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Abstract— Analyzing the story behind TV series and movies
often requires understanding who the characters are and what
they are doing. With improving deep face models, this may
seem like a solved problem. However, as face detectors get
better, clustering/identification needs to be revisited to address
increasing diversity in facial appearance. In this paper, we
address video face clustering using unsupervised methods. Our
emphasis is on distilling the essential information, identity,
from the representations obtained using deep pre-trained face
networks. We propose a self-supervised Siamese network that
can be trained without the need for video/track based super-
vision, and thus can also be applied to image collections. We
evaluate our proposed method on three video face clustering
datasets. The experiments show that our methods outperform
current state-of-the-art methods on all datasets. Video face
clustering is lacking a common benchmark as current works
are often evaluated with different metrics and/or different
sets of face tracks. The datasets and code are available at
https://github.com/vivoutlaw/SSIAM.

I. INTRODUCTION

Large videos such as TV series episodes or movies
undergo several preprocessing steps to make the video
more accessible, e.g. shot detection. Character identifica-
tion/clustering has become one such important step with
several emerging research areas [25], [35], [37] requiring
it. For example, in video question-answering [35], most
questions center around the characters asking who they are,
what they do, and even why they act in certain ways. The
related task of video captioning [25] often uses a character
agnostic way (replacing names by someone) making the
captions very artificial and uninformative (e.g. someone
opens the door). However, recent work [24] suggests that
more meaningful captions can be achieved from an improved
understanding of characters. In general, the ability to predict
which characters appear when and where facilitates a deeper
video understanding that is grounded in the storyline.

Motivated by this goal, person clustering [4], [10], [15],
[48] and identification [7], [31], [2], [23], [19] in videos has
seen over a decade of research. In particular, fully automatic
person identification is achieved either by aligning subtitles
and transcripts [7], [31], [2], or using web images for actors
and characters [1], [19] as a form of weak supervision. On
the other hand, clustering [48], [4], [41], [42], [47], [5]
has mainly relied on must-link and cannot-link information
obtained by tracking faces in a shot and analyzing their co-
occurrence.

As face detectors improve (e.g. [13]), clustering and
identification need to be revisited as more faces that ex-

hibit extreme viewpoints, illumination, resolution, become
available and need to be grouped or identified. Along with
improvements to face detection, deep Convolutional Neu-
ral Networks (CNNs) have also yielded large performance
gains for face representations [32], [28], [21], [3]. These
networks are typically trained using hundreds-of-thousands
to millions of face images gathered from the web, and
show super-human performance on face verification tasks
on images (LFW [14]) and videos (YouTubeFaces [40]).
Nevertheless, it is important to note that faces in videos
such as TV series/movies exhibit more variety in comparison
to e.g. LFW, where the images are obtained from Yahoo
News by cropping mostly frontal faces. While these deep
models generalize well, they are difficult to train from scratch
(require lots of training data), and are typically transferred
to other datasets via net surgery: fine-tuning [29], [47], [48],
or use of additional embeddings on the features from the last
layer [27], [6], or both.

Recent work shows that CNN representations can be
improved via positive and negative pairs that are discovered
through an MRF [48]; or a revised triplet-loss [47]. In
contrast, we propose simple methods that do not require
complex optimization functions or supervision to improve
the feature representation. We emphasize that while video-
level constraints arent new, they need to be used properly to
extract the most out of them. This is especially in light of
CNN face representations that are very similar even across
different identities. Fig. 5 proves this point as we see a large
overlap between the cosine similarity distributions of positive
(same id) and negative (across id) track pairs on the base
features.

In this paper, we focus on the video face clustering prob-
lem. Given a set of face tracks from several characters, our
goal is to group them so that tracks in a cluster belong to the
same character. We summarize the main contributions of our
paper, and also highlight key differences: (1) We propose two
variants of discriminative methods (Sec. III) that build upon
deep network representations, to learn discriminative facial
representations. They are Track-supervised Siamese network
(TSiam) and Self-supervised Siamese network (SSiam). In
contrast to previous methods [5], in TSiam, we incorporate
negative pairs for the singleton (no co-occurring) tracks. In
SSiam, we obtain positives and negatives by sorting distances
(i.e. ranking) on a subset of frames. Note that methods
proposed in this paper are either fully unsupervised, or use
supervision that is obtained automatically, hence can be
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thought as unsupervised. Additionally, our fully unsupervised
method can mine positive and negative pairs without the need
for tracking. This enables application of our method to im-
age collections. (2) We perform extensive empirical studies
and demonstrate the effectiveness and generalisation of the
methods. Our methods are powerful and obtain performance
comparable or higher than state-of-the-art when evaluated on
three challenging video face clustering datasets.

