-Maximization) to estimate the noise model’s parameters for each

motion model and for each frame, making it computationally expensive and

potentially unfeasible, particularly when |S| is large.

Our solution to this problem is a combination of the two approaches de-

scribed above. The Euclidean metric based approach is used to efficiently

prune the set S, keeping only a small subset of the best scoring model combina-

tions. The surviving combinations are then scored using the Gaussian Mixture

Model (GMM) metric to get a more accurate ranking of the combinations that

are making the better motion predictions.

3.5 Stage 3: Model Averaging

The third stage of the algorithm merges the labels from the best scoring

model combinations into a final segmentation result. The input to this stage is

the subset of highest scoring model combinations and their associated scores.

The outputs are the final segmentation labels as well as the resulting models

of motion.

While it is possible to output the labeling from the best ranked model

combination, according to the GMM evaluation metric, as the final segmen-

tation result, we found that by incorporating the labellings from some of

the highest ranked model combinations, the resulting segmentation accuracy

could be increased, and the labeling variability, due to the random nature of

the algorithm, decreased.

The key observation is that the segmentation results from many of the top

ranking model combinations are similar, and mostly correct except for a small

number of trajectories. This redundancy of correct labellings can be explained

because the Single Model Instantiation stage (briefly introduced in Section

3.3) typically produces several good models for each of the motions in the

scene. This leads to multiple model combinations that can correctly explain

the motion of most of the trajectories. The problem is that because all of the

single models of motion are instantiated with a spatially limited subset of
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trajectories, some of them need to extrapolate the motion of trajectories that

lies much further from the region where the control trajectories live, leading

to occasional mis-classification errors.

We propose a weighted average as a way to incorporate the labelings of

multiple segmentation results. The weights are a function of the evaluation

metric score, giving more weight to labellings that result from better scoring

model combinations.

The method builds an affinity matrix [10, 55, 59, 60] for all of the trajec-

tories in the observation matrix W. The z(i,j) entry of the affinity matrix Z
Z Affinity matrix of
trajectory labels. corresponds to a weighted average that indicates how often trajectories i and j

given the same label. The resulting affinity matrix is clustered using a stan-

dard spectral clustering technique. The resulting labels from this algorithm

represent the final segmentation result.

The Matrix Factorization method is finally used to compute estimates of

the parameters of the final motion models, using on all of the trajectories with

the same label for each of the N possible (inlier) classes.
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4 Local Motion Model Fitting

This chapter introduces the Local Motion Model Fitting (LMMF) algorithm,

a method to robustly estimate both the capacity and the parameters of a

motion model (M). This model characterizes the motion of a spatially local

subset of trajectories from a single, rigidly moving object, when imaged

under orthography, and in the presence of noise and outliers. The novelty

of the approach lies in the combination of a robust, random sampling-based,

parameter estimation algorithm, coupled with a representation of motion

that allows us to seamlessly upgrade a degenerate model of motion into a

non-degenerate one (see Section 4.2.2), and does the upgrade at a fraction of

the computational cost of estimating it from scratch. This results in an efficient

model instantiation method that considers both types of models without

sacrificing robustness. Another key component to the LMMF algorithm is a

novel inlier detection mechanism that uses the distribution of the residuals (the

differences between the model predictions and the actual data observations)

to automatically determine an inlier criterion that adapts to the magnitude of

the underlying noise (see Section 4.2.4).

The LMMF algorithm lies at the core of the MS pipeline, since the set

of candidate models of motion C = {M1, M2, . . .} is populated by repeat-

edly running this algorithm with different locally coherent subsets of input

trajectories (see Chapter 5 for details).

35
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4.1 Overview of the Method

The LMMF is based on the Random Sampling and Consensus (RANSAC)

parameter estimation paradigm [12]. The choice is certainly motivated by the

characteristic robustness to outliers and computational efficiency of RANSAC,

despite the lack of optimality guarantees regarding the accuracy of the re-

sulting model’s predictions, or the size of the data subset that is actually

modeled. But in addition to speed and robustness, the choice of RANSAC is

also motivated by two problem-specific reasons. The first one is the ability to

leverage the notion of spatially local support, in order to observe the assump-

tion of spatial coherence for trajectories originating from the same object. The

second one is the ability to optimize an objective function that must operate

with different model types and that includes a term that penalizes model

complexity.

Each RANSAC iteration of the LMMF algorithm has at least two, and

possibly three stages, depending on whether the underlying trajectory data

is degenerate or not. During the first stage, a 2D Affine model is estimated

and inliers to this model are found. In the second stage, the residuals of

the 2D Affine model are analyzed to determine whether the underlying data

originates from a degenerate or a non-degenerate motion. When the motion

is found to be non-degenerate, the third stage determines the parameters of

the 3D model and finds the corresponding inlier subset.

In: Locally-Coherent Trajectories, Out: A Model of Motion

The input to the LMMF algorithm is a spatially-local subset of trajectory data

Ŵ[2F×I] ⊆W[2F×P]. The use of a spatially-coherent neighborhood increases the
Ŵ Spatially-local subset of
trajectory data.

I Number of trajectories in
Ŵ.

likelihood of choosing control trajectories from the same object, exponentially

decreasing the computational cost of finding an uncontaminated set of control

points (see Section 4.1.1 for details). Figure 4.1 shows two examples of the

spatial locations of trajectories in Ŵ (white dots), for two different regions (the

regions within the white circles), at arbitrary frames. Note that because the

location and size of the support region are randomly determined (see Section

5.1 for details), the support region is oblivious to the underlying trajectory

classes, and consequently Ŵ often includes trajectories from more than one

independently moving object.

The ideal output of the LMMF algorithm is the model M that predicts
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Figure 4.1: Spatially-local subsets of trajectories Ŵ (white markers). These
two examples are typical inputs to the LMMF algorithm. Note that in both
cases, Ŵ contains trajectories from multiple independently moving objects.

the motion of the most salient subset of rigidly moving trajectories within Ŵ,

with the best accuracy and with the simplest model possible.

4.1.1 Random Sampling

As is typical for RANSAC, the output model M is the one that optimizes an

objective function

M = argmin
{Mi}K

i=1

O(Ŵ, Mi) (4.1)

over a (limited) set of K model candidates. The objective function O(Ŵ, M)
K Number of RANSAC
trials.

promotes prediction accuracy while penalizing model complexity and model-

ing accuracy (details in Section 4.3).

Number of RANSAC Trials (K)

The probability of choosing an uncontaminated set of 3 control trajectories,

necessary to compute a 2D Affine motion model, from a dataset with a ratio

λr of same-class trajectories, after K trials is
λr Expected ratio of same-
class trajectories within Ŵ.

p = 1− (1− λ3
r )

K. (4.2)
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Figure 4.2: Number of Trials (K) necessary to find an uncontaminated subset of
3 trajectories with an inlier ratio of λr ∈ [0.3, 0.999] with probability p = 0.999.

This implies that the number of trials needed to find a subset of 3 same-class

trajectories with probability p is

K ≥ log(1− p)
log(1− λ3

r )
. (4.3)

A common assumption is that trajectories from the same underlying motion

are locally coherent. Hence, a compact region is likely to increase the ratio

λr, exponentially reducing K, and with it, RANSAC’s computation time by

a proportional amount. Figure 4.2 shows a plot of the number of trials (K)

necessary to find an uncontaminated subset of 3 trajectories with an inlier

ratio of λr ∈ [0.3, 0.999], with probability p = 0.999. Note the exponential

decay of k as λr grows. In our implementation we use K ∈ [50, 100] RANSAC

trials per instantiated motion model M, typically K = 70.



The Parameters of a Motion Model 39

From Control Trajectories to a Model of Motion

Each candidate model Mi from Equation 4.1 is constructed using the deter-

ministic mapping

(Ŵ,Di)→Mi (4.4)

which takes a spatially local subset of trajectory data Ŵ, as well as a set of

three control indices Di = {dp, dq, dr} to produce the model Mi (details in
D Set of 3 control indices.

Section 4.2).

Control indices are randomly sampled from the set of increasing triplets:

Di ∈ {(p, q, r) : p, q, r ∈ {1, . . . , I}, p < q < r} (4.5)

with uniform distribution. These indices determine the control trajectories

{wdp , wdq , wdr} ⊂ Ŵ that ultimately determine the parameters of M for each

of the K RANSAC trials (as explained in Sections 4.2.1 to 4.2.5).

4.2 The Parameters of a Motion Model

A motion model M is comprised by a 5-tuple of parameters:

M = (A, E, B, σ, ω) . (4.6)

Assuming (for the sake of clarity) that the model M explains the motion of

all the trajectories in Ŵ, the parameters of M can be explained as follows.

The tuple
A Tuple of F 2D Affine
Transformations. A = (A1, A2, . . . , AF) (4.7)

with

A f ∈
[

P f q f

0> 1

]
(4.8)

contains the 2D Affine transformations A f that project trajectories in Ŵ from
A f 2D Affine projection
matrix for frame f . an arbitrary base frame b onto the f th frame (with Ab the identity matrix).

b Arbitrary base frame. Each 2D Affine projection A f is composed by a non-singular 2× 2 matrix

P f and a column vector q f ∈ R2, as indicated in Equation 4.7. When the

underlying motion of the trajectories in Ŵ is in fact degenerate, the 2D Affine

projections (A f ) are sufficient to explain their motion, except for perturbations

due to noise, hence defining an appropriate evaluation metric for verification
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of coherent rigid motion.

On the contrary, when the underlying object is non-planar, and its motion

non-degenerate, the predictions made by a planar model will fail to account for

the effects of relative depth. In this case, rigid motion coherence is validated

using the 2D Affine Plus Epipolar constraint (to be explained in Section 4.2.2),

which, in addition to the 2D Affine projections, also requires estimating an

Epipolar Direction vector for every frame e f .
e f Epipolar direction at
frame f .The tuple of all (F) Epipolar Direction vectors is:

E Tuple of F Epipolar
Direction Vectors.E = (e1, e2, . . . , eF) (4.9)

with e f ∈ R2 and eb = [0, 0]>.

Now, assume that the model M only explains the motion of a subset of

the trajectories in Ŵ. The rest of the trajectories could be from an indepen-

dently moving object, from tracking errors, from self occluding trajectories

or from any other outlier source. In this (more common) case, the matrix

B ∈ {0, 1}[F×I] indicates whether the model M is making sufficiently accurate
B Binary matrix of inlier
trajectories per frame.predictions for trajectory wi, at frame f (inlier, b f

i = 1) or not (outlier, b f
i = 0).

The tuple
σ Tuple of estimates of the
magnitude of the noise.σ = (σ1, σ2, . . . , σF) (4.10)

with σ ∈ R+, contains estimates of the magnitude of the noise at each frame.

And finally, the variable ω ∈ {2D, 3D} indicates whether the model is
ω Model capacity indicator
variable.explaining a subset of trajectories with either degenerate or non-degenerate

motion.

Details regarding the computation of each of these model parameters (A,

E, B, σ, ω) come next.

4.2.1 2D Affine Transformations (A)

The 2D Affine transformation that projects the location of a set of trajectories

indexed by Di = (p, q, r), from an arbitrary base frame b to a target frame f

can be computed using

Ab→ f =

[
w f

p w f
q w f

r

1 1 1

] [
wb

p wb
q wb

r

1 1 1

]−1

, (4.11)
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Figure 4.3: Control trajectories from an arbitrary base frame, wb
p, wb

q and
wb

r (white dots) randomly chosen from within the set Ŵ of locally coherent
trajectories (blue dots). The rest of the trajectories are shown in light gray.

where w f
i = [w f

i,x, w f
i,y]
> corresponds to the x and y coordinates of the ith

trajectory at frame f . The inverse of the rightmost matrix of Equation 4.11

exists so long as the control points wb
p, wb

q and wb
r are not collinear. For this

reason, before attempting to estimate these 2D Affine transformations, a func-

tion determines whether the triangle defined by the points in {wb
p, wb

q, wb
r}

has a length 10 times bigger than the width, or more. If this is the case,

the control triplet Di is discarded and a new one is drawn (randomly, with

uniform distribution from the set defined in Equation 4.5), and the process

repeated until a triplet passes the condition.

For simplicity Ab→ f is referred to as A f (consequently Ab is the identity

matrix). Figure 4.3 shows an example of a randomly drawn set of control

trajectories (in white), from within a spatially coherent set Ŵ (in blue).

4.2.2 Model Capacity

This section explains how the proposed method determines the most suitable

motion model type (degenerate or non-degenerate) that must be used to

evaluate motion coherence for the majority of the data in Ŵ.

Assuming the trajectory data Ŵ is contaminated with isotropic noise of

small magnitude, when the underlying object is planar, or if its motion (with
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respect to the camera) is degenerate, the 2D Affine model is sufficient to

explain the motion of its trajectories. In this scenario, the only unaccounted-

for displacements are due to noise. We therefore assume the residuals (the

differences between the predictions made by the model, and the observations)

will also have an isotropic distribution of small magnitude.

On the contrary, when the underlying structure is non-planar and its

motion non-degenerate, the residuals from the 2D Affine model will show

that the effects of relative depth remain to be accounted for.

One of the key contributions of the LMMF algorithm that we propose is

the use of an alternative metric to evaluate rigid motion coherence of a subset

of non-degenerately moving trajectories, instead of the traditional 3D Affine

model. The metric uses the 2D Affine plus Epipolar (2DAPE) decomposition

(explained below), which only requires fitting a 2D Affine model (which is

estimated anyway, to test the planar motion hypothesis), as well as an estimate

of the Epipolar direction e f , but without needing an estimate of relative depth

for each trajectory.

2D Affine Plus Epipolar (2DAPE) Decomposition

The description of the 2DAPE decomposition begins with some notation. The

camera coordinates x f
c ∈ R3 with respect to the f th camera can be derived

from the world coordinates of a point xw = [xw, yw, zw]> using:[
x f

c

1

]
= C f

E

[
xw

1

]
(4.12)

where the Extrinsic Calibration Matrix C f
E is of the form

C f
E =

[
R f −R f t f

0 1

]
(4.13)

with R f a 3× 3 rotation matrix, and t f ∈ R3 is the location of the center of

projection of the f th camera in world coordinates.

The mapping to image coordinates (x f ) using an orthographic projection

can be done using: [
x f

1

]
= CIC

f
E

[
xw

1

]
, (4.14)
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where the matrix CI corresponds to:

CI =


1 0 0 0

0 1 0 0

0 0 0 1

 , (4.15)

which simply discards the depth coordinate (i.e., the distance from the center

of projection to the point xw in the viewing direction).

In the context of motion segmentation, what is necessary is a constraint

that verifies rigid motion coherence of trajectories from one frame to another

(i.e., from a base frame b to an arbitrary frame f ).

