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Supplementary Material Overview
In this document, we provide additional details about our

dataset, models, and results. It is structured as follows:

• We present an ablative study of TF·IDF-based retrieval,
to examine the discriminative power of each node type
(Sec. A).
• We present details of our interaction ordering model,

and more qualitative results (Sec. B).
• We present details of our reason prediction model, and

more qualitative results (Sec. C).
• We provide details of person detection, clustering, and

identification (Sec. D).
• We describe the annotation interface used to collect the

data (Sec. E).
• We present example annotations for one movie from

the MovieGraphs dataset (Sec. F), as well as additional
dataset statistics:

– The distributions of the number of characters, in-
teractions, and relationships per clip;

– The top-20 relationships and scenes.

• We provide additional examples of the MovieGraphs
dataset (Sec. G), and show visualizations of:

– The emotional profiles and timelines of the main
characters from several movies;

– Emotions of characters on both sides of interac-
tions/relationships;

– A rooted graph of situations;

– Examples of interaction annotations.

A. TF·IDF Ablative Study
In this section, we present an ablative study of TF·IDF

graph→ description and graph→ dialog retrieval. In order
to gauge the relative discriminative power of each node type
for retrieval, we perform the retrieval experiment considering
only information in certain node types.

Node Types R@1 R@5 R@10 medR

All Node Types 61.6 83.8 89.8 1
All \ { Sc., Sit. } 60.8 82.1 88.0 1
All \ { Sc., Sit., Char.} 51.0 67.8 74.2 1
Scene 3.1 9.9 12.9 460
Situation 5.0 13.5 18.3 382
Character 19.0 45.3 58.7 7
Attribute 3.7 9.0 12.7 393
Interaction, Summary 12.8 24.6 29.9 66
Interaction 6.2 12.8 16.2 327
Summary 7.2 15.8 20.8 264
Relationship 0.6 1.8 2.6 704
Topic 35.5 51.4 57.3 5
Reason 24.5 38.0 42.4 26

Table 1: TF·IDF Graph-Description Retrieval Ablation Study

Node Types R@1 R@5 R@10 medR

All Node Types 31.8 49.8 57.2 6
All \ { Sc., Sit. } 31.9 49.4 57.1 6
All \ { Sc., Sit., Char.} 31.5 46.2 51.5 8
Scene 0.7 2.2 3.1 718
Situation 1.2 3.5 4.8 627
Character 6.6 17.4 23.2 58
Attribute 1.0 3.4 5.7 603
Interaction, Summary 3.3 6.5 8.4 580
Interaction 1.8 4.1 5.8 621
Summary 1.6 4.1 5.8 656
Relationship 0.3 1.3 2.0 765
Topic 28.7 42.6 47.9 15
Reason 17.4 28.7 32.9 122

Table 2: TF·IDF Graph-Dialog Retrieval Ablation Study

We present results on the test set, evaluated using recall
@ {1, 5, 10} and median rank. Table 1 shows the results
for graph → description retrieval, and Table 2 shows the
graph→ dialog retrieval results. In both cases, we find that



character, topic, and reason nodes are the most discriminative
for localizing the correct clip. This aligns with the intuition
that the most relevant information involves who is in the clip,
and what the details (topics and reasons) of their interactions
are.

B. Interaction Ordering Details
In this section, we present details of our interaction or-

dering model, which uses an attention-based RNN to select
interactions sequentially from an input set to form a plausible
order.

Dataset Creation for Interaction Ordering. We extract
all sequences of interactions that occur between each pair of
characters in each clip. We consider only interactions that
have time stamps, and sort them first based on start time, and
then by end time to break ties.

Interaction Sequence Encoding. Each training example
represents a sequence of interactions between a pair of char-
acters, and consists of: 1) a situation label; 2) a scene label;
3) the relationship(s) between the two characters; 4) the
attributes of each character; and 5) a sequence of N interac-
tions (with associated topics).