II. RELATED WORK

Over the last decade, video face clustering is typically
modeled using discriminative methods to improve face rep-
resentations. In the following, we review some related work
in this area.

Video face clustering. Clustering faces in videos commonly
uses pairwise constraints obtained by analyzing tracks and
some form of representation/metric learning. Face image
pairs belonging to the same track are labeled positive (same
character), while face images from co-occurring tracks help
create negatives (different characters). This strategy has
been exploited by learning a metric to obtain cast-specific
distances [4] (ULDML); iteratively clustering and associating
short sequences based on hidden Markov Random Field
(HMRF) [41], [42]; or performing clustering in a sub-space
obtained by a weighted block-sparse low-rank representa-
tion (WBSLRR) [43]. In addition to pairwise constraints,
video editing cues are used in an unsupervised way to
merge tracks [34]. Here, track and cluster representations
are learned on-the-fly with dense-SIFT Fisher vectors [20].
Recently, Jin et al. [15] consider detection and clustering
jointly, and propose a link-based clustering (Erdös-Rényi)
based on rank-1 counts verification. The linking is done
by comparing a given frame with a reference frame and a
threshold is learned to merge/not-merge frames.

Face track clustering/identification methods have also
used additional cues such as clothing appearance [33],
speech [22], voice models [19], context [46], gender [49],
name mentions (first, second, and third person references) in
subtitles [18], weak labels using transcripts/subtitles [7], [2],
and joint action and actor labeling [16] using transcripts.

With the popularity of CNNs, there is a growing focus on
improving face representations using video-level constraints.
An improved form of triplet loss is used to fine-tune the
network and push the positive and negative samples apart
in addition to requiring anchor and positive to be close,
and anchor and negative far [47]. Zhang et al. [48] learn
better representations by dynamic clustering constraints that
are discovered iteratively during clustering that is performed
via a Markov Random Field (MRF). In contrast to related
work, we propose a simple, yet effective approach (SSiam)
to learn good representations by sorting distances on a subset
of frames and not requiring video/track level constraints to
generate positive/negative training pairs.

Further, Zhang et al. [47]-[48] and Datta et al. [5] utilize
video-level constraints only to generate a set of similar and
dissimilar face pairs. Thus, the model does not see negative
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Fig. 1. Track-supervised Siamese network (TSiam). Illustration of the
Siamese architecture used in our track-supervised Siamese networks. Note
that the MLP is shared across both feature maps. B corresponds to batch
size.

pairs for singleton (no co-occurring) tracks. In contrast, our
method TSiam incorporates negative pairs for the singleton
tracks by exploiting track-level distance.

Finally, it is worth noting the work on “harvesting”
training data from unlabeled sources which is in the sim-
ilar spirit of SSiam and TSiam. Fernando et al. [8] and
Mishra et al. [17] shuffle the video frames and treat them as
positive/negative training data for reordering video frames;
Wang et al. [38] collect positive/negative training data by
tracking bounding boxes (i.e. motion information) in order
to learn effective visual representations.

III. REFINING FACE REPRESENTATIONS FOR
CLUSTERING

Our goal is to improve face representations using simple
methods that build upon the success of deep CNNs. More
precisely, we propose models to refine the face descrip-
tors automatically, without the need for manual labels. In
contrast, fine-tuning the original CNN typically requires
supervised class labels. Thus, our approach has three key
benefits: (i) it is easily applicable to new videos; (ii) it does
not need large amounts of training data (few hundred tracks
are enough); and (iii) specialized networks can be trained on
each episode, film, or series.

Preliminaries. Consider a video with N face tracks
{T 1, . . . , TN} belonging to C characters. Each track cor-
responds to one of the characters, and consists of T i =
{f1, . . . , fMi} face images. Our goal is to group tracks into
{G1, . . . , G|C|} such that each track is assigned to only one
group, and ideally, each group contains all tracks from the
same character. We use a deep CNN (VGG2 [3]) and extract
a descriptor for each face image xik ∈ RD, k = 1, . . . ,M i

from the penultimate layer (before classification) of the
network. We refer to these as base features, and demonstrate
that they already achieve a high performance. As a form
of data augmentation, we use 10 crops obtained from an
expanded bounding box surrounding the face image during
training. Evaluation is based on one center crop.