Now, assuming we had the camera coordinates for all the trajectories at the

base frame, it would be possible to estimate the image coordinates at frame f

using: [
x f

1

]
= Ab→ f

3D

[
xb

c

1

]
. (4.16)

with

Ab→ f
3D = CIC

f
E(C

b
E)
−1. (4.17)

Camera coordinates, however, are not available. The only available observa-

tions are image coordinates, but Equation 4.14 shows that in fact, if image

coordinates are available, the only missing component to get camera coor-

dinates is the point’s relative depth, so we could write Equation 4.16 as a

function of image coordinates (x f ), and assume we could use an estimate of

relative depth δz, as in:

[
x f

1

]
= A f

3D


xb

δz

1

 , (4.18)

with A f
3D an affine matrix of the form

A f
3D =

[
P f e f q f

0 0 1

]
. (4.19)

From 4.18 and 4.19, it is clear that the image coordinates of x f can be written
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Figure 4.4: Left: The orthographic projection of four points onto the image
plane. Right: The result of using a 2D Affine Projection A f to estimate the
locations of the corresponding points onto the f th frame.

as the combination of a 2D Affine Projection (A f from Equation 4.7) plus the

Epipolar displacements (along e f from Equation 4.9), due to relative depth, as

in: [
x f

1

]
= A f

[
xb

1

]
+ δz

[
e f

0

]
(4.20)

Geometrically, the left side of Figure 4.4 shows the projection of four 3D

points onto an image plane. Assume that it is the base frame. The right side

of the same figure shows the effect of using a 2D Affine transformation to

estimate the position of the corresponding points onto an arbitrary frame f .

The three pink points were used as control to estimate the parameters of A f ,

using Equation 4.11.

Figure 4.5 shows the actual observations of the same four points, as pink

circles. The co-planar control trajectories (the ones that form the triangle) are

perfectly projected by the 2D Affine model, but the off-plane trajectory results

in mis-estimation (highlighted by the red line) in the direction parallel to the

epipolar direction (green line).

Figure 4.6 shows a similar plot, but this time additional off-plane points

are included. The effect of applying the 2D Affine transformation is shown

in blue (mostly a compression along the horizontal direction as well as an

elongation on the vertical direction). The real observations of the new points

are shown in pink. Note how all of the mis-estimations, positive or negative
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Figure 4.5: Predictions using the 2D Affine model A f , compared to the actual
observations. Points that are co-planar to the control are correctly modeled,
but off-plane trajectories result in mis-estimations along the direction e f of
the epipolar line (in green)

Figure 4.6: More predictions of off-plane points to show that the residuals are
all oriented along the epipolar line (e f ), albeit with different magnitudes.

(shown as red lines) lie along the green lines, parallel to the epipolar line. We

refer to these mis-estimations as residuals, formally defined next.

2D Affine Model Residuals

The 2D Affine Model residual of the ith trajectory at the f th frame ( r f
i ) is

r f
i Residual for trajectory i

at frame f . defined as the difference between the model prediction, estimated as the

projection of the trajectory at a base frame (ŵb
i ) onto the f th frame, and the
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actual data observation ŵ f
i :

[
r f

i
~0

]
=

[
ŵ f

i
~1

]
−A f

[
ŵb

i
~1

]
, (4.21)

where r f
i , ŵb

i and ŵ f
i , are all 2D vectors (image coordinates).

Figure 4.7 shows 2D Affine model residuals for both a degenerate as

well as a non-degenerate motion from real data. Figure 4.7a shows the

original trajectory data at an arbitrary frame, overlaid on the original image.

Figure 4.7b shows the 2D Affine residuals of a set of non-planar trajectories

undergoing a non-degenerate motion. Because the effect of relative depth

remains unaccounted for, the residuals distribute along the epipolar line e f .

In contrast, Figure 4.7c shows the residuals of a degenerate motion, where the

distribution is similar to that of the underlying tracking noise (isotropic and

of small magnitude). In this particular case, the motion is degenerate because

the camera only rotates along the center of projection.

The characteristic line distribution of the residuals of the non-degenerate

case will be used to determine model type, as explained next.

Determining Model Capacity from Residual Data (ω)

We use the linear distribution of residuals along a single direction as an indi-

cator for the presence of a rigid non-planar object undergoing non-degenerate

motion (as in Figure 4.7b). The covariance of the residuals helps determine if

this is the case. For this purpose, let

R̂ f =
[

r f
1 r f

2 . . . r f
I

]>
(4.22)

be the matrix (with R̂ f ∈ RI×2) that contains the 2D Affine model residuals

(estimated using Equation 4.21) of all the trajectories in Ŵ.

The Singular Value Decomposition (SVD) of the covariance of R̂ f can then

be written as

USV> = svd

(
1
I
(R̂ f )>R̂ f

)
, (4.23)

with singular values denoted as S = (s1, s2) with s1 ≥ s2. When the residuals

are distributed along a line, the residuals exhibit a large ratio between the

largest and the smallest singular value s1
s2
� 1. On the contrary, when
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(a) Ground truth, color coded trajectories at frame f .

(b) Non-Degenerate motion residuals
from the object in (a) with green trajec-
tories.

(c) Degenerate motion residuals from
a subset of blue trajectories from (a).
This motion is degenerate because the
camera only rotates.

Figure 4.7: Residual distributions for a degenerate and a non-degenerate
motions.

the degenerate model is sufficient to explain the motion of trajectories, the

only unaccounted mis-estimations are due to noise. Because the noise is

assumed isotropic, the covariance of the residuals should also be isotropic,

and consequently s1
s1
≈ 1 should hold.

The ratio of largest over smallest singular values was empirically validated

and found to be a good indicator of when upgrading to a 3D model is



48 Local Motion Model Fitting

necessary, and the estimate of model capacity (ω) is formally defined as:

ω =

3D, s1
s2

> 1 + λω

2D, otherwise.
(4.24)

In our implementation, the value of λω is 1.3.

4.2.3 Non-Degenerate Coherent Motion

When sufficient evidence of ω = 3D is found, the 2D Affine motion model

must be upgraded to allow verification of non-degenerate coherent motion for

the trajectories in Ŵ. We propose using the 2DAPE decomposition (Section

4.2.2), which indicates that a 2D Affine model can be upgraded to model

the motion of non-planar objects by incorporating an Epipolar Direction e f ,

together with estimates of the relative depth δz at the base frame for each

trajectory, rendering the 3D equivalent of the 2D Affine model.

However, instead of using a full 3D Affine model, we found that non-

degenerate motion coherence could be validated simply by checking for

proximity of the residuals to the Epipolar line. This means that while it will

not be necessary to find estimates of relative depth δz for each trajectory, the

estimate of the Epipolar direction e f is still necessary.

Notice that the presence of outliers in Ŵ leads to outliers in R f (residuals

that will not generally align with e f ), which means that the estimate of e f

must be done robustly, as explained next.

Estimating the Epipolar Direction (e f )

If the trajectories in Ŵ were outlier free, the estimate of e f would be trivially

available from the SVD of the residual covariance (Equation 4.23). In this

ideal case the epipolar direction would simply be the right singular vector

associated to the singular value of largest magnitude (e f = v1, assuming

V = [v1, v2]). But because of the potentially large leverage that outliers have

on the estimate of principal directions using SVD, a more robust method is

used instead.

Robustness to outliers is achieved by using a mixture of different tech-

niques. The first one consists of fitting a line segment, as opposed to a line,

which minimizes the effect of leverage from residuals with large magnitudes,
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far from the origin. In addition, the optimal line is the one that minimizes the

Geman-McLure robust estimator of the perpendicular distance between the

residuals and the line segment (as opposed to a more typical, but less robust

Euclidean distance).

The line segment is parametrized using an angle θ, which determines

e = [cos θ, sin θ]>, as well as with two lengths β ≤ 0 and γ ≥ 0) that define

the end points p = βe and q = γe, where the line segment finds residual

support. Please note that while the frame super-index ( f ) has been dropped

from the notation, the estimate of an epipolar line segment is still done for

each frame (except on the base frame, where the estimate is not necessary).

The largest contributor to the robustness of the estimate of the line segment

parameters (θ, β and γ) is a voting parameter-estimation technique (similar

to a Hough transform) that uses a radial histogram to accumulate votes from

the residual data in support to a discrete set of potential Epipolar orientations

and lengths. A schematic diagram of this histogram is shown in Figure 4.8.

The size of the histogram bins grows exponentially in the radial direction, in

an attempt to further limit potential leverage effects caused by residuals with

large magnitudes. The furthest histogram bin is determined by the residual

with the largest magnitude.

After populating the histogram, a gap finding mechanism (see Section

4.2.4) is used to clear the votes cast by residuals after a salient magnitude gap

for each orientation of the histogram. A gap is salient if its size is considerably

larger than the median gap between residuals. After clearing votes beyond

any gaps, the orientation with largest support determines θ, and the furthest

support points at either side of the origin determine β and γ.

At this stage, constrains for both degenerate motions (based on 2D Affine

model) as well as for non-degenerate motions (based on the 2DAPE decom-

position) are available. The next stage consists of using these constraints to

identify which of the trajectories in Ŵ do in fact move coherently (at least

with respect the control points) with either model of rigid motion. We call this

stage Inlier Detection, and is explained next.
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Figure 4.8: Voting histogram. Darker cell gray-level indicates larger support
(vote count) for a particular epipolar direction and magnitude ranges. Note
how the votes cast by the red trajectories are purposely not reflected with a
darker cell, given that these votes lie behind a gap and were cleared before
tallying.

4.2.4 Inlier Detection (B)

Inlier detection is possibly the most important step of each RANSAC trial, as

it directly assesses the ability of the estimated motion model to explain the

motion of other trajectories within Ŵ, and hence the overall quality of the

motion model. This stage also has one of the largest effects in the evaluation

of the objective function O(Ŵ, Mi) from Equation 4.1 that determines the

winning model from all RANSAC trials.

Formally, inlier detection is the process of determining the subset of

trajectories whose motion can be predicted well by a model of motion. The

result is a matrix B ∈ {0, 1}F×I that represents whether the ith trajectory

is a model inlier at frame f (b f
i = 1) or not (b f

i = 0). Inlier detection is

done differently depending on whether the presumed model of motion is

degenerate or non-degenerate. Both mechanisms are explained next.

Degenerate Motion Inlier Detection

Suppose the matrix Ŵ contains trajectories Ŵ1 ∈ R2F×I and Ŵ2 ∈ R2F×J

from two independently moving, planar objects, and let these trajectories be

contaminated by the Gaussian noise matrix N ∈ R[2F×I+J] with zero-mean
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and spherical covariance (N ∼ N (0, σ2))

Ŵ =
[
Ŵ1|Ŵ2

]
+ N. (4.25)

Assume, also, that the true affine transformations A f
1 and A f

2 that describe the

motions of Ŵ1 and Ŵ2 respectively, are known, as well as the exact location

of the trajectories at an arbitrary base frame ŵb. If A f
1 is used to compute

predictions for all the trajectories in Ŵ at frame f , the magnitude of the

residual displacements for trajectories in Ŵ1, namely R̂1 = [r f
1 , r f

2 , . . . , r f
I ],

estimated using Equation 4.21, would be equal to the magnitude of the noise

for that trajectory

|r f
i |

2 = |n f
i |

2, (4.26)

and its expected value would be

E[|n f
i |

2] = 2σ2. (4.27)

The latter is true because |n f
i |

2 is a random variable that corresponds to

the squared (Euclidean) norm of a two-dimensional vector of independent,

normally-distributed random variables, and when its variance is normalized,

it can be characterized with a Chi-squared distribution of k = 2 degrees of

freedom:
|n f

i |
2

σ2 ∼ χ2
2, (4.28)

whose expected value is equal to the number of degrees of freedom:

E
[
χ2

2

]
= 2. (4.29)

Removing the normalization (multiplying by σ2) leads to the result of Equation

4.27.

On the other hand, trajectories from Ŵ2 will be predicted using the wrong

model (A f
1 ), resulting in residuals with magnitudes determined by the motion

differential ∣∣∣(A f
1 −A f

2)ŵ
b
i

∣∣∣ = ∣∣∣r f
i

∣∣∣. (4.30)

This analysis suggests that the two motions are distinguishable when the
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motion differential is bigger than the average displacement due to noise

∣∣∣(A f
1 −A f

2)w
b
i

∣∣∣2 > 2σ2. (4.31)

Intuitively, Equation 4.31 is checking whether the magnitude of the dis-

placement difference between the two independently moving objects is larger

than the magnitude of the noise. In other words, when the above inequality

holds, using A f
1 to make predictions of Ŵ1 produces residuals R̂1 whose ex-

pected magnitude is be equal to the magnitude of the noise: 2σ2, but using the

same 2D Affine model (A f
1 ) to make predictions of the independently moving

trajectories in Ŵ2 produces residuals of a statistically larger magnitude.

Using this observation, model inliers can be determined by thresholding

|r f
i |, where the threshold (τ) is the magnitude of the noise, scaled by a constant

(τ = λσσ):

b f
i =

1, |r f
i | ≤ τ

0, otherwise.
(4.32)

But because the value of σ is generally unknown, the threshold (τ) has to be

estimated automatically from the residual data.

Figure 4.9 shows four frames of the residuals from a 2D Affine model

(A f ) that was estimated using three of the blue-class trajectories as the control

points (using Equation 4.11). Color indicates ground truth class labeling. The

magnitude of the noise of the inlier residuals (blue dots) is consistently smaller

than the magnitude of the outlier residuals (green crosses). These differences

in magnitude create a gap, and the threshold τ separates trajectories at either

side of it. We found that τ could be estimated as the magnitude of the one

residual that lies just before a salient magnitude gap, closest to the origin. A

gap is salient if the magnitude difference between two consecutive residual

magnitudes is at least λτ times the median distance between consecutive

magnitudes.

Formally, to estimate τ, let r̂ be a vector of sorted residual magnitudes

r̂ = [rp(1), rp(2), . . . , rp(I)] (4.33)

where p(i) is a permutation of {1, . . . , I} such that |r̂p(i)| ≤ |r̂p(i+1)|, and let
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Figure 4.9: 2D model residuals at four different frames, only residuals that
correspond to trajectories in Ŵ are shown. Color indicates ground truth
class labeling. Dots are model inliers, crosses are outliers. Gap threshold (τ)
indicated as a black circle, centered at the origin. Notice the presence of a
magnitude gap between the two clusters at each frame.

r̃ = median
(
{|ri|}I

i=1
)
, then the threshold can be formally defined as

τ = min{r̂i | (r̂i+1 − r̂i) > λτ r̃}, (4.34)

where the parameter λτ determines the smallest acceptable magnitude gap as

a linear scaling of the residual median gap.

The black circles in Figure 4.9 show the estimate of τ at each frame using

Equation 4.34. The inlier and outlier subsets are correctly identified on all four

frames.

In contrast, Figure 4.10 shows three examples where the gap finding

algorithm fails to accurately separate trajectories between the inlier and outlier

classes. The first and possibly most common failure mode (Figure 4.10a) occurs

when the inlier class trajectories (in blue) are contaminated with long-tail noise,
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(a) Salient gap is contaminated by noisy trajectories from the blue class.