Consider two characters C1 and C2, with attributes Vatt
C1

and Vatt
C2

, respectively. Let the scene and situation labels be
vsc and vsi, respectively, and the relationships between C1

and C2 be vrelC1→C2
and vrelC1←C2

, respectively.
Each interaction vintC1,C2

with topic vtopC1,C2
is represented

by the concatenation of the corresponding GloVe embed-
dings, [aintC1,C2

;atopC1,C2
], with an additional digit appended to

indicate the direction of the interaction: 1 for C1 → C2, -1
for C1 ← C2, and 0 for C1 ↔ C2. We denote the interac-
tion representation at step i in the sequence by xi, so that a
sequence of length N is denoted by X = {x1, . . . ,xN}.

Context Encoding. We create a global context vector
(passed to the decoder RNN at each time step) that incorpo-
rates situation, scene, relationship, and attribute information.
We restrict attributes to be of age and gender types, and
compute attribute encodings as follows:

hC1 =WC1

∑
k

αka
att
C1k, hC2 =WC2

∑
l

αla
att
C2l (1)

where the attention weights αk and αl are computed using a
two-layer MLP.

We encode the relationships between C1 and C2 as fol-
lows:

hr1 =Wr1a
rel
C1→C2

, hr2 =Wr2a
rel
C1←C2

(2)

Bidirectional relationships are treated as separate relation-
ships in both directions, C1 → C2 and C1 ← C2.

We encode the scene and situation with linear layers on
the corresponding GloVe representations:

hsc = Wsca
sc (3)

hsi = Wsia
si (4)

Finally, we combine the encoded components to form the
global context vector:

z = hC1 + hC2 + hr1 + hr2 + hsc + hsi (5)

Attention-Based Decoder RNN. We use a single-layer
Gated Recurrent Unit (GRU) RNN to select items sequen-
tially from an input set of interactions. At each time step t,
we compute a local context vector by attending to the input
elements:

c(t) =

N∑
i=1

α
(t)
i xi (6)

where
α(t) = softmax(s(t)) (7)

and
s
(t)
i = (h(t−1))Txi . (8)

The input to the GRU at time t consists of 1) an input element
x(t) (described below for the train and test settings); 2) the
local context c(t); and 3) the global context z:

[x(t); c(t); z] . (9)

The output is computed as a linear transformation on the
hidden state:

o(t) =Woh
(t) (10)

We score each interaction from the input set by computing
the inner product between the output o(t) and each of the
interaction representations xi. The model is trained end-to-
end with cross-entropy loss on these scores. At test time,
the input element with the highest score is chosen at each
time step, and is masked out from the input set so that it
is not selected again in future steps. At training time, we
use teacher forcing (i.e., choosing the correct ground-truth
interaction to be passed forward to the next step, regardless
of which interaction scored the highest) 50% of the time,
and the model’s own predictions 50% of the time.

Results. In Table 3 we show additional qualitative
interaction-ordering results. In examples (a)-(d) the pre-
dicted order matches the ground-truth, while in examples
(e)-(i) the predicted order does not match. However, even
though the orders presented in examples (e)-(i) are not iden-
tical to the ground-truth orders, they are still plausible.



Ex. GT Pred Dir. Interaction + [Topic]

a)
1 1 → asks [who was on the phone]
2 2 ← informs [a friend called]
3 3 → orders [to go care for the child]

b)
1 1 → calls to
2 2 ← ignores
3 3 → offers [treat]

c)

1 1 → asks [will they ever be happy]
2 2 ← answers [that they are happy]
3 3 ← suggests [they borrow her old crib]
4 4 → hushes

d)

1 1 → asks about [identity]
2 2 ← yells at
3 3 → yells [to get out]
4 4 ← accuses [that he pretends to be a millionaire]

e)

1 4 → confesses to [he did not murder anyone]
2 5 → explains to [he went to jail for video pirating]
3 3 ← reproaches [they thought he was a murderer]
4 1 ← asks [about his gun]
5 2 → shows [he doesn’t have a gun]

f)

1 4 → begs [not to go]
2 2 ← apologizes
3 5 ← explains to [she’s retiring]
4 3 ← encourages [to be strong]
5 1 → calls after

g)