Track-level representations are obtained by aggregating the
face image descriptors

ti =
1

M i

∑
k

xik . (1)
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Fig. 2. Self-supervised Siamese network (SSiam). Illustration of the Siamese architecture used in our self-supervised Siamese networks. SSiam selects
hard pairs: farthest positives and closest negatives using a ranked list based on Euclidean distance for learning similarity and dissimilarity respectively.
Note that the MLP is the same across both feature maps. B corresponds to batch.

We additionally normalize track representations to be unit-
norm, t̂i = ti/‖ti‖2 before using them for clustering.

In [34], [47], [48], the authors use Hierarchical Agglom-
erative Clustering (HAC) as the clustering technique. For
a fair comparison to [34], [47], [48], we perform HAC to
obtain a fixed number of clusters, equal to the number of
characters. We use the minimum variance ward linkage [39]
for all methods. See Fig. 3 for illustration.

Discriminative models. Discriminative clustering models
typically associate a label y with a pair of features. We
choose y = 0 when a pair of features (x1,x2) should belong
to the same cluster, and y = 1 otherwise [12].

We use a shallow MLP to reduce the dimensionality
and improve generalization of the features (see Fig. 1, 2).
Here, each face image is encoded as Qφ(x

i
k), where φ

corresponds to the trainable parameters. We find Qφ(·) to
perform best when using a linear layer (for details see
Sec. IV-B). To perform clustering, we compute track-level
aggregated features by average pooling across the embedded
frame-level representations [30]

ti =
1

M i

∑
k

Qφ(x
i
k) , (2)

followed by `2-normalization.
We train our model parameters at the frame-level by

minimizing the contrastive loss [12]:

L (W, y,Qφ(x1), Qφ(x2)) =

1

2

(
(1− y) · (dW )2 + y · (max(0,m− dW ))2

)
,

(3)

where x1 and x2 are a pair of face representations with y = 0
when coming from the same character, and y = 1 otherwise.
W : RD×d is a linear layer that embeds Qφ(x) such that
d � D (in our case, d = 2). dW is the Euclidean distance
dW = ‖W ·Qφ(x1)−W ·Qφ(x2)‖2, and m is the margin,
empirically chosen to be 1.

In the following, we present two strategies to automatically
obtain supervision for pairs of frames: Fig. 1 illustrates
the Track-level supervision, and Fig. 2 shows the Self-

supervision for Siamese network training.

Track-supervised Siamese network (TSiam). Video face
clustering often employs face tracking to group face detec-
tions made in each frame. The tracking acts as a form of
high precision clustering (grouping detections within a shot)
and is popularly used to automatically generate positive and
negative pairs of face images [4], [5], [34], [42]. In each
frame, we assume that characters appear on screen only once.
Thus, all face images within a track can be used as positive
pairs, while face images from co-occurring tracks are used
as negative pairs. For each frame in the track, we sample
two frames within the same track to form positive pairs, and
sample four frames from a co-occurring track (if it exists) to
form negative pairs.

Depending on the filming style of the series/movie, charac-
ters may appear alone or together on screen. As we perform
experiments on diverse datasets, for some videos 35% tracks
have co-occurring tracks, while this can be as large as 70%
for other videos. For isolated tracks, we sort all other tracks
based on track-level distances (computed on base features)
and randomly sample frames from the farthest F = 25
tracks. Note that all previous works ignore negative pairs for
singleton (not co-occurring) tracks. We will highlight their
impact in our experiments.

Self-supervised Siamese network (SSiam). Clustering is
an unsupervised task and supervision from tracks may not
always be available. An example is face clustering within
image collections (e.g. on social media platforms). To enable
the use of metric learning without any supervision we
propose an effective approach that can generate the required
pairs automatically during training. SSiam is inspired by
pseudo-relevance feedback (pseudo-RF) [45], [44] that is
commonly used in information retrieval.

We hypothesize that the first and last samples of a ranked
list based on Euclidean distance are strong candidates for
learning similarity and dissimilarity respectively. We exploit
this in a meaningful way and generate promising similar and
dissimilar pairs from a representative subset of the data.