(b) Single class residuals. Spurious gap separates noisier residuals.

(c) Motion differences are indistinguishable from the underlying noise.

Figure 4.10: Failure modes for the 2D inlier detection algorithm. Color
indicates ground truth class labeling. Dots are model inliers, crosses are
outliers. Gap threshold (τ) indicated as a black circle, centered at the origin.

and at the same time, the outlier class trajectories (in green) have residuals

with only marginally larger magnitudes. In this case, the long-tail noise of the

inlier trajectories blurs the inlier-outlier gap, and the spurious one found the

algorithm is already within the outlier class, rendering a contaminated inlier

subset.
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In the second example (Figure 4.10b) the inlier class (in blue) is also

contaminated with long-tail noise, but in this case, the lower density of

residuals at the skirts of the distribution creates a spurious gap, and while this

situation renders an uncontaminated inlier subset (all the inliers are still from

the right class), the output motion benefits from the largest possible number

of trajectories.

The last scenario (Figure 4.10c) is due to a contaminated motion model,

estimated from a set of mismatched control points where two came from

the green set and one from the blue set. This contaminated model poorly

predicts both motions, leading to very large residual magnitudes and, most

importantly, indistinguishable inlier-outlier distributions, and while this mis-

classification cannot be attributed to the gap finding algorithm, it still renders

a contaminated inlier subset.

Certainly, a more robust inlier detection mechanism could be used at

this stage, but because the LMMF is run several times, and the gap finding

algorithm is run for every RANSAC trial and for every frame, detection

accuracy is compromised in the interest of computational efficiency, knowing

that subsequent stages of the algorithm will aggregate independent sources

information to discard contaminated inlier subsets.

Non-Degenerate Motion Inlier Detection

Unlike with the degenerate case, where the magnitude of the residuals is

used, the non-degenerate inlier detection procedure is based on the 2DAPE

decomposition, using a metric that evaluates proximity to the estimated

Epipolar line segment.

Trajectory i becomes an inlier at frame f if it satisfies two conditions.

First, the projection of r f
i onto the estimated line segment must lie within the

segment limits (β ≤ r f>
i e f ≤ γ). Second, the normalized distance to the line

must be below a threshold (e f>
⊥ r f

i ≤ σ2λd), where e f
⊥ is the perpendicular

e f
⊥ Direction perpendicular

to the Epipolar line at frame
f .

direction to e f . Notice that the threshold depends on the smallest singular

value from Equation 4.37 to (roughly) account for the presence of noise in the

direction perpendicular to the epipolar line.

The use of the 2DAPE decomposition as a constraint to evaluate whether

trajectories align to a coherent rigid non-degenerate motion model relies on

the assumption that a set of 2D Affine residuals that exhibit a tight linear
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distribution is unlikely to be accidental, but in fact are the likely result of

unaccounted epipolar displacements from a non-planar object undergoing

a non-degenerate motion. It must be noted that the 2DAPE constraint is a

much looser one compared to the one imposed by a full 3D Affine model.

When using the 2DAPE model, the relative depth of each trajectory remains

unconstrained (i.e., it can vary at each frame), whereas a 3D Affine demands a

fixed relative depth across all frames (albeit it may allow some unlikely global

deformations or reflections). Still, our experimental results suggest that the

2DAPE-based inlier detection technique proposed here is suitable to evaluate

rigid motion coherence.

Inlier Detection of Full Trajectories

The inlier detection procedures described in Section 4.2.4 above, determine

whether a trajectory is an model inlier at frame f . A full trajectory (including

all F frames) is an inlier if it is so for more than a fraction (0 < λb < 1) of the

frames, as is indicated by the binary vector b̂
b̂ Binary vector of inlier
trajectories.

b̂ = [b̂1, b̂2, . . . b̂I ]
>, (4.35)

where

b̂i =

1,
(

∑F
f=1 b f

i

)
≥ λbF

0, otherwise.
(4.36)

In our implementation we set λb = 0.5.

Once the subset of inliers for either model is known, a rough estimate of

the magnitude of the noise can be computed.

4.2.5 Estimating the Magnitude of the Noise

Keeping in mind that the goal of estimating the parameters of a model

Mi, given the control trajectory indices Di, is to evaluate O(Ŵ, Mi), which

quantifies the accuracy and efficiency of model Mi to make motion predictions

for a subset of (inlier) trajectories. The model that maximizes the objective

function from a set of K proposals becomes the output of the LMMF algorithm.

Estimating the magnitude of the noise for each frame ( σ f ) enables the
σ f Estimate of the magni-
tude of the noise at frame f .
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use of a likelihood model in the objective function O(·), as opposed to an

Euclidean distance metric that would not account for the underlying level of

noise.

Degenerate Case

To compute the magnitude of the noise σ f of a degenerate model of motion,

let R̂ f be a 2× n matrix formed by stacking the residuals of the subset of

2D Affine inlier trajectories (those for which b̂i = 1, rendering n = ∑i b f
i )

for the degenerate model at frame f , and let USV> be the singular value

decomposition of the covariance matrix of R̂ f :

USV> = svd

(
1

∑ b f
p
(R̂ f )>R̂ f

)
. (4.37)

The magnitude of the noise is defined as the largest singular value

(σ f )2 = s1. (4.38)

The motivation here is that, if the motion is in fact degenerate, then the only

unaccounted-for displacements captured by the residuals are due to noise,

which is assumed isotropic. In fact, when the inlier residual distribution is far

from isotropic, the 2D model is most likely insufficient and an upgrade to 3D

may be necessary, as explained in Section 4.2.2.

Non-Degenerate Case

Similarly to the 2D case, let R̂ f contain the 2D Affine residual data, but now

using the inlier labeling from the non-degenerate model, and let S = [s1, s2]

(with s1 > s2) be the singular values of the corresponding covariance matrix,

as in Equation 4.37.

In this case, the largest singular value s1 captures the spread of residuals

along the Epipolar line, so its magnitude is mainly related to the magnitude

of the Epipolar displacements, due to relative depth. However, s2 captures

deviations in the perpendicular direction, which in a rigid 3D object can only

be attributed to noise, making

(σ f )2 = s2 (4.39)
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a reasonable estimate for its magnitude, assuming isotropic noise.

4.3 Objective Function

The objective O(Ŵ, M) quantifies the accuracy and efficiency with which

model M makes motion predictions for a subset of inlier trajectories (indicated

by b̂), noting that there is a deterministic mapping between the control

trajectories indexed by Di and the parameters of the model Mi.

Having explained the parameters of M, the objective is defined as:

O(Ŵ, M) = ∑
f∈F

∑
i∈I

b̂iLω

(
ŵ f

i |M
)
+ λΨΨ(ω) + Γ(B), (4.40)

where ŵ f
i = (x f

i , y f
i ) are the x and y coordinates of the ith trajectory from

the support subset Ŵ at frame f . The function Lω(·) promotes prediction

accuracy, and both Ψ(·) and Γ(·) are regularization terms that penalize model

complexity and modelling insufficiency, respectively. All three terms are

defined next.

The definition of the negative log-likelihood function Lω(·) depends on

the estimated model type (ω = 2D or ω = 3D).

For the degenerate case, L2D(·) is defined as:

L2D(ŵ
f
i |M) = − log

(
1

2πσ f exp

{
−

r f>
i r f

i
2(σ f )2

})
, (4.41)

which is the negative logarithm of a zero-mean 2D Gaussian distribution

evaluated at the residuals r f
i . The spherical covariance matrix is defined

as Σ = (σ f )2I. The values for the residuals r f
i and for the estimates of

the magnitude of the noise σ f are computed using Equations 4.21 and 4.37,

respectively.

On the other hand, the accuracy function for the non-degenerate case

L3D(·) is based on the 2DAPE decomposition and is defined as follows:

L3D(ŵ
f
i |M) = −2 log

 1√
2πσ f

exp

−
(

r f>
i e f

⊥

)2

2(σ f )2


 , (4.42)

which is also the negative logarithm of a zero-mean 2D Normal distribution
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computed as the product of two identical, separable, single-variate, normal

distributions, evaluated at the distance from the residual to the Epipolar line

(note the factor of 2 in front of the right hand side of equation 4.42). One of

these two contributions corresponds to the actual deviation in the direction of

e f
⊥, which is analytically computed using r f>

i e f
⊥. The second one corresponds

to an estimate of the deviation in the perpendicular direction (e f ), which

cannot be determined using the 2DAPE decomposition model, but can be

approximated to be equal to r f>
i e f

⊥, which is a reasonable estimate under the

isotropic noise assumption. The likelihoods of this objective function are thus

comparable to those produced by L2D(·).
The function Ψ(ω) penalizes model complexity. With this in mind, the

2D Affine model used to compute model predictions for the degenerate case

requires estimating 6 parameters per frame, except for the base frame. In

contrast, the 3D Affine model that would be necessary for the non-degenerate

case requires 8 parameters, plus an extra parameter to account for the relative

depth of each trajectory in each frame (other than the base frame). We select

the model complexity cost to be proportional to the number of free parameters

in the motion model. Therefore for a trajectory dataset Ŵ ∈ R[2F×I], the model

complexity penalty term is:

Ψ(ω) =

6(F− 1), if ω = 2D

8(F− 1) + I, if ω = 3D.
(4.43)

Finally, the function Γ(B) (strongly) penalizes models that describe too few

trajectories using:

Γ(B) =

∞, if ∑i b̂i < λΓ

0, otherwise
(4.44)

with b̂ determined from B using Equation 4.36. In our implementation we use

λΓ = 5.

4.4 Other Considerations of the LMMF Algorithm

This section includes details about the LMMF algorithm that despite being

relevant to specific sections of this chapter (in particular to the 2D Affine

Model Instantiation, Inlier Detection and Noise Estimation sections), have
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only been included at the end of the current chapter to improve presentation

coherence and readability.

Contaminated 2D Affine Models

Because of the random nature of the sampling procedure, noisy trajectories,

tracking failures and trajectories from independently moving objects will even-

tually become part of a set of control trajectories. This section describes four

normal scenarios where the (randomly drawn) subset of control trajectories

renders a contaminated 2D Affine model. The goal of presenting these cases

is to give some intuition about the failure modes of the LMMF algorithm.

Keep in mind that these candidate motion models live in the context of a

random-sampling, model-instantiation procedure, where only the model that

maximizes the objective function O(·), (Equation 4.1), will survive to become

an element of the set of candidate models of motion C.

For clarity of explanation, please assume that there is in fact a subset of

trajectories within Ŵ whose motion can be explained with a 2D Affine model.

The first scenario has to do with the presence of noise in the control points.

This noise corrupts the estimate of the parameters of A f (Equation 4.11) in

a way that is proportional to its magnitude, leading to poor prediction accu-

racy, and consequently, to sub-optimal evaluations by the objective function,

especially when compared to other less noisy models. This naturally prevents

noisy models from becoming the output of the LMMF algorithm.

The second scenario considers the presence of tracking failures (drifts,

trajectories going out of frame, trajectories undergoing self occlusion, etc.) as

part of the control points, in which case the resulting model fails to make

good predictions for any of the motions in the scene. This situation leads to

very large prediction errors, allowing the optimization mechanism to discard

these models naturally as well.

The third scenario occurs when each trajectory lies on an independently

moving object, with almost identical consequences to the previous case, as the

resulting model is completely incapable of making good predictions for many

of the trajectories in Ŵ.

Finally, the fourth case occurs when all three control-point trajectories

are successfully tracked throughout the sequence, but only two of them lie

on the same independently moving object. This can be a difficult case to
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Figure 4.11: Two failure cases. Control trajectories originate from mismatched
independent objects, but the resulting predictions are relatively accurate. The
top row shows full trajectories color coded with ground truth. The bottom
row shows the mismatched set of control trajectories (white dots), and the
resulting inlier subsets (blue dots) for each case containing trajectories from
more than one class.

detect, because depending on the spatial disposition of the trajectories and the

characteristics of each motion, the estimated 2D Affine transformations will

occasionally make good predictions for a small subset of trajectories within

a small image region. This constitutes one of the main failure modes of the

LMMF algorithm. Figure 4.11 shows two examples, where mismatched control

trajectories render inlier subsets with trajectories that belong to different

classes.

Inlier Count vs Inlier Accuracy

In the original RANSAC method [12], candidate models are acceptable if

they describe at least as many data points as indicated by a fixed threshold,

and within these, the model with the maximum inlier count is preferred.

In contrast, in our RANSAC objective (Equation 4.40), the size of the inlier
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subset is not as relevant as the accuracy with which inlier trajectories are

modeled: note how the inlier binary variables multiply the likelihood term

in Equation 4.40, which implies that the accuracy-related penalty paid by a

noisy trajectory can be saved by simply labelling the trajectory as an outlier,

and while this suggests that the optimal model is one with no inliers, two

mechanisms prevent this from happening. The first one is by including the

Γ(B) term, defined in Equation 4.44, which discards models that describe

fewer trajectories than a fixed threshold (although in our implementation this

threshold is only marginally larger than the minimum number of trajectories

needed to estimate the motion), much like the standard RANSAC method. The

second reason is simply that the objective functionO(Ŵ, M) in Equation 4.40 is

never optimized over the inlier variables (B). Instead, all the parameters of the

model (including B) are determined by a deterministic mapping (Ŵ, Di)→
Mi from the local set of trajectories (Ŵ), as well as the three selected control

points (Di). These inlier trajectories then directly specify the motion and noise

parameters for the model (Mi).

On the objective function

It is worthwhile to briefly take a step back and consider the purpose of this

objective function. The key issue at this stage is to select the most promising

individual motion proposals from within a large list. Several of the most

promising proposals will then be combined (see the next chapter) to form a

model for multiple moving objects in the scene. Therefore, the key property

of any individual model is its ability to extrapolate to fit all the trajectories

in a single rigidly moving component. Of course, the correct segmentation

result is unavailable at this stage, so evaluation of this property directly is not

possible.

We tried to estimate extrapolation accuracy by first estimating the inliers

for a single motion model, along with the noise magnitude, and then using

these estimated inliers to measure the accuracy. However, we found it difficult

to get a sufficiently accurate joint estimate of both the inlier set and the noise

magnitude, especially given the presence of other rigid motions in the data.

Therefore we instead chose to use the current conservative approach for inlier

assignment, and postpone the accurate classification of all trajectories until

we have models for all (or at least the majority) of the motions present.



Other Considerations of the LMMF Algorithm 63

This still left us with the problem of predicting the extrapolation accu-

racy of a single model, knowing only a subset of the inliers. We observed

empirically that sparser inlier subsets (with smaller estimated noise variances)

could render models that make better extrapolation predictions. The above

objective function reflects this observation. In particular, tight models with

small variances, populated by smaller subsets of inliers, can result in better

(i.e., smaller) objective function values, compared to models with a large inlier

subset but with relatively larger variances. It is possible that this observation

is a consequence of the type of noise in our experimental datasets, and this

issue could benefit from further investigation.