1 1 → orders [to shut up]
2 2 ← accuses [of assault and battery]
3 4 → threatens [to beat him up]
4 5 → warns [he must make it up to his friend]
5 3 → admits [he doesn’t like to yell]

h)

1 1 → informs [they lost all the stuff]
2 4 ← asks [if ex-worker set the fire]
3 3 → explains to [the cause of her husband’s death]
4 2 ← informs [that they have to succeed]
5 5 → reassures [they won’t let them win]

i)

1 3 → asks [why her eyes look old]
2 4 ← jokes [his eyes look kind]
3 2 ← explains to [she woke up early]
4 1 → interrupts [to stop her from clearing his plate]

Table 3: Additional qualitative results for interaction ordering. The
GT column shows the ground-truth order of interactions, the Pred
column shows the order in which the interactions were chosen by
the model, and the Dir column shows the direction of the interaction
between the characters.

C. Reason Prediction Details

In this section, we present details of our reason prediction
model. In particular, we build a model that encodes the
context of the interaction and generates plausible reasons
using a decoder RNN.

Context Encoding. The context is comprised of: (i) a pair
of characters C1, C2, represented by their attributes Vatt

C1
and

Vatt
C2

(actual names don’t tell us anything and do not matter);
(ii) the interaction vintC1,C2

for which we wish to predict the
reason; (iii) the relationship vrelC1,C2

between the characters;
(iv) the scene vsc and situation vsi labels; (v) and optionally,
a topic vtopC1,C2

node associated with the interaction.
In particular, we restrict attributes to age and gender (as

others, such as emotions, were found to have little influence).
The characters are represented by a weighted combination
of attributes:

hC1
=

∑
k

αka
att
C1k, hC2

=
∑
l

αla
att
C2l (11)

where the attention weights αk, αl are learned using a two-
layer MLP. a· corresponds to the 100-d GloVe embedding
for each node.

In our graphs, interactions and relationships can take
three possible directions: C1 → C2 (e.g. parent), C1 ← C2

(e.g. child), and C1 ↔ C2 (e.g. friends). We first encode a
direction Ce → Cf :

he→f
d =WCd

· hCe
+WCr

· hCf
, (12)

where WCd
corresponds to the parameters for the doer and

WCr
the receiver. Interactions and relationships are encoded

as:

he→f
i = he→f

d +Wi · (aintC1,C2
+ atopC1,C2

) , (13)

he→f
r = he→f

d +Wr · arelC1,C2
, (14)

he↔f
i|r = (he→f

i|r + he←f
i|r )/2 . (15)

The final context vector is a linear combination:

hc =Wpa
sc +Wsa

si + hi + hr . (16)

Decoder RNN. We adopt a Gated Recurrent Unit RNN [3]
with a 100-d hidden state as our decoder. The context is fed
in at each time-step along with the previous sampled word
(or START token). We use a temperature sampling scheme
to generate variability in the predicted reasons.

Results. Fig. 1 shows several more examples of context
graphs and ground-truth and predicted reasons. Each row
shows the results for test set samples annotated as Not rele-
vant (row 1), Semi-relevant (row 2) and Very relevant (row
3). Note that the results in the last row, while not predicting
the ground-truth reason, are very plausible, affirming the
difficulty of this task.
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Figure 1: Reason prediction results on the test set, grouped by the three evaluation labels.

D. Person Detection, Clustering, and Identifi-
cation

Data Collection for Face ID. We grounded each character
in the graph with all the face tracks in the clip (obtained with
OpenFace [2]). As there are on average 1740 face tracks per
movie, 9.6 per clip, and over 88K in our full dataset (prior to
removing false positives and track switches), annotating the
tracks directly would have been time consuming. Instead,
we first linked face tracks that belong to the same person in
a clip by performing hierarchical agglomerative clustering
on upper body color histogram features (a character wears
the same clothing during a clip) corresponding to the face
tracks. The annotator is then asked to assign character names
(from those found in the graph) to clusters in the clip. In
cases where clustering is wrong, we break the cluster into
face tracks, and the annotator labels each track.