Noise

Random sampling of model control points from a small, spatially-local region

results in a trade-off between the likelihood of them belonging to the same

class versus extrapolation error.

A motion model is extrapolated when used to make predictions of the

motion of trajectories outside the region bounded by the control points, and

the magnitude of modeling error often depends on the magnitude of the

noise in the control points. In particular, extrapolation error, although hard to

characterize in general, can be expected to grow with the distance from the

location of the prediction to the nearest control point, and inversely with the

distance between the control points themselves. Figure 4.12 illustrates this

phenomenon by comparing the distributions of noisy predictions that originate

from four different scenarios with varying levels of extrapolation distances.

A total of 500 predictions are made for each of the 16 target points using a

2D Homography estimated from three control points. For each prediction,

one of the control points is contaminated with zero-mean Gaussian noise of

small magnitude. Identical noise is added to the same trajectory in all four

scenarios. Resulting distributions illustrate how the variance of increases as

the distance between the control points decreases.

The affine projection model computed in Section 4.2.1 certainly suffers

from the extrapolation effects of noise, and does so particularly because its

parameters are computed using trajectories from a locally coherent neigh-

borhood. During LMMF, this is not a real problem because the predicted

trajectories also lie within the locally coherent neighborhood of the control
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Figure 4.12: Predictions (red) from a 2D Affine model computed from 3 control
points (black) where one was contaminated with standard Gaussian noise
(green). Noiseless model predictions in blue. All four scenarios have identical
noise. Clearly, the magnitude of the extrapolation error changes with the
distance between the control points.

points. However, in future stages of the motion segmentation algorithm, the

estimated model of motion will be used to make motion predictions for tra-

jectories of the entire dataset, potentially far from the control points, where

accuracy may prove insufficient and must therefore be upgraded to include

additional information that decreases the effects of white noise. The orthonor-

mal basis estimated in Section 5.3.1 reduces the effects of noise in the control

points by using a least squares fit to all of the trajectories deemed to be inliers.

4.5 Algorithm Pseudo-Code

A pseudo-code description of the LMMF algorithm can be found in Algo-

rithm 4.1.
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Algorithm 4.1: Local Motion Model Fitting

Input: Locally-coherent trajectory data Ŵ[2F×I], number of RANSAC
trials K, arbitrary base frame b with 1 ≤ b ≤ F.

Output: Parameters of the motion model M = (A, E, B, σ, ω) and
matrix of inlier trajectories Wb̂

l? = ∞ // initialize best neg-loglikelihood
X← homogeneousCoords(Ŵb) // points at base frame
for k ∈ {1, . . . , K} do

D← rand(3, [1, I]) // three random control trajectory indices
for f ∈ {1, . . . , F} − {b} do

Y← homogeneousCoords(Ŵ f ) // points at frame f
XD ← selectColumns(X, D) // control trajectory data
YD ← selectColumns(Y, D)

A f ← YDX−1
D // 2D Affine model

R← A f X− Y // residuals

[B f
2D, σ

f
2D]← compute2DInliers(R) // inliers

L f
2D ← compute2DNegLogLikelihoods(R, σ

f
2D) // 2D likelihoods

[U, S, V>] = svd(weightedCov(R, B2D) // s1 and s2
if s1

s2
> 1 + λω then

[B f
3D, e f , σ

f
3D]← compute3DInliers(R)

L f
3D ← compute3DNegLogLikelihoods(R, σ

f
3D)

// determine trajectory inliers
for i ∈ {1, . . . , I} do

b̂2D(i) =
(

∑ f B2D( f , i) > λbF
)

b̂3D(i) =
(

∑ f B3D( f , i) > λbF
)

// complete penalized neg-loglikelihoods
l2D ← ∑ f ∑i b̂2D(i)L2D( f , i) + λΨΨ(2D) + Γ(B2D)

l3D ← ∑ f ∑i b̂3D(i)L3D( f , i) + λΨΨ(3D) + Γ(B3D)

// keep the best model overall
if (min(l2D, l3D) < l?) then

M? ←M
if (l2D < l3D) then

l? ← l2D

Wb̂ = selectColumns(Ŵ, b̂2D)

else
l? ← l3D

Wb̂ = selectColumns(Ŵ, b̂3D)

return M?
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5 Multiple Motion Model Fitting

This chapter describes the Multiple Motion Model Fitting (MMMF) frame-

work to solve the problem of modeling trajectory data from orthographic

scenes with multiple independently-moving rigid objects.

The method is based on the assumption that the motion of trajectories that

arise from N independently moving objects can be modeled with a N-tuple of

independent models of rigid motion

T = (M1, M2, . . . , MN), (5.1)

plus a matrix L ∈ {0, 1}[I×(N+1)] that uses a one hot encoding to indicate

trajectory labels (as either of the N inlier class or as the outlier class). It is also

assumed that the number of independent motions N is known (although an

algorithm to estimate this number is proposed and evaluated in Section 7.3).

It is further assumed that each of the models in T can be instantiated

locally, using the LMMF algorithm of Chapter 4, and that these local models

are capable of extrapolating the motion of the majority of the trajectories (not

necessarily within a spatially-local region) of the same independently moving

object.

However, because the labeling of trajectories is obviously unknown a priori,

and because the output of the LMMF algorithm is not always correct, it is

unlikely that N models will in fact result in an appropriate set T in exactly N

runs. Instead, the MMMF algorithm first builds a set of M candidate models
M Number of candidate
motion models in C.

C = {M1, M2, . . . , MM} (5.2)

67
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with many more candidates than motions in the scene (M � N), and then

finds the subset T ⊂ C that describes the whole trajectory data (W) with

maximum prediction accuracy, regularized by model complexity and modeling

overlap.

The above argument suggests that the MMMF algorithm must solve two

problems. One of coverage, where the selection of the spatially local subsets

of trajectories (Ŵi) used to instantiate each candidate motion Mi ∈ C must

maximize sampling coverage to increase the chances of modelling every object

in the scene (at least once, although having several is often better). And

another one of model selection, where it must rank or score different model

combinations T ⊂ C with |T| = N, in order to find the most suitable one.

The coverage problem is referred to as Locally-Coherent Region Sampling

and the proposed solution is described in Section 5.1. The solution to the

Model-Combination Selection problem is presented in Section 5.2.

5.1 Locally-Coherent Region Sampling

The goal of this section is to generate a rich set C of motion model can-

didates, with the intention of instantiating at least one but probably many

motion models for each independently moving object. The method proceeds

iteratively. During the ith iteration, the subset of trajectories that lie within

a spatially-coherent region becomes the support set Ŵ(i) (a sub-matrix with

only a subset of the columns of W, see next section). This trajectory data is

then used as the input to the LMMF algorithm. The output of LMMF gives

the parameters of the estimated motion model Mi and the subset of inliers

Ŵ(i)
b̂
⊆ Ŵ(i) (the trajectories actually explained by Mi). The set Ŵ(i)

b is referred

to as the coverage of model Mi.

Spatially local subsets of trajectories are defined by disk-shaped regions

because they are simple to parametrize and maximally compact. With this type

of region, the problem of sampling reduces to determining two parameters: a

center and a radius.

5.1.1 Estimating the Locally-Coherent Region Parameters

Because there is no obvious benefit to modelling an arbitrary image region

more frequently than any other, our sampling technique is designed to dis-

tribute modeling coverage as uniformly as possible, ideally resulting in each
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trajectory being explained by (approximately) the same number of motion

models.

With this in mind, the center of a region is chosen stochastically, using a

non-parametric probability distribution p(wk) over trajectories. This distri-

bution is a function of how often wk has been explained by all the models

instantiated so far, and determines the likelihood of wk to become the center of

a new candidate region. So, if we define βk as the number of times trajectory
βk Number of times tra-
jectory k has been a model
inlier.

k has been a model inlier, then the distribution p(wk) can be computed using

p(wk) =
(λd)

βk

∑j(λd)
β j

, (5.3)

where 0 < λd ≤ 1 is a constant that indicates how much relative likelihood

a trajectory loses every time it is explained. Note that when βk = 0 for all k,

p(wk) corresponds to a uniform distribution. In our implementation we set

λd = 0.1.

Assuming wk is randomly selected using the distribution of Equation

5.3, its image coordinates (x f
k , y f

k ) at a uniformly sampled frame f ∼ U (1, F)

determine the center point

(ox, oy) = (x f
k , y f

k ) (5.4)

of the disk region. Note that while wk is guaranteed to be in the resulting Ŵ,

it is not guaranteed to be an inlier of the resulting motion model. That is to

be determined by the LMMF alone.

Now, without any prior knowledge about the scale of the objects in the

scene, determining a fixed size disk radius r is unlikely to work in general.

Instead, the issue is avoided by randomly sampling disk-shaped regions of

varying sizes from a uniform distribution r ∼ U (λr, λR). In our implementa-

tion the value of λr is 10 pixels, and the value of λR is 0.15 times the width of

the whole image.

Now, with the center (ox, oy), the radius r, and the base frame f , the

support matrix of locally coherent data is defined as

Ŵ = [wj1 wj2 . . . wjI ] (5.5)

where {j ∈ {1, . . . , P} | (x f
j − ox)2 + (y f

j − oy)2 < r2}, and (x f
j , y f

j ) are the x
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and y coordinates of the point on trajectory wj at frame f . Note that selected

trajectories need to be within the disk region only at frame f . Also note that

the construction of Ŵ does not incorporate any knowledge about the motion

of objects in the scene, and in consequence Ŵ will likely contain trajectories

that originate from more than one independently moving object (as shown in

Figure 4.1). Finally, note that in a region that contains I trajectories, the input

data for the LMMF algorithm is

Ŵ ∈ R2F×I .

At each iteration, the frequencies βk of Equation 5.3 are updated using the

resulting inlier trajectory labels b̂ and the process is repeated to instantiate

the M motion model proposals needed to populate the set C of Equation 5.2

(see Algorithm 5.1 for a pseudo-code description).

A final consideration is necessary to deal with outlier trajectories (i.e.,

trajectories that drift from the original target, that go out of frame, that

become self occluded or that become anomalous for any reason). This special

treatment is necessary because these type of trajectories rarely become inliers

from any of the motion models. And while this is a desirable behavior, a side

consequence is that their corresponding inlier counters mk remain at zero,

or close. Then, after several motions have been instantiated, the disparity

between large and close-to-zero inlier counts gives the corrupted and correctly

under-modeled trajectories a disproportionately large likelihood that results

in a pathological bias in the sampling scheme. This issue is alleviated by

resetting βk = 0 for all k every time a fixed number (λm) of disk regions is

sampled (see Algorithm 5.1). In our implementation we use λm = 10.

5.2 Model-Combination Selection

At this stage, we assume that a set of candidate motion models C is avail-

able and the goal now is to explain the trajectories of all N independently

moving rigid objects in the scene using a subset T ⊂ C, of N models of

motion. The problem is posed as a discrete optimization one where the result-

ing N-combination of motion models is the one that optimizes an objective

function that promotes prediction accuracy and penalizes model complexity

and modeling overlap.
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Algorithm 5.1: Disk Sampling
Input: Trajectory data W, number of candidate models M, likelihood

reset parameter λm = 10, likelihood decay parameter λd = 0.1
Output: A set of M candidate motion models C = {M1, M2, · · ·MM}
β = 0 // Initialize coverage counters
C = ∅ // Initialize the set of candidate models
for m = 1 to M do

i =RandomSampling (β, λd) // Randomly sample for an index

(ox, oy) = (x f
i , y f

i ) // Determine the origin
r=rand (rmin, rmax) // Randomly sample for a radius
Ŵ=TrajectoriesWithin (W, ox, oy, r) // Determine the spatialy local set
[M, b̂]=LMMF (Ŵ) // Instantiate a motion model using LMMF
C = C∪M // Add the model to the set
if mod (m, λm) 6= 0 then

β = β + b̂ // Update the coverage counters

else
β = 0 // Reset coverage counters

return C

For the purpose of explaining the solution to this problem, let

Tj =
(

Mq(j,1), Mq(j,2), . . . , Mq(j,N)

)
(5.6)

be the jth motion model combination, where q(j, k) for k ∈ {1, . . . , N} indi-

cates the index for the kth individual motion model in C for this jth combina-

tion.

All possible combinations can then be arranged as:

S =
(

T1, T2, . . . T
(M

N)

)
, (5.7)

noticing that the size of S

|S| =
(

M
N

)
=

M!
N!(M− N)!)

(5.8)

is potentially very large, as it grows nearly exponentially with the number of

independent motions in the scene N.
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The combinatorial optimization problem can thus be written as

T? = argmin
Tj∈S

Os(Tj), (5.9)

where the objective loss function is

Os(Tj) =
N

∑
n=1

P

∑
p=1

lp,nE
(
wp, Mjn

)
+ λΦ

P

∑
i=1

Φ(wp, Tj) + λΨ

N

∑
n=1

Ψ(Mjn).

(5.10)

The first term in Equation 5.10 is a function that quantifies prediction

error. Binary ownership variables
(

L ∈ {0, 1}[P×N]
)

indicate whether the pth

trajectory is explained by the nth model (lp,n = 1) or not (lp,n = 0), and are

determined by the model with minimum prediction error:

lp,n =


1, if Mjn = argmin

M∈Tj

E(wp, M)

0, otherwise.
(5.11)

For simplicity, such deterministic mapping between a motion combination

Tj and its corresponding labeling Lj is referred to as the model-to-labels

mapping:

Lj = F (Tj). (5.12)

The rest of this chapter describes the remaining terms in Equation 5.10 and

justifies the design choices. The prediction-error scoring function E(w, M)

is presented first (Section 5.3), followed by the model overlap and model

complexity regularization terms (Section 5.4).

5.3 Prediction-Error Scoring Function

The Prediction-Error Scoring Function E(·) plays a critical role in the

MMMF algorithm as it strongly influences the outcome of the objective func-

tion Os(·) and consequently, the selection of the optimal T? (Equation 5.9)

from a potentially very large set of possible model combinations. Crucially,

E(·) also determines the motion segmentation labeling of trajectories, ac-
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cording to highest prediction accuracy from each model in the combination

(Equation 5.11). It is therefore desirable that this function has the following

properties.

1. Given a large set S of model combinations Ti, the overall ordering pro-

duced by Os(·) should give a better score to model combinations that

more accurately explain the motion of trajectories from all N indepen-

dent objects, and with the least number of model parameters.

2. If ground truth motion models were available and one formed the

ground-truth model combination TGT = {MGT
1 , MGT

2 , . . . , MGT
N }, the

resulting labeling from Equation 5.11 should be very close to the correct

(ground truth) labeling.

3. The estimation of E(·) for each combination should be computationally

efficient, especially if many (and potentially up to (M
N)) model combina-

tions are evaluated.

With these desirable properties in mind, we experimented with different

ways of defining E(w, M). We found that the largest benefit comes from

an accurate characterization of the underlying trajectory noise, allowing to

correctly evaluate the residual distribution of each model.

It has been previously noted that the 2D Affine residuals can potentially

be contaminated due to noise in the control trajectories. To prevent this situa-

tion, an alternative way of modeling motion is used, where the entire subset of

inlier trajectories for each motion (Ŵb̂) is used to estimate the parameters of

the motion model at each frame (as opposed to the mere three control points

indicated by D), as explained next.

5.3.1 Orthonormal-Basis Residuals

In order to estimate a motion model with better extrapolation accuracy, the

factorization method [45] is used, where a matrix of trajectories W is separated

into motion (P) and structure (Q) matrices PQ = W. The method is equivalent

to a least-squares reconstruction of W from the product of two rank-limited

factors P and Q. Because of its least-squares nature, it naturally deals with

zero-mean Gaussian noise and benefits from a large number of trajectories, but
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for the same reason, the parameter estimates could be severely contaminated

by the presence of outliers.

The binary vector b̂ readily indicates the subset of (disk bounded) inlier

trajectories that should be factorized to estimate the motion orthonormal basis

P. So, let

Ŵb̂ =
[

Ŵq(1) Ŵq(2) · · · Ŵq(n)

]
with b̂q(i) = 1, (5.13)

be the 2F × n matrix of inlier trajectories, and let w̄b̂ be the 2F-vector that

contains the mean of the inlier trajectories (those in Ŵb̂) for all frames.

Then, the orthonormal basis P of a ω = 2D (or 3D) motion model can be
P Orthonormal basis for a
motion model.determined by the 2 (or 3) left singular vectors of the mean-subtracted inlier

trajectories, as in:

UΣV> = svd(Wb̂ − w̄b̂). (5.14)

So, if U = [u1, u2, . . . , u2F], then the matrix P is defined as P = [u1, u2] for

ω = 2D and as P = [u1, u2, u3] for ω = 3D.

Residuals

The matrix P can then be used to make a prediction p for a mean-subtracted

trajectory w by projecting it onto the rank-limited subspace and then back

onto the ambient space:

p = PP>(w− w̄b̂). (5.15)

The residual can then be estimated using the difference between the prediction

and the mean-subtracted observation:

r = (w− w̄b̂)− p. (5.16)

This method was validated empirically and found to produce motion

predictions of increased accuracy for all trajectories, particularly those far

from the original control points Di.

For the remaining of the thesis, the residuals are the Orthonormal-Basis

Residuals and not the 2D Affine residuals used so far, unless explicitly noted.
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Evaluating E(w, M)

The prediction-error scoring function E(w, M) is computed as the negative

log-likelihood of a zero-mean Normal distribution evaluated at the residuals:

E(w, Mi) = − log (N (ri, 0, Σ)) . (5.17)

The underlying differences between each scoring function will arise from

different forms of representing and estimating Σ, which can be generically

defined as a, 2F× 2F matrix Σ.

Independent vs. Joint Models

One of the hypothesis we were interested in validating was whether it was

possible to obtain useful prediction error scoring functions by considering

each Mi ∈ T separately, motivated by computational efficiency, since the use

of independent models allows estimating the parameters (in this case Σ) with

complexity linear in the number of trajectories (P) and in the number (M) of

models in the set C of candidates: O(PM). In addition, the parameters can be

estimated in closed form.

The alternative is estimating the parameters of a joint model, simultane-

ously considering all the models of motion Mi ∈ Tj for each model combina-

tion Tj ∈ S. In this case the complexity is linear in the number of trajectories

and in the size (M
N) of the set S of model combinations: O(PMN). In addition,

joint models (like a Gaussian Mixture Model) require the use of iterative

parameter-estimation methods (like Expectation-Maximization), significantly

increasing the overall computational cost. The motivation for using this type

of joint model, however, is the potential to improve ranking and labeling

accuracy.

The next section presents the analysis of the Independent Noise Models

(Section 5.3.2), followed by its Joint Noise Model counterpart (Section 5.3.3).

5.3.2 Independent-Noise Likelihood Models

This section explores the ability of three independent likelihood models

to obtain useful prediction error scoring functions by considering each M

separately. The independent noise models we explored are:
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1. A fixed, constant isotropic Σ =

[
σ2 0

0 σ2

]
for all trajectories and all

frames.

2. An estimated isotropic covariance Σi, f =

[
σ2

i, f 0

0 σ2
i, f

]
that fits the residual

data of model Mi, at frame f .

3. An estimated 2D covariance Σi, f =

[
σ2

i, f ,xx σ2
i, f ,xy

σ2
i, f ,yx σ2

i, f ,yy

]
that also fits the

residual data of model Mi at frame f .

Fixed Isotropic σ2, (i.e., Scaled Euclidean)

The negative log-likelihood of a distribution with a fixed, isotropic σ is equiv-

alent to a Scaled Euclidean distance, plus a constant term:

E(w, M) = ln
(
(2πσ)

2F
2

)
+

1
2σ2 r>r = c + λsr>r (5.18)

But because E(·) is only used in the context of optimization (Equations 5.9

and 5.11), the constant can be dropped, and the resulting scoring function can

be obtained with

E(w, M) = λsr>r, (5.19)

where the scale of the isotropic noise becomes a parameter of the model.

While this may be one of the simplest possible prediction-error scoring

functions, it was found to work reasonably well in practice. Its primary

advantage is computational efficiency, but it also satisfies the first two desirable

properties described in Section 5.3 very often. Its failure modes are mainly

related to the task of ranking the very best models first.

Estimated, Isotropic σ

As part of the model Mn, the LMMF algorithm returns a vector of isotropic

magnitudes for each frame σn = [σ1, σ2, . . . , σF] , which for simplicity of
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notation can be arranged as

Σ =



σ2
1 0 . . . 0 0

0 σ2
1 . . . 0 0

...
...

. . .
...

...

0 0 . . . σ2
F 0

0 0 . . . 0 σ2
F


. (5.20)

The error scoring function for this model a can then be evaluated using

the negative log-likelihood of a regular multivariate normal distribution with

E(w, Mn) = − log (N (r, 0, Σn)) . (5.21)

The subscripts n indicates that the covariance matrix Σ f
n is associated to the

motion model Mn.

While this model also very fast to evaluate, it was found to very often fail

at the task of labeling trajectories given a model combination (as in Equation

5.11), mainly because the estimates of σ f reflect only the variance of the noise

from the inlier subset (from the LMMF algorithm), and not from the whole

set of trajectories of object.

Estimated, Non-Isotropic Σ

A full 2D covariance can be used to fit the noise of the orthonormal-basis

residuals from the inlier subset of a model M. The resulting 2D covariance

matrices can be arranged as

Σ =



σ2
1,xx σ2

1,xy . . . 0 0

σ2
1,yx σ2

1,yy . . . 0 0
...

...
. . .

...
...

0 0 . . . σ2
F,xx σ2

F,xy

0 0 . . . σ2
F,yx σ2

F,yy


(5.22)
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which can then be used as the noise models for the rest of the trajectories. The

error scoring function of this model is:

E(w, Mn) = −
F

∑
f=1

log
(
N
(

r f
n, 0, Σ f

n

))
(5.23)

But while this model is still very fast to evaluate, we observed that additional

degrees of freedom make the problem of inaccurate trajectory labeling even

worse than with the isotropic version, described above.

5.3.3 Joint-Noise Likelihood Models

Motivated by the need of finding consistently good labelings (from Equation

5.11) we moved from independently estimated models to a jointly estimated

one, where both labels and noise models are estimated simultaneously from

the data. This model is also beneficial in that it allows fitting of an outlier

class, which captures trajectories where tracking failure occurred.

Suppose the motion combination T = {M1, . . . , MN} is a set of motions

that explains all of the inlier trajectories of the scene, except for the tracking

failures (i.e., outlier trajectories). Now, let

L(T, W) =
P

∏
p=1

(
N+1

∑
n=1

cn

F

∏
f=1
N
(

r f
n, 0, Σ f

n

))
(5.24)

be a Gaussian Mixture Model (GMM) of N + 1 components, each of which

models the zero-mean residual distribution of one of the motion models. The

additional Gaussian component models the residuals of the outlier trajectories.

The product over f in Equation 5.24 evaluates the complete likelihood

of a trajectory, across all F frames, conditioned on the parameters of the

corresponding nth model. The sum incorporates the likelihoods of each of the

N + 1 mixing components, weighted by the mixing proportions cn, and the

product over p estimates the complete likelihood of the entire dataset.

Note that the residual vectors r f
n are indexed by n, the motion model

index, and are computed with Equation 5.16 using the corresponding motion

parameters.
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Outlier Model

The selection of a prediction model to compute the outlier model residual

vectors was interesting because it had a stronger effect on the performance

of the GMM than originally thought. An outlier model that makes too good

predictions was found to be competitive with the best estimated motion

models, particularly for sequences with trajectories whose motion can be

simply modeled (i.e. trajectories with constant velocity). This resulted in many

false outlier class detections. On the contrary, an outlier model that makes too

inaccurate predictions can only be chosen when the inlier model predictions

are extremely poor, biasing the model to choose less outliers than potentially

necessary.

We found that an outlier model with balanced prediction accuracy could

be defined as the mean location of each trajectory across all frames. Using this

model, the residual of trajectory w at frame f corresponds to

r f
N+1 = w f −

1
F

F

∑
g=1

wg. (5.25)

To further regularize the outlier model, and to increase numerical stability

when very few outlier trajectories are present, the covariance matrix of the

outlier class was restricted to be isotropic, and a small constant was added, as

a prior that bounds the smallest possible covariance, artificially limiting the

benefit of choosing the outlier class
(
ΣN+1 = (σ2

N+1)I + λΣ
)
.

While it is possible that this model fits stationary objects, the fact that the

covariance matrix is limited to isotropic and is regularized by the constant λΣ

helps prevent the outlier model from explaining a class of static trajectories.

In our implementation we used a value of λΣ = 0.5.

The parameters (cn and Σ f
n) of the GMM are estimated using a typical

Expectation-Maximization framework in order to locally maximize Equation

5.24. The ownership probabilities of a trajectory are initialized to zero for all

classes except for the one whose model produces the minimum Euclidean

distance prediction as indicated by Equation 5.19, which is initialized to one.

These ownerships determine the initial mixing proportions and covariance

matrices.
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Prediction Error

Given the parameters of the GMM estimated in the previous section, the

prediction error scoring function for all F frames for each trajectory can be

computed using:

E(w, Mn) = − log

(
cn

F

∏
f=1
N
(

r f
n, 0, Σ f

n

))
(5.26)

which corresponds to the negative log-likelihood of the trajectory, evaluated

using a Gaussian distribution with the estimated covariances and mixing-

proportions.

Note that when the GMM is used, the matrix L of binary labels in the

model selection objective function (Equation 5.10) must be augmented to also

accommodate for the outlier class
(

L ∈ {0, 1}[P×(N+1)]
)

.

Figure 5.1 shows the labeling that results from fitting the GMM to the

residuals of a real sequence. For this example, the model combination T is

the one that optimizes the Euclidean distance metric (of Section 5.3.2) over the

set of all possible model combinations C. Color labels correspond to the class

with maximum ownership probability:

argmax
n∈{1,...,N+1}

cn

F

∏
f=1
N
(

r f
n, 0, Σ f

n

)
, (5.27)

and in this example, the labels qualitatively correspond to the three most

salient motions of the sequence: the helmet (that vibrates in front of the

camera), the pit crew (that approaches the camera), and the car itself (which

remains stationary with respect to the camera).

This sequence was chosen as an illustrative example because it contains a

large number of tracking failures (outlier trajectories, shown in black), most of

them due to non-rigidly moving reflections, most of which are correctly iden-

tified by the GMM outlier class. The log-radial plots to the right correspond

to the red, green and blue motion model predictions respectively and these in

turn correspond to the car, helmet and pit crew. Note how each model predicts

trajectories in its class with smaller residual magnitudes than trajectories on

other classes, and how the noise distributions vary widely between trajectories

of different classes.
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Figure 5.1: Segmentation results for the GMM and the corresponding residuals
for 5 frames the Pitt sequence. One frame is shown on each row. The red,
green and blue labels were obtained using maximum likelihood from the
GMM. The log-radial plots show the residuals for all trajectories using each of
the models. Outlier trajectories are shown in black.

5.4 Regularization terms

The function Φ(wp, Mjn) in the second term of the model selection objec-

tive function (Equation 5.10) penalizes situations where more than one model

from Tj explains the motion of trajectory w accurately. This term prevents
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two undesirable situations. The first one is when one of the offending models

is more descriptive (has more parameters) than it should. An example is when

a non-degenerate model is used to correctly explain trajectories from a degen-

erate motion, plus some others from an independently moving object, which

are also explained by their own model. Clearly, in this case a simpler model

should be used instead. The second undesirable situation is when a model is

using its prediction power to explain two independent motions simultaneously,

sacrificing accuracy, but then a subset of these trajectories is also explained

by one of the other models. These two situations are penalized by the model

overlap regularization term. For brevity, let Ê(w, M) = exp{−E(w, M)}, then:

Φ(w, Tj) = − log
max
M∈Tj

Ê(w, M)

∑
M∈Tj

Ê(w, M)
. (5.28)

This Φ is close to zero if trajectory w has a low error E(w, Mi) for just a

single model Mi, and high errors for other models. Otherwise, if multiple

models Mi produce similar, nearly minimal errors E(w, Mi), then Φ is larger.

The function Ψ(Mjn) in the third term of Equation 5.10 accounts for the

number of model parameters for the same reasons as explained in Section 4.3,

and is evaluated using Equation 4.43, reproduced here for clarity:

Ψ(M) =

6(F− 1), if ω = 2D

8(F− 1) + I, if ω = 3D.
(5.29)

The constants λΦ and λΨ modulate the effect of the corresponding regu-

larizer.

5.5 Results

This section presents segmentation accuracy results that motivate some of

the design choices. Accuracy is defined as the fraction of individual trajec-

tories with the correct label. For each segmentation and for each sequence,

the N computed labels are matched to the N ground truth classes in the

optimal way. These results were computed using the Hopkins 155 dataset,

that contains 155 sequences of 2 or 3 moving objects. The dataset contains

some articulated motions, as well as many degenerate motions. Some radial
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distortion is present, as well as some perspective effects, but otherwise, the

tracking noise on these sequences has a relatively small magnitude. Ground

truth segmentations are available for the almost 45 thousand trajectories in

the dataset. Please note that, while there are a few tracking failures within

the Hopkins 155 dataset, these trajectories are still labeled as belonging to

one of the inlier classes. Thus, to prevent the algorithm from arbitrarily losing

accuracy by assigning outlier labels, the outlier model is disabled and the

most likely inlier class is assigned.