Face Detection and Tracking. Face tracks are extracted
using the OpenFace tracker [2]. The output of the tracker
are face detections in each frame, which we need to post-
process into face tracks. To match detections from one
frame to the detections in subsequent frames, we compute
the IoU (intersection over union) between each possible pair
of detections from the different frames. We then compute the
optimal matching of pairs that maximizes the IoU between
pairs using the Hungarian algorithm. Since detections might
be spurious, we allow for gaps of up to 5 frames in which
the face might not be detected in the same face track and we
discard every face track that lasts less than 10 frames. We
note that the quality of our face tracker is primarily limited
by the face detector, which occasionally results in missing
face tracks and false positives. Furthermore, while we found
our post-processing heuristics to work reasonably in practice,



there are some track switches grouped together. On average,
we obtain 66 false positive face tracks and track switches per
movie (corresponding to less than 4% of all tracks).

Face Features. We compute face embeddings for the pur-
pose of character identification and face track clustering.
Our model builds upon the VGG-Face model of [6]. We
extend it by (i) reducing the dimensionality of the features
from 4096 to 128 with a linear projection layer (i.e., a fully
connected layer without non-linearity), and (ii) making them
have a unit norm. We initialize our model with the weights
of [6] and train it using a triplet loss as described in [7] with
a margin m = 0.2 but without mining hard negatives due to
limited computational resources.

To train our model we use our own dataset, comprised of
images from face tracks and cast pictures from IMDb. Face
track identities are annotated in the dataset, while IMDb
pictures have associated identity metadata. Furthermore, we
filter IMDb pictures by running a standard face detection
algorithm [9] and including only those with a single face
detection. Each triplet in our dataset is formed by a face
track anchor, a positive example randomly sampled either
from matching face tracks or IMDb pictures, and a negative
example also from either non-matching IMDb pictures or
face tracks. Since a face track contains many images, we ran-
domly select one of them to represent a face track example
in a triplet during training. At test time, a face track is repre-
sented by the average features of its images. We feed face
crops into our model instead of full images, expanding the
face detection bounding box by a factor of 2 to also include
clothing and hair. The context was found to be especially
helpful for track clustering. Expanded crops are resized to a
fixed resolution of 224x224 using bilinear interpolation.

Face Track Clustering. We perform face track clustering
in each movie scene to group together face tracks belong-
ing to the same characters. To perform clustering, we use
face features for each of the face tracks and compute pair-
wise distances between them. We then apply hierarchical
agglomerative clustering with a cut-off at threshold t = 0.75,
empirically chosen to minimize the OCI metric on the vali-
dation set.

We evaluate our clustering performance in the test set
with three different metrics: (i) cluster purity, indicating
how many clusters capture a single identity, (ii) weighted
cluster purity, in which the purity of a cluster is weighted
by the number of face tracks in the cluster, and (iii) operator
clicks index (OCI) [5], indicating the number of face tracks
in wrong clusters plus the total number of clusters obtained.
This last metric seeks to evaluate the cost of annotating face
tracks given a clustering. While evaluating our method, we
discard wrong face tracks or face tracks that switch faces.
The performance of our method is shown in Table 4.

Metric Score

Cluster Purity 75.7%
Weighted Purity 75.8%

OCI 6.4

Table 4: Clustering performance

Character Identification. Here we explore the task of as-
signing character identities to face tracks. We extract face
features for cast pictures with a single face detection and
compute pairwise distances with face track images. We then
rank the images by distance to the face tracks and assign
character identity probabilities to each face track. We evalu-
ate our assignments with accuracy in Table 5. We keep the
top-15 characters that appear in at least 10 graphs, as other-
wise, movies (including all extras and background) can have
characters (and actors) that often do not even have pictures
on IMDb.