5.5.1 Evaluating the noise model

Sections 5.3.2 and 5.3.3 present a total of four noise models that can be

potentially used in the prediction-error scoring function E(w, M).

The first three make estimates of the noise that are only associated to

a single model M (i.e., are independent to the rest of the models in the

combination), with the advantage of computational efficiency. Also, these

three noise models are based on the orthonormal-basis residuals (formed by

linear projection to the inlier trajectories Wb̂ only, using Equations 5.15 and

5.16). The first one uses a constant as the magnitude of the isotropic noise

model. The second model estimates an isotropic noise model for the residuals,

while the third one finds an anisotropic covariance.

The fourth noise model makes joint estimates of the labels and the noise

model parameters for all motion models Mi in the combination R using a 2D

covariance for the noise model (and all the trajectories, not just those in Wb̂).

This results in a characterization of the noise with increased accuracy, but also

with significantly increased computational cost. The results from this section

are intended to illustrate the effect on segmentation accuracy that results from

using each of these models.

Unfortunately, the computational complexity associated with estimating

the parameters of the GMM of each model combination in |S| is prohibitive,

and we choose a subset of the best 100 model combinations scored by the

objective function Os(Tj) described in Equation 5.10. The parameters of the

noise model of these 100 model combinations are then estimated using the

GMM approach, as well as the trajectory labels.

Figure 5.2 shows the accuracy results for these four models. Because of

the random nature of the algorithm, the experiment was repeated 35 times for
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Figure 5.2: Accuracies for the four noise models. The noise models are:
isotropic fixed constant, isotropic independently estimated, 2D independently
estimated, 2D jointly estimated using a GMM, in that order.

each noise model. Each run consists of four steps: first, execute Algorithm 5.1

to get a list of LMMF models. Second, form the set S of all model combinations.

Third, rank all model combinations using the appropriate noise estimate (for

noise models 1 through 3) for the prediction error scoring function E(·) of

objective function Os(·). For the remaining noise model (the one estimated

using a GMM), the highest ranking model combinations produced using

the fixed isotropic noise model are ranked a second time, using the GMM

joint noise model. And fourth, pass the resulting labelings and objective

function evaluations to a refinement stage (next Chapter) that estimates the

final segmentation result.

The plot suggests that the simple isotropic model has good performance,

and that this performance can be improved by subsequently fitting mixture

models to the top ranked results. The second and third methods appear to

suffer from poor noise estimates obtained from the restricted set of inliers of

each of the LMMF models (as discussed above).

5.5.2 Sub-sampling the Set S

In the interest of computational efficiency, we questioned the need of exploring

the entire set of possible motion combinations S to find a good solution to

Equation 5.9. In other words, we wanted to know how much segmentation

accuracy is lost when one explores only a fraction of the combinations in

S while looking for an approximation to the optimal. The results of this

experiment are shown in Figure 5.3. For each box-plot, a fraction λS of
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Figure 5.3: Accuracy box-plot for experiments with subsets of model combina-
tions of different sizes. The optimization of Equation 5.9 is limited to a subset
of λS|S| randomly chosen models from S. The plot for λS = 1 is shown as a
baseline.

randomly chosen, uniformly-distributed, model combinations from M was

used. The range λM ∈ {1.0, 0.9, . . . , 0.1, 0.01} was explored. Each box-plot

is constructed with the results of 20 runs of the algorithm on the standard

Hopkins 155 dataset. Overall accuracy did not change significantly in the

range 1 > λM > 0.2, which translates to almost an entire order of magnitude

in computation time savings for the model-selection stage of the algorithm.

This experiment also indicates that there is a large amount of redundancy

between model combinations Ti and between models themselves Mj. This

is not very surprising as in most cases, the Local Motion Model Fitting will

produce a plausible hypothesis for a motion model, and in order to explain

the motion of a sequence with relatively good accuracy, the only requirement

is that models do not overlap.

Finally, note that the set S in this plot has either (70
3 ) = 328, 440 for

sequences with 3 motions, or (70
2 ) = 4, 830 for sequences with two motions.

When these numbers are multiplied by the smallest λS = 0.01 the algorithm

is left with 3280 and 50 model combinations, respectively, yet the resulting

average accuracy loss is less than 1%.

Other datasets with sequences where the number of independent motions

is larger (N = 5) are consistently and correctly motion segmented with very

limited subsets of S. For example, in Chapter 7 we show good results for

N = 5 using just 105 of all possible combinations (an implicit λS = 6.88× 10−6).

Nevertheless, more efficient sampling schemes (besides uniform sampling)

are an interesting avenue for future research, especially for sequences with

more than 5 rigid motions.
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6 Model Averaging

This chapter describes a mechanism that improves the overall segmentation

accuracy of the algorithm by using intermediate results from the MMMF of

Chapter 5 alone. The approach was also found to increase the repeatability of

the labelings across multiple runs of the algorithm.

The motivation to do model averaging comes from the observation regard-

ing the presence of noise in the MS labels associated to the optimal model

combination. This manifests as labeling errors given to a few trajectories. We

hypothesize that this noise is introduced by the local nature of the estimated

motion models.

Two key observations suggest that it should be possible to reduce the

effects of this type of noise. First, the labelings from the close-to-optimal

model combinations are often just as accurate, if not more, than the labeling

associated to the optimal model combination. This is possible because different

motion combinations are often built from plausible and diverse sets of model

hypotheses, rendering accurate predictions for all of the trajectories. And

second, the noise that contaminates these labellings is often independent

across different model combinations, as many of these labelings arise from

independently instantiated local motion models.

We thus hypothesize that a model averaging approach is likely to reduce

the effects of this local type of noise, potentially improving segmentation accu-

racy and reducing result variability. The rest of this chapter provides evidence

of the above observations, explains how the model averaging procedure is

implemented and concludes with experiments that confirm the hypothesis of

improved accuracy and reduced result variability.

87
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Figure 6.1: Box-plot of accuracy on the Hopkins155 dataset. An oracle identi-
fies the most accurate segmentation result from within the set of t closer-to-
optimal model combinations for each sequence. Results with 99% accuracy
are available within the first t = 50 model combinations. This box-plot is
constructed with 200 runs of the algorithm.

6.1 Motivation

Empirical evidence that supports the above observations can be found

in Figures 6.1, 6.2 and 6.3. Figure 6.1 shows a box-plot of overall accuracy

(percentage of correctly classified trajectories) from the Hopkins 155 dataset.

In this plot an oracle that uses ground truth identifies the most accurate

segmentation labeling from within the set of t closer-to-optimal model combi-

nations for each sequence. The value of t varies in the range t ∈ [1, 200] along

the horizontal axis. The plot answers the question: if we could tell the best

labeling from within the pool of t closer-to-optimal labelings, what would the

overall accuracy be? As it happens, the resulting accuracy for t = 50 is better

than the state of the art by a large margin (and for t = 200 the overall error

is almost three times smaller than the state of the art), suggesting that, be-

sides the information provided by the optimal labeling (whose corresponding

accuracy is shown at t = 1), close-to-optimal labelings also contain relevant

information which may be used to improve segmentation performance.

The plot of Figure 6.2 shows the relative frequency with which the MMMF

objective function places the most accurate combination within the best 200

slots. Clearly, there is a preference to rank the best model combination first,

but this plot also suggests that the most accurate labeling is not in the first

few closest-to-optimal model combinations fairly frequently.
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Figure 6.2: Histogram of the ranking of the best model (as determined from
ground truth), when the ranking is determined using the Model Selection
Objective function.

Finally, Figure 6.3 shows a grid with 16 labelings generated by some of the

best 200 motion model combinations from a typical Hopkins 155 sequence.

Color coding indicates the resulting segmentation for each case. Bigger

points indicate the model inliers (b̃, which are used to estimate the model

orthonormal basis P) for each of the 3 models of motion. These plots illustrate

how different labelings have small, and probably independent deviations from

the correct labelling. Our independence hypothesis is supported by the fact

that motion models are also independently instantiated.

6.2 Formulation

If the above hypotheses are true, the goal at this stage is to average the

resulting labelings of the T closer-to-optimal motion combinations T into
T Number of closer-to-
optimal labelings to be
averaged.

what should be an improved final labeling. For that purpose, let

Ĉ = [T?
1 , T?

2 , . . . , T?
T ] (6.1)

with T?
t ∈ S and OS(T

?
t ) ≤ OS(T

?
t+1), be the T-tuple of sorted, highest

ranking model combinations using the score given by the model selection

objective function (of Equation 5.10).
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Original image (left). Ground truth color labeling of trajectories at frame 1 (center),
and across all frames (right) of sequence 1R2RCR from the Hopkins 155 dataset.

-8.02 (1) -6.90 (5) -5.58 (15) -4.36 (23)

-3.29 (27) -2.01 (33) -1.05 (41) -0.14 (48)

1.03 (53) 2.21 (57) 3.64 (59) 4.29 (62)

10.64 (84) 25.41 (138) 58.22 (170) 148.32 (198)

Figure 6.3: Labelings for several motion model combinations. Motion model
control points (b̃, used to estimate the model orthonormal basis P) are shown
as big dots. Resulting labeling as color coded smaller dots. Captions for each
figure indicate the objective function evaluation (and its corresponding overall
rank).

Now, using the deterministic mapping T
F−→ L that takes model combina-
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tions (T) and returns trajectory labels (L) from Equation 5.12, let

L = [L1, L2, . . . , LT ] (6.2)

with Lt = F (Tt) denoting the T-tuple of labelings that corresponds to the tth

ranked model combination Tt.

Keep in mind that because this result originates from the Hopkins 155

dataset, the outlier class was disabled and the labellings are matrices L ∈
{0, 1}I×N (as opposed to the more general case that includes an outlier class

and the labelling reflects so L ∈ {0, 1}I×(N+1)). This implicitly means that

Equation 5.10 returns the most likely inlier class (and never the outlier class).

This is true all throughout this chapter.

6.3 Affinity Matrix

Result averaging is achieved by first computing an affinity matrix Z for all

pairs of trajectories. This matrix captures the frequency with which pairs of

trajectories share the same label in each Lt ∈ L. Then, an off-the-shelf spectral

clustering algorithm [34] is run on the resulting affinity matrix to obtain the

final MS result.

In the general context of clustering, the entry zi,j of an affinity matrix Z is

a metric of similarity between the ith and the jth data points. In our context,

similarity between pairs of trajectories is defined as the frequency with which

trajectory i has the same label as trajectory j within the labelings in the set L.

For this purpose, let fL(i, j, Lt) be a function that equals one when the

labels of the ith and jth trajectories are the same, according to the labeling Lt,

and zero otherwise:

fL(i, j, Lt) =

1, li
t = lj

t

0, otherwise.
(6.3)
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Figure 6.4: Box-plot of overall accuracy on the Hopkins 155 dataset when
averaging up to T labelings. The entry at T = 1 shows the accuracy of the the
optimal model combination (with no averaging).

6.3.1 Model Averaging

Using Equation 6.3, the entry zi,j of the affinity matrix can be computed with

a simple average, as in:

zi,j =
1
T

T

∑
t=1

fL(i, j, Lt). (6.4)

We found that the averaging procedure does result in improved overall

accuracy of the MS labeling, even for small values of T. Figure 6.4 shows

overall accuracy box-plots over the entire Hopkins 155 dataset for values of

T ∈ [2, 200]. Each box-plot contains data from 20 runs of the algorithm. The

labeling that corresponds to the optimal motion combination alone (without

any averaging) is shown as a baseline, at T = 1.

6.3.2 Non-uniformly Weighted Model Averaging

Despite the improvement, a model that simply averages all the labelings to-

gether fails to acknowledge the relative reliability across different labelings. In

fact, motion combinations that result in a closer to optimal objective function

evaluation, often also produce more accurate labelings. Empirical evidence

that supports this idea can be found in Figure 6.5. The plot shows accuracy

box-plots for segmentation results over the entire Hopkins 155 dataset when

using only the tth model combination, sorted by the model selection objec-
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Figure 6.5: Accuracy of the tth model combination, sorted by the model
selection objective function.

tive function, to produce the output labeling (without averaging). This plot

suggests that closer-to-optimal model combinations typically produce more

accurate segmentations.

To incorporate this knowledge, Equation 6.4 is generalized to non-uniformly

weight the contribution of each labeling:

zi,j =
T

∑
t=1

wt fL(i, j,Lt), (6.5)

and the weights wt can be computed as a function of the model selection

objective function scores:

wt =
exp {−λLOs(Mt)}

∑T
t=1 exp {−λLOs(Mt)}

. (6.6)

The denominator normalizes the weights so that ∑t wt = 1, and the parameter

λL governs the dispersion of weights. A very small value for λL leads to a

weight distribution where the relative differences between objective function

evaluations become irrelevant, and the weights become uniform:

lim
λL→0

wt =
1
T

. (6.7)

In contrast, giving λL a large value reduces the model averaging to simply
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using the labeling from the optimal model combination alone, since:

lim
λL→∞

wt =

1, t = 1

0, otherwise,
(6.8)

suggesting that the parameter could be empirically tuned to maximize accu-

racy.

The effect of different values of λL = [0, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0]

was studied as the number of model combinations varied in T ∈ [2, 200]. The

results revealed how, as the value of λL increases steeply, the overall accuracy

was restricted in a similar way as if only a few labelings were being averaged

in, confirming the notion explained above. Figure 6.6 shows how the accuracy

improvement is truncated earlier every time a larger value of λL is used.

Results for mean accuracy across 20 runs of the algorithm on the Hopkins

155 dataset for values of λL ∈ {0, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0}, for T ∈
[2, 200] are shown in Figure 6.7. This plot suggests that the value of λL = 0.01

consistently leads to increased accuracy with respect to the labeling obtained

with uniform weights (λL = 0), across all values of T, although by a small

margin. As with previous figures, the value at T = 1 shows the labeling from

the optimal model combination, with no averaging (shown as a baseline).

A summary of the results at T = 200 is shown in Figure 6.8 for different

values of λL. The "No averaging" baseline corresponds to the accuracy of the

optimal labeling identified by the best score from the model selection objective

function.

In order to quantitatively evaluate result variability, we estimated the

standard deviation of the accuracy of the computed segmentation for each

sequence across the 20 runs of the algorithm for each value of T. The resulting

standard deviations were then weighted-averaged according to the number

of trajectories in each sequence to obtain a metric of inter-sequence result

variability, averaged over the entire Hopkins 155 dataset. The resulting

variances are shown in Figure 6.9. The plot suggests that result variability

is also reduced by a large margin for values of λL < 1, compared to the

non-averaged baseline.

Finally, with the goal of better understanding where model averaging finds

the improvements, we looked at per-sequence accuracy statistics. The plot in

Figure 6.10 shows accuracy box-plots for each sequence, sorted by median
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Figure 6.6: Box-plots of overall accuracy for λL = {0.0, 0.1, 0.25, 0.5, 1.0}.
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Figure 6.7: Mean accuracy of the tth model combination for different values of
λL.

accuracy (Sequence indices in [1, 155] are shown in the x axis). The box-plot

at the top is the baseline, computed with the labeling that corresponded

to the optimal model subset (without averaging). The rest of the plots are

averaged results using values of λL = {0.1, 0.25, 1.0}, from top to bottom,

respectively. These plots suggest that only a few sequences result in consistent

mis-classification errors, and when compared to the baseline, it is also clear

that model averaging does increase the segmentation accuracy of some of the

problematic sequences and also reduces result variability.

6.4 Definitive Pipeline

The pipeline that was used to compute our most competitive results is as

follows:

• Instantiate λC (typically λC = 70) models of motion using the LMMF

algorithm (of Chapter 4) to populate the set C, as explained in Chapter

5.

• Randomly choose a subset of λT (typically λT = 10, 000) model com-

binations from the set S and rank them using the Euclidean distance

version (Equation 5.19) of the Model-Selection evaluation function OS(·).

• Find the subset of the λGMM (typically λGMM = 100) best scoring models

from the previous step and now score them using the GMM version of

the model-selection evaluation function.
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Figure 6.8: Accuracy with T = 200 for different values of λL. Results are
compared against a “No Averaging” baseline.

Figure 6.9: Metric of result variation for the tth model combination for different
values of λL. See text for details.
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Table 6.1: Mean absolute error and accuracies for the estimated number of
models. Our method outperforms all prior art by a significant margin.

Method Average Accuracy [%] Computation Time [s]

SSC [10] 98.76 14,500
CPA [61] 98.75 147,600
RANSAC 89.15 30
Ours 97.05 400

• Perform modeling averaging using the resulting labelings and objective

function evaluations from the previous step.

• (Optional) Using the resulting the inlier labels for each class, estimate

motion models (as orthonormal basis) using the Matrix Factorization

technique.

With this settings our method obtains a mean accuracy of 97.05% on the

Hopkins 155 dataset. A summary of accuracies and run-times for current state

of the art algorithms is shown in Table 6.1. The important aspect to notice is

that our method is between 2 and 3 orders of magnitude faster with only a

small accuracy loss.

6.5 Conclusions

Results presented throughout this chapter (particularly Figures 6.7 and

6.8) strongly suggest that averaging labelings from independently instantiated

model combinations improves segmentation accuracy.

Further improvements (although potentially marginal), were obtained

by non-uniformly weighting the contribution of each labeling according to

a function of the model-selection evaluation score, although this requires

estimating the parameter λL. The alternative is always using λL = 0, but

in this case, an appropriate value for T must be found in order to prevent

the inclusion of too many low-quality labelings that may contaminate the

averaged labeling result (note that the accuracy plot for constant weights

λL = 0 decreases after T = 150).

The analysis on this chapter also provides some insight regarding the

earlier sections of the algorithm. The box-plot of Figure 6.1 indicates that

accuracies of over 99% can be reached using the best T = 50 subsets of the



Conclusions 99

motion models. This suggests that the model fitting algorithm (of Chapter 4),

is capable of instantiating plausible and accurate motion model hypotheses

for the overwhelming majority of the independently moving objects in each

scene. And that the model selection objective function is capable of ranking

the best model combinations within the first few (50) candidates. It is a matter

of further investigation whether identifying the correct solution (from a set

of 50 plausible solutions) is an easier problem than improving on the MS

algorithm itself.
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Figure 6.10: Box-plots of accuracy per sequence. Top row: No-averaging.
Rows 2-5: Averaging with λL = {0.1, 0.25, 0.5, 1.0} respectively. Sequences
are sorted by median accuracy for display purposes.



7 Other Results

This chapter presents results from experiments that test the overall per-

formance of the algorithm under less conventional and previously untested

conditions. These include experiments that quantitatively evaluate robustness

to noise, or that qualitatively characterize the effects of incorrectly specifying

the number of motions in the scene. We also test the algorithm on datasets that

do not conform to the standard working assumptions, like rigid-motion or

orthographic projection, and draw conclusions on the observed performance.

Unless noted otherwise, all the segmentation results presented in this

chapter are computed with the same set of parameters.

The final section of this chapter includes an extension to the original

algorithm that enables estimation of the number of independent motions in

the scene with state of the art results.

7.1 Unstructured Noise of Varying Magnitude

Noise is present in all trajectory data and within the context of orthographic

rigid motion segmentation, even unaccounted image formation phenomena

like perspective effects or lens distortion can contribute to model deviations

that can be generally be referred to as noise. The goal of this section is to

quantitatively evaluate the effects of unstructured noise of different magni-

tudes on the overall segmentation accuracy, and to compare the results with

the state of the art.

To isolate the effects of magnitude-controlled, zero-mean normally-distri-

buted noise from the inherent real noise of a non-synthetic sequence, we start

101
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by constructing a noiseless version of the Hopkins 155 dataset. The noiseless

version of each sequence is computed using a rank-limited reconstruction of

the mean-subtracted trajectories of each ground truth segment. Because the

complexity of each motion is unknown (degenerate or non-degenerate), we

conservatively choose to compute rank 3 reconstructions for the trajectories

of each motion segment. This rank limited reconstruction is considered the

affine noiseless version of the dataset. Then, multiple versions of the entire

Hopkins 155 dataset are generated by adding normally-distributed, zero-mean

noise to the noiseless version. Each noise-controlled version has an associated

magnitude σn with σn ∈ {0.01, 0.25, 0.5, 1, 2, 4}.
Figure 7.1 shows the average accuracy that results from running Sparse

Subspace Clustering [10] and our method on the noise-controlled data. Both

algorithms were run 20 times. The error bars indicate one standard deviation

of result variability. The graph suggests that our method compromises accu-

racy only for large levels of noise, and does comparatively good or better for

values of σ < 1.0, while still being computationally much more efficient.

Note that the synthetic noise results shown in figure 7.1 do not appear to

be simultaneously consistent with both the SSC and our algorithm’s perfor-

mance at any specific noise magnitude σn. We conjecture that this is due to

unaccounted-for image formation processes that result in structured noise,

such as barrel distortion (visible in some sequences) or perspective effects. An

alternative hypothesis is that these synthetic sequences are biased in favor of

our method, given that the synthetic noise dataset was built from rank limited

initial data and contaminated with normally distributed noise. Because our

method relies on matrix factorization which optimizes the reconstruction of

the data a least squares sense, normally distributed noise is favorable.

The segmentation accuracy of both methods stays over 80% even for rela-

tively high noise values (i.e., σn ≥ 8.0), however our method’s accuracy drops

faster as the magnitude of the noise increases. This could be a consequence of

the reliance on the extrapolation of spatially local motion models, which can

be expected to deteriorate with increasing levels of noise.

7.2 Broken Assumptions

The vast majority of motion segmentation methods assume that the number

of motions is known and that the underlying motions are rigid. Ours does too.
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Figure 7.1: Average accuracy across artificial Hopkins 155 datasets with
controlled levels of zero-mean Gaussian noise. The accuracy on the original
Hopkins 155 dataset is shown in the right-most entry of the plot (error bars for
SSC are not shown because result variability is not available for this method).

This section challenges these and other underlying assumptions and presents

results of our method using datasets or input parameters that deviate from

them.

7.2.1 Incorrect Motion Count

An obvious drawback of most motion segmentation algorithms is the need

to indicate the number of motions N in the scene, and while some methods

to estimate this number already exist (see Section 7.3 for a few examples of

existing methods and a new proposal), the difficulty of the problem and the

ambiguous nature of the data still leads to imperfect results. Even when a hu-

man operator determines the number of motions, the call is influenced by the

same priors that enable other perceptual grouping tasks, like local coherence,

contrast saliency or semantic saliency, which also leads to inaccurate estimates

(as will be shown below). In fact, the matter can quickly become philosophical

when one wonders about the definition of the “correct” number of motions

in a scene, although we tend to align with the idea of this number being the

minimum necessary to recover the underlying 3D structure of the scene [24].

Still, assuming the true number of independent motions N is obvious
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Figure 7.2: Two sequences (one left, one right) from the Hopkins 155 dataset
with little noise, highly distinct independent motions and N = 3. Top row:
ground-truth color coded trajectories. Rows 2-3: Segmentation results with
NI = 1 and 2 respectively. Colored dots correspond to estimated inlier
labelings, black crosses labels for outlier trajectories.

from visual inspection, the goal is to qualitatively evaluate how the proposed

algorithm behaves when the input number of motions NI is different from N.

Several rigid, as well as some semi-rigid sequences are used for the analysis. If

a sequence has N independent motions, a set of hypothesis for the numbers of

independent motions that includes at least NI ∈ {N − 1, N, N + 1} is tested,

the results visually inspected and some conclusions drawn. The rest of this

section describes results that are representative of some of the most typical

outcomes for both under-estimations (NI < N), as well as over-estimations

(NI > N). Each subsection talks about different types of sequences.
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Rigid sequences with Salient Motions and Noise of Small Magnitude

The cases presented here come from the standard Hopkins 155 dataset and

in these first few examples, the motions are very distinct. Under- and over-

segmentation results for 2 sequences with three independently moving objects

(N = 3) are shown in Figures 7.2 and 7.3, respectively. As with most Figures

in this section, the top image corresponds to color-coded trajectories using

ground truth (or when GT is unavailable, a qualitatively correct motion

segmentation labeling is used instead). Subsequent images show segmentation

results with increasing values of NI . Please note that the outlier model is

enabled for all the experiments reported in this chapter.

The results of figure 7.2 suggest that when NI is under-estimated, the

outlier model is utilized to group the trajectories from objects whose motion

was not explained by any of the inlier motions. We see this as a desirable

feature. It can also be observed that the inlier model(s) explain the cluster(s)

with the smallest residual magnitudes. This behavior responds to the nature

of the objective function that is being optimized, where models with better

prediction accuracy are preferred, regardless of the number of model-inlier

trajectories. We also think this behavior is beneficial, for instance when the

number of motions is well under-estimated (as in Figure 7.2, row 2), allowing

the one and only inlier cluster to explain the motion of a real independently

moving object, instead of other alternatives where more trajectories could be

explained, albeit less accurately.

Figure 7.3 shows results for cases when NI is over-estimated. The al-

gorithm’s behavior is much less predictable, and while in some cases the

resulting over-segmentation separates true clusters into perceptually relevant

components (like the separation of all objects into its planar components, as

shown in the left column for NI = 5), it is also true that casual co-occurrence

of some type of noise (like unaccounted perspective effects) in a group of

trajectories may be sufficient to drive the usage of a whole segment without a

semantically relevant meaning, like in the right column example when NI = 5

(Figure 7.3, right column, bottom row) where the pink segment corresponds

to trajectories that are not well explained by the green labeled-motion model,

and are independently modeled thanks to the availability of the extra motion

model. It may be important to note, however, that the union of the correct

subsets still renders the correct segmentation obtained when N = 3.
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Figure 7.3: Two sequences (one left, one right) from the Hopkins 155 dataset
with little noise, highly distinct independent motions and N = 3. Top row:
ground-truth color coded trajectories. Rows 2-3: Segmentation results with
NI = 4 and 5 respectively. Same labelling scheme as in Figure 7.3.

In summary, these results suggest that when the various motions in the

sequence are very distinct, selecting NI too small can result in having only NI

motions segmented correctly, with the other motions labeled as outliers. Con-

versely, when NI is too large, the observed result is a strict over-segmentation

of the correct segments. Our perception is that in an algorithm where NI is

specified a priori, this behavior is ideal. Unfortunately, the algorithm does not

always behave ideally, especially when the underlying independent motions

are less distinct, as will be described next.
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Figure 7.4: Two sequences from the Formula 1 dataset with a large presence
of outliers and trajectory noise. Top row: color coded trajectories using the
results of our algorithm with NI = 3. Rows 2-4: Segmentation results with
NI = 1 and 2 respectively. Segmentation results with Ni = 3 are shown in
Row 4 for reference only. Same labelling scheme as in Figure 7.3.

Rigid sequences with noise and outliers

Under- and over-segmentation results for two real-world sequences from the

Formula 1 dataset are available in Figures 7.4 and 7.5, respectively. An off-the-

shelf tracking algorithm is used to compute trajectories for these sequences,

leading to a fair number of outliers and the presence of noise. There is no

ground truth available for these sequences, but visual inspection reveals that
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there are N = 3 independently moving objects in each of them. As with the

previous example, the under-segmentation results are semantically relevant

and mostly positive. We hypothesize that these good results are possible

because the instantiation stage is very robust to outliers, and the model

selection stage is designed to choose model combinations that render accurate

predictions. The effectiveness of the outlier class at capturing trajectories that

are not explained by any of the inlier models is also highlighted in these

examples, including those trajectories from legitimate independently moving

objects that remain unexplained because of using NI < N.

There are two less satisfactory results in these examples that are worth

mentioning. The first one is on the sequence shown to the right, for NI = 1

where some of the background trajectories are labeled as inliers of the model

that is used to explain the motion of the car. We observed that the inlier-labeled

background trajectories have fortuitously negligible motions, and hypothesize

that this (lack of) motion matches the motionlessness of the trajectories on

the car itself (which has no relative motion with respect to the camera). The

problem reliably disappears when 3 motions are used, suggesting that an extra

independent motion does explain the trajectories from that background cluster

of people better than the car’s motion model. The second unsatisfactory result

shown in this figure occurs on the sequence shown to the left, when NI = 2,

where the background trajectories are merged with the helmet ones. The

hypothesis here is that the union of the subspaces of these two degenerate

models fits within the effective rank of the subspace of a non-degenerate

motion and does so with a reasonably small magnitude of the noise. That is,

unlike the example of Figure 7.3, the different motions shown here are not as

clearly separated.

The cases where NI > N are shown in figure 7.5. The resulting over-

segmentations are primarily over-segmentations of the best segmentation

result (with NI = 3). This is not surprising, given that the trajectories are

noisy and the algorithm is choosing motions that minimize the variance of

the residuals as well as the modelling overlap (i.e., the number of trajectories

that are correctly explained by more than one model).