Metric Ours Random

Accuracy 43.7% 13.2%

Table 5: Character identification

E. Annotation Interface
In this section, we describe our data collection proce-

dure. We developed a custom web-based annotation interface
(Fig. 2) to support our data collection process. An annotator
first selects a movie clip from the list on the left-hand side;
the clip to be annotated then plays at the top. For each clip,
the annotator must annotate four elements: 1) a scene label;
2) a situation label; 3) a natural language description; and 4)
a graph. The graph canvas is in the center of the page; text
boxes for scene and situation labels, as well as for the de-
scription, are above. In order to create a graph, an annotator
starts by adding characters. The list of characters (from the
IMDb cast of the movie) is shown on the right; clicking a
character name from the list creates the corresponding char-
acter node in the graph canvas. An unlisted character can
be added by choosing unlisted character and then naming it.
All other node types (e.g., attributes, interactions, relation-
ships, topics, reasons, and time stamps) are added directly
in the graph canvas. We provided initial vocabularies for
scenes and situations which annotators could select from,
but they were also allowed to add custom items to the lists.
The interactions, topics, and reasons were free-form, and we
encouraged the annotators to be concise.

Workflow. Each annotator watched a movie from start to
finish, annotating each clip in order. This ensured that each



Figure 2: The MovieGraphs annotation interface provides four separate areas where annotators type the scene label, the situation label, and
the natural language description, and where they create the graph. On the left, they select a clip from a sequence of clips, and on the right,
they select characters from a cast list (obtained from IMDb).

annotation contained data inferred from the movie up until
that point in time, and allowed annotators to gain insight
into the reasons behind each character’s actions. The typical
workflow of the annotator was to watch the clip and first
write the description in natural language, then provide the
scene and situation label, and finally create the graph. Good
data requires proper identification of the scene and situation,
a description thorough enough that people reading it can
understand what happens in the clip, and a graph detailed
enough that reading it conveys the gist of the clip, as well.

Training Annotators on Upwork. We hired annotators
through the freelance service Upwork. Therefore, our setup
had to overcome some unique challenges, the main one
being uniformity: the annotators have to agree on the level
of detail they put in the graph. To support data quality, we
trained annotators on a common set of clips, and continued
monitoring the annotations.

Dividing Movies into Clips. To obtain the clips for anno-
tation, we automatically split each movie into scenes [8]
and then grouped the scenes into clips manually, such that
each clip corresponds to one coherent social situation (e.g.,
party). As some situations were longer than others, our clips
vary in length from around 20 seconds to 2 minutes, with an
average length of 44 seconds.

F. MovieGraphs Examples and Statistics
We show examples of the graph annotations for the movie

“Jerry Maguire” in Fig. 3. We sample nine graphs from
various points in the movie, to show the progression of the
story.

Fig. 4 shows the top 20 relationships and scenes across all
movies. The distribution of attribute types is shown in Fig. 5.
We also present the distributions of the number of nodes of
different types in each clip: the number of characters per
clip is shown in Fig. 6; the number of interactions in Fig. 7;
and the number of relationships in Fig. 8.



Figure 3: Example annotations of various clips throughout the movie “Jerry Maguire,” showing scenes, situations, and graphs. Each clip is
also annotated with a natural language description (not shown due to space constraints).



Figure 4: Distributions of the top 20 relationships and scenes.
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G. More Examples

Character Emotional Profiles. We show the emotional
profiles of the main characters in several movies, based on
the emotions annotated for each character across all the clips
in a movie. We see that in the movie “Four Weddings and
a Funeral” (Fig. 9, left), characters are mostly sad, nervous
(Charles), happy (Carrie), worried (Matthew) and excited
(Tom), while in the movie “As Good As It Gets” (Fig. 9,
right), the characters are often upset or grateful (Simon),
embarrassed or angry (Melvin), happy (Carol), and angry or
surprised (Frank).

Emotion Timelines. As in real life, characters in movies
experience many emotions whose progression during the
story we show in Fig. 10. We used the six basic emotions (an-
gry, happy, sad, scared, surprised, and disgusted) described
in [4]. We mapped the various words used to annotate emo-
tions in the graphs to these six emotions based on [1], with
some manual additions. Where a character was annotated to
have several emotions in the same clip, we took the mode of
these emotions. The emotions are color-coded, as shown in
the legend for our figures.