Finally, Figure 7.6 shows results from the sequence 2manko5 from the

Collective Motion dataset [3]. This sequence shows two groups of people

as they walk in opposite directions on a crosswalk, as well as some stationary

objects. Based on this description we take N = 3 to be the appropriate
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Figure 7.5: Two sequences from the Formula 1 dataset with a large presence
of outliers and trajectory noise. Top row: color coded trajectories using the
results of our algorithm with NI = 3. Row 2: Segmentation results with
NI = 3, shown for reference only. Rows 3-4: Segmentation results with NI = 4
and 5 respectively. Same labelling scheme as in Figure 7.3.

number of motions in this scene. The results are very good for both of

the under-segmentation examples but the over-segmentations are not clearly

identifying additional salient motions. Still (as with the majority of the

previous over-segmentation results) the (qualitatively) correct segmentation

shown for NI = 3 can be recovered by merging the trajectories from the green,

red and purple classes from the NI = 5 result, which is a desirable property if



110 Other Results

Figure 7.6: The 2manko5 Sequence from the CM database. Top: Trajectories,
color-labeled by our algorithm using NI = 3. Rows 2-3: Segmentation results
with NI ∈ {2, 3, 4, 5}.

one must over-segment. However, for NI = 5, the segmentation appears to

overlap multiple segments from the NI = 3 result. We hypothesize that this

is due to the large degree of model error that is present when fitting rigid

motion models to a sequence with non-rigid objects.
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Deviations From Rigidity

The main algebraic principle that supports most rigid motion segmenta-

tion algorithms is that the zero-mean, noise-free, observation data of a non-

degenerate rigidly moving object spans a subspace of three dimensions (two

for planar objects or for some cases of restricted camera motions or rotations)

[24]. The importance of this finding is highlighted by the increased attention

given to the motion segmentation problem after the result was published.

In fact, more robust methods explicitly allow for small deviations from this

assumption in order to incorporate some of the nuisances associated to real

trajectory data.

One of the largest difficulties associated with the non-rigid motion seg-

mentation problem originates precisely from the loss of this rigidity constraint.

This makes individual motions difficult to characterize, due to the uncertainty

associated with the necessary capacity of each motion or deformation model,

as well as the ambiguity in determining when a non-rigid object is better

represented as a single deforming one, or as several independently moving

ones with simpler deformations, or as small-sized locally-rigid ones, as they

do in [43].

The goal of this section is to briefly evaluate the proposed method on a

series of non-rigid datasets to gain some understanding about its performance

and to potentially identify some interesting research directions on the problem

of non-rigid motion segmentation. The image sequences used here come from

the Hopkins 155 dataset introduced in [49], the Collective Motion database

(hereby referred to as the CM database) introduced in [3], from the non-rigid

structure from motion literature, including the Paper sequence [51], as well as

the Two cloths and the Tear sequences [43] and from our own database (the

Formula 1 dataset). Tracks for all these sequences were computed using the

standard KLT feature tracking algorithm [1]. For the Hopkins 155 we used

the trajectories provided in the dataset. Results from these experiments are

shown in Figures 7.7 to 7.11.

Figure 7.7 shows trajectories that originate from a crowd of people running

around a U-shaped path. The sequence is 88 frames long. Trajectories follow

runners that appear in a close-to-planar (i.e., degenerate) configuration, and

the background trajectories do not move, which leads to a degenerate motion

model. However, most of the non-static trajectories in this sequence display a
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Figure 7.7: The Marathon Round 2 sequence from the Collective Motion

database. Top: Static versus non-static trajectories (as labeled by our algorithm
when NI = 1). Middle and Bottom Rows: Segmentation results with NI ∈
{1, 2, 3, 4}.

locally rigid motion, with the exception of the group of trajectories that track

people as they enter and exit the curved section of the path. Nonetheless, the

algorithm successfully finds meaningful subsets of locally rigid trajectories,

including for all of the under-segmentation cases (where NI ∈ {1, 2, 3}).

Figure 7.8 shows segmentation results from the Paper sequence, where

a piece of paper is bent from its original planar configuration into a shape

that is concave towards the camera. The deformation is almost all in the

vertical axis. This sequence also exhibits strong perspective effects. The results

show how the algorithm approximates the surface using subsets of locally

rigid surfaces that align with the direction of less deformation (vertical), and
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Figure 7.8: The Paper sequence. Top: Trajectories (color-labeled by our algo-
rithm). Middle and Bottom Rows: Segmentation results for NI ∈ {2, 3, 4, 5}.

break frequently in the direction of largest deformation (horizontal). The

segmentation result of NI = 5 initially suggests that the accuracy gains that

result from increasing the number of models from 4 to 5 are only due to

slightly better modelling of the noise, but careful inspection, motivated by the

repeatability and reliability of this result, revealed that in fact the top right

corner of the paper moves slightly differently from the bottom right part.

Figure 7.9 shows perfect segmentation results for each of the two indepen-
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Figure 7.9: The Two Cloths sequence. Top: Trajectories (color-labeled by
our algorithm). Middle and Bottom Rows: Segmentation results for NI ∈
{2, 3, 4, 5}.

dently moving objects (when NI = 2) of the Two Cloths sequence, despite

their non-rigid nature. The images are of a thick tablecloth and a thin scarf as

the wind moves them. To understand how a rigid model is good at describing

the motion of non-rigid trajectories we plotted the model’s predictions and

the data observations in the same frame. These plots, shown in Figure 7.10,

suggest that the motion of each cloth could be reconstructed with a syn-

thetic non-planar surface by over-fitting the depth coordinate and the affine

projections. Increasing the number of available motions further increases

the accuracy of the reconstructions, particularly because the model-selection

function chooses motion models where the largest accuracy gains are found.

Figure 7.11 shows results from a sequence where the motion of all trajec-

tories is almost globally rigid for approximately one third of the frames (the

first 85 out of 250) and only after do the motions separate. This sequence is

a good example where the estimate of the number of independent motions

by a human operator is biased due to perceptual grouping. Before running

the algorithm our expectation of the result consisted in a left group and a

right group. In reality, the motion difference between the left sleeve and the
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Figure 7.10: Observations and predictions from the Two Cloths sequence
when motion-segmented with NI = 2 for frames 6, 12, 18, 24, 30, 36, 42 and 48.
Dots are the trajectory data, circles are the model predictions. Color coding
shows the resulting labeling from our algorithm.

left hand of the volunteer is sufficiently salient to prevent them from being

explained by the same motion model, even when the number NI is restricted

to two. Also, the trajectories on the piece of paper to the right of the image

are too sparse and too noisy to encourage the objective function to include a

model that explains them, even for large values of NI .

7.3 Estimating the Number of Independent Motions

One of the first formal studies of problem of estimating the number (N) of

independent motions in a scene was presented by [24]. The author rephrased

the problem as the one of estimating the number of dimensions spanned by
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Figure 7.11: The Tear sequence. Top: Trajectories (color-labeled by our algo-
rithm). Middle and Bottom Rows: Segmentation results for NI ∈ {1, 2, 3, 4}.

the trajectory data (or equivalently, the rank of the observation matrix W).

The method responds to the simple algebraic notion that indicates that

when using a subspace of limited dimensions to approximate a noisy obser-

vation matrix W, one can always get better approximations by increasing the

dimensionality of the subspace. This suggests that an estimate for the size

of the subspace must be regularized, or the resulting rank will always be the

smallest matrix dimension. Kanatani uses the information theory framework

to implement this regularization.
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The proposed approach to estimate N is based on either of three geometric

information criteria: the geometric Akaike Information Criterion [23], the

geometric Minimum Descriptor Length [25] and what the authors call the

Otsu-Ichimura Criterion, defined within the paper. All of these criteria are

model selection functions that when minimized, aim to find the right balance

between the magnitude of the data that is left unexplained by a subspace

of limited dimensionality, and the cost of increasing the dimension of the

subspace.

The problem with Kanatani’s method is that the results can only be good

when the estimates for the magnitudes of the noise are close to the real value (a

problem that often has equal difficulty as the estimation of N itself) and when

all of the trajectories have noise of similar magnitude. In addition, the method

only finds the rank of the entire observation matrix, from which the estimate

of the number of motions is still not trivially available. This difficulty arises

from the potential presence of motion degeneracies or motion dependencies,

which allow a larger number of motions to fit within a subspace of a given

size, compared to the number of non-degenerate independent motions that

would fit within a similarly sized subspace.

In contrast, in a much earlier paper by [4] the issue of estimating N is

included as one of the necessary stages of the proposed MS algorithm, and

the authors thoroughly detail the effects of motion dependency and motion

degeneracy towards the effective rank of the observation matrix, but in the

end, a manually set threshold on the magnitude of the unexplained residuals

is used to determine the rank of W.

In [54] the authors propose a matrix factorization method for sequences

that include perspective effects, and they also aim to estimate N, but likewise,

they minimize the problem of estimating N to simply doing

N =
rank(W)

6
, (7.1)

citing [24] as a way to estimate the rank of the observation matrix.

A more modern approach to MS is introduced in [60] and the authors

include a method to estimate N, which is an improvement over the model

selection procedure of Kanatani [24]. They acknowledge that the use of a

manually defined threshold to estimate the rank of W limits the applicability

of the algorithm to sequences with a previously known noise magnitude. The
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MS method is described in some detail in Section 2.2.2, but the estimate of N

is briefly explained here. Assume the 2F× N matrix Wr is the rank r limited

reconstruction of W. Then assume Ar is the N × N affinity matrix for each

pairwise combination of trajectories from Wr. The entry aij of Ar is evaluated

using a negative exponential of the principal angle similarity between wi

and wj. The estimated rank(W) is the one that maximizes the entropy of the

affinity matrix

r? = argmax
r

∑
x

Ar(x)logAr(x). (7.2)

The intuition is that when the rank is underestimated, trajectories are forced

into a smaller subspace making their principal angles artificially similar, even

for trajectories of independently moving objects. When the rank is overes-

timated, the reconstructed Wr is contaminated by some basis from the null

space of W, artificially decreasing the principal-angle affinity between tra-

jectories from the same class. Only when the rank estimate is optimal do

trajectories from the same class have maximum affinity, and trajectories from

different classes minimum, and in this case the entropy of Ar is maximum

[60]. The authors report correct estimations on 70.97% of sequences from the

Hopkins 155 dataset.

It seems clear that most previous attempts to globally estimate N (like those

based on estimating the rank of the whole observation matrix W, or the one

described in the previous paragraph) are failing to acknowledge some critical

aspects of this problem. In particular, that degenerate and non-degenerate

motions have subspaces of different sizes, and that when dependent motions

are present, at least one of the dimensions of the subspace is shared, artifi-

cially reducing the size of the combined subspace. Another missing aspect

is that the magnitude of the noise is often different between the trajectories

from different independently moving objects, either because of the raw image

contents (motion blur, contrast, texture, etc.) or because of the uneven effect of

unaccounted image formation phenomena (like perspective effects, or barrel

distortion). The point is that the expected distance between much noisier

trajectories and their appropriate low-dimensional subspace is therefore larger,

and indeed can increase the difficulty of estimating the subspace itself, or

even it’s dimension.

We propose a solution that is similar in spirit to Kanatani’s, where the



Estimating the Number of Independent Motions 119

goal is to find the best balance between the optimal number of motions

and the magnitude of the residuals, but we do it by quantifying the penalty

for each motion individually, according to the estimated complexity of each

independent motion, and calibrating the residual penalties using each motions’

estimate of the magnitude of the noise.

To achieve this goal, our method finds the optimal number of motions

by simply running the entire MS algorithm using NI ∈ {1, 2, . . .}. This

means finding the optimal N-motion model combination (TN) for each value

of NI . Note that a model combination implicitly defines a labeling as well.

The estimate for the number of motions corresponds to the value of N, that

minimizes the function of Equation 5.10 across all {TN}.
Formally, this equates to solving the following optimization problem:

N? = argmin
N∈{1, 2, ...}

O(TN), (7.3)

given an model combinations {MN}, where O(·) corresponds to the same

loss function of Equation 5.10, reproduced here for convenience:

O(TN) =
N

∑
n=1

P

∑
p=1

lp,nE
(
wp, Mjn

)
+ λΦ

P

∑
i=1

Φ(wp, Mj) + λΨ

N

∑
n=1

Ψ(Mjn).

The intuition is that the minimum of the loss function O across different

good model combinations of different sizes corresponds to the best balance

between the magnitude of the error residuals (first term), and the penalty

associated to the complexity of the models that are allowed and used represent

each independent motion (the Ψ(M) term). The function also penalizes

explaining the same trajectory more than once. Favorable experimental results

support this intuition.

The proposed method was tested on the Hopkins 155 dataset, which con-

tains sequences with N = 2 and N = 3 motions. The results are summarized

in Table 7.1. Our method outperforms all other methods by a significant

margin. To reduce the effects of result variability, ten model combinations

were estimated for each of the values NI ∈ {1, 2, 3, 4}, and an average objec-

tive function ŌNI was computed for each NI . The estimated N was the one
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Table 7.1: Mean absolute error and accuracies for the estimated number of
models. Our method outperforms all prior art by a significant margin.

Method µ(|error|) % Correct Estimation

2 Motions

ALC 1.13 30.00
ELSA 0.33 75.00
A-ASA 0.39 70.00
Ours 0.108 89.17

3 Motions

ALC 1.25 11.43
ELSA 0.49 57.14
A-ASA 0.51 57.14
Ours 0.086 94.29

Whole Database

ALC 1.16 25.81
ELSA 0.37 70.97
A-ASA 0.42 67.10
Ours 0.103 90.32

associated to the minimum ŌNI .

It is worth noting that when the loss function is used to determine the

optimal number of motions, the parameters λΦ = 1.5× 104 and λΨ = 4.7× 101

are different with respect to those used when doing motion segmentation

(λΦ = 1.0 × 105 and λΨ = 1). Both sets of parameters were determined

empirically. Still, we argue that these two sets of parameters make intuitive

sense, given that the segmentation problem benefits from more discriminative

labelling (ambiguous labeling is penalized by λΦ, which is 1 order of mag-

nitude bigger when doing segmentation) and the estimation of N problem

benefits from more efficient use of the available representation resources (the

model complexity term is 50 times bigger when estimating N).

Figure 7.12 shows the distribution of the discrepancies between the esti-

mated number of motions using our method, and the ground truth. From

this histogram it is clear that the majority of the errors are under-estimations

of the number of motions. Visual inspection reveals that the majority of the

sequences with under-estimated numbers of motions contain two or more

degenerate motions, and in many cases, these motions are dependent. These

sequences are really difficult since the rank of the observation matrix W of

trajectories from 2 dependent degenerate motions is rank(W) ≤ 3 which can

be modeled by a single non-degenerate affine motion, and especially when

depths can be over-fit to approximate the data. Figure 7.13 shows ground-
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Figure 7.12: Histogram of the discrepancy between the estimated N and the
ground truth. Only two sequences are over-estimated. The rest of the errors
are under-estimations.

truth, color-coded trajectories of six of the under-estimated examples. In these

cases, a spatial coherence prior (that includes coherence on relative depth)

may be a way to increase the accuracy of the estimation.

In contrast, Figure 7.14 shows the only two over-estimated examples where

we hypothesize that the large range of true depths, and possibly the existence

of perspective effects, may have led to the over-estimation of N.
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Figure 7.13: Trajectories from some examples of sequences where the estimated
number of motions is N = 1 while the correct value is N = 2. Color indicates
ground truth motion segments.
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Figure 7.14: Trajectories from the two sequences where the estimated number
of motions is N = 3 (left) and N = 4 (right) while the correct values are N = 2
(left) and N = 3 (right). Color indicates ground truth motion segments.
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