We then correlated the emotional progression of the main
characters in each movie with situations and relationships.
In Fig. 10, we show the progression of emotions of the
main characters in the movies “The Lost Weekend,” “As
Good as It Gets”, and “The Social Network.” For example,
Fig. 10 (top diagram) shows the emotional timeline of four
characters from the movie “The Lost Weekend.” We show
that Don, his brother Wick, and Don’s girlfriend Helen plan
a weekend trip to help Don break his alcohol addiction,
but he is angry because he doesn’t want to go. Don, still
angry, goes to drink in a pub, then becomes sad when he

is rejected by society. He continues drinking, and becomes
scared during his alcoholic delirium episode. Eventually, he
and Helen engage in a motivational conversation, and both
end up happy. The timeline shows that Don is a troubled,
angry character, while Helen, Wick, and Nat (the bartender)
are calming influences.

Character-Character Emotion Distributions. In many
cases, an interaction is associated with different emotions
for the “doer” and the “receiver.” We show the distribution
of emotions felt by characters on the giving and receiving
ends of interactions (Fig. 11) and relationships (Fig. 12).

As shown in the top panel of the Fig. 11, for the interac-
tion attacks, the attacker (Person 1) is often violent, angry,
and aggressive, while the person being attacked (Person 2)
is often scared and confused. The emotions of a person who
begs (Fig. 11, middle panel) are also different (e.g. desper-
ate, scared, helpless) from the emotions of the person on
the other end of the interaction, who is often angry, calm,
or compassionate. Fig. 11 (bottom panel) also shows that a
person who forgives is forgiving and happy, while the person
who is forgiven is often apologetic, happy, and grateful.

People also have different emotions depending on the
relationship between them, as shown in Fig. 12. For exam-
ple, a grandparent is often happy, while the grandchild is
often scared (top panel); a mistress is often worried, and
sometimes humiliated, while her lover is worried and sneaky
(middle panel); and a nanny is often compassionate, while
the child is often sad (bottom panel).

Rooted Situation Graph. We can also see how situations
follow from one another. Fig. 13 shows possible pairwise
transitions between situations, starting from the situation
“date.”

Interaction Examples. Fig. 14 shows example annota-
tions of interactions, to showcase the fact that dialog is
important for inferring many interactions, in addition to
visual cues.
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between characters (shown with arrows between names on the left). Wherever a character does not appear in a clip, the space is white.



violent angry aggressive hostile persistent scared confused angry helpless shocked
Person 1                                                                 Person 2

P(emotion interaction = attacks)

desperate scared helpless persistent crying angry calm compassionate sad helpless
Person 1                                                                 Person 2

P(emotion interaction = begs)

forgiving polite happy kind proud kind apologetic happy grateful relaxed
Person 1                                                                 Person 2

P(emotion interaction = forgives)

Figure 11: Emotions of characters on either side of an interaction. In each case, Person 1 directs the interaction toward Person 2 (e.g. in the
top example, Person 1 attacks, Person 2 is being attacked).

happy sad indifferent desperate nostalgic scared sad excited brave desperate
Person 1                                                                 Person 2

P(emotion1, emotion2 relationship = grandparent)

worried excited humiliated scared upset worried sneaky nervous brave evasive
Person 1                                                                 Person 2

P(emotion1, emotion2 relationship = mistress)

compassionate sad proud helpful loving sad crying cheerful curious happy
Person 1                                                                 Person 2

P(emotion1, emotion2 relationship = nanny)

Figure 12: Emotions of characters on either side of a relationship. Each relationship is directed; in these examples, Person 1 is the
grandparent, mistress, and nanny, while Person 2 is the grandchild, lover, and child, respectively.
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travel
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party
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gossiping

argument
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confessing about drinking

alien encounter

hanging out
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Figure 13: A tree showing possible pairwise transitions from one situation to another. For example, the situation date can be followed
by intimacy. In turn, the situation intimacy can be followed by, among others, talking about the past. Talking about the past is followed
by many kinds of situations, including argument. The sequence date-intimacy-talking about the past-argument is therefore possible, but
not necessarily found in the movies we have annotated so far. This longer sequence follows from multiple pairwise transitions between
situations.



Figure 14: Examples of interaction annotations. All interactions but the bottom right are inferred mainly from dialog (shown under each
image); the bottom right interaction is based only on visual cues.
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