Formally, consider a subset S = {x1, . . . ,xB} of frames
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Fig. 3. Illustration of the testing evaluation. Given our pre-trained MLP
models: TSiam and SSiam. We extract the frame-level features for the track,
followed by mean pool for a track-level representation, which is then fed
to HAC clustering with fixed number of clusters. Finally, we evaluate the
quality of clustering via Accuracy or BCubed F-measure.

from the dataset. We treat each frame xb, b = 1, . . . , B as
a query and compute Euclidean distance against every other
frame in the set. We sort rows of the resulting matrix in
an ascending order (smallest to largest distance) to obtain
an ordered index matrix O(S) = [so1; . . . ; s

o
B ]. Each row sob

contains an ordered index of the closest to farthest faces
corresponding to xb. Note that the first column of such a
matrix is the index itself at distance 0. The second column
corresponds to nearest neighbors for each frame and can
be used to form the set of positive pairs S+. Similarly, the
last column corresponds to farthest neighbors and forms the
set of negative pairs S−. Each element of the above sets
stores: query index b, nearest/farthest neighbor r, and the
Euc. distance d. However, we still need to consider the choice
of: (i) the set of frames, and (ii) training pairs from the
candidate sets of positive and negative pairs.

We address this during training and form the pairs dy-
namically by picking a random subset of B frames at
each iteration. We compute the distances, sort them, and
obtain positive and negative pairs sets S+,S−, each with
B elements. Among them, we choose K pairs from the
positive set that have the largest distances and K pairs from
the negative set with the smallest distances. This allows us
to select pairs semi-hard positives and semi-hard negatives
from the representative set of B frames. Finally, these 2K
pairs form the training batch for the network.

To encourage variety in the sample set S and reduce the
chance of false positives/negatives in the chosen 2K pairs,
B is chosen to be much larger than K (B = 1000,K =
64). Experiments on difficult datasets and generalization
studies show the benefit and effectiveness of this approach
in collecting positive and negative pairs to train the network.

Note that, SSiam can be thought of as an improved version
of pseudo-RF with batch processing. Rather than selecting
farthest negatives and closest positives for each independent
query, we emphasize that SSiam selects 2K hard pairs:
farthest positives and closest negatives by looking at the
batch of queries B jointly. This selection of sorted pairs from
the positive S+ and negative S− sets is quite important. See
experiments for a more detailed comparison of SSiam with
pseudo-RF.

IV. EVALUATION

We present our evaluation on three challenging datasets.
We first describe the clustering metric, followed by a thor-
ough analysis of the proposed methods, ending with a
comparison to state-of-the-art.

A. Experimental Setup

Datasets. We conduct experiments on three challenging
video face identification/clustering datasets: (i) Buffy the
Vampire Slayer (BF) [2], [48] (season 5, episodes 1 to 6): a
drama series with several shots in the dark at night; (ii) Big
Bang Theory (BBT) [33], [2], [41], [47] (season 1, episodes
1 to 6): a sitcom with small cast list shot mainly indoors, and
(iii) ACCIO [9]: Accio-1 first installment of “Harry Potter”
movie series with a large number of dark scenes and several
tracks with non-frontal faces.

TABLE I
DATASET STATISTICS FOR BBT [41], [42], [47], BF [48] AND

ACCIO [48].

This work Previous work
Datasets #Cast #TR (#FR) LC/SC (%) #TR (#FR)

BBT0101 5 644 (41220) 37.2 / 4.1 182 (11525)
BF0502 6 568 (39263) 36.2 / 5.0 229 (17337)
ACCIO 36 3243 (166885) 30.93/0.05 3243 (166885)

Most current works [4], [42], [47], [48] that focus on
improving feature representations for video-face clustering
assume the number of main characters/clusters is known. In
this work, for a fair comparison we follow the same protocols
that are widely employed in the previous works [30], [47],
[48] and train on BF episode 2, BBT episode 1, and ACCIO.
We also use the same number of characters as previous
methods [48], [47], however, it is important to note that we
do not discard tracks/faces that are small or have large pose
variation. When not mentioned otherwise, we use an updated
version of face tracks released by [2] that incorporate several
detectors to encompass all pan angles and in-plane rotations
up to 45 degrees. Tracks are created via an online tracking-
by-detection scheme with a particle filter.

We present a summary of our dataset in Table I, and
also indicate the number of tracks (#TR) and frames (#FR)
used in other works, showing that our data is indeed more
challenging. Additionally, it is important to note that dif-
ferent characters have wide variations in number of tracks,
indicated by the class balance largest class (LC) to smallest
class (SC). Fig. 4 shows a few examples of difficult faces
our methods have to deal with.

Evaluation metric. We use Clustering Accuracy (ACC) [48]
also called Weighted Clustering Purity (WCP) [34] as the
metric to evaluate the quality of clustering. As we compare
methods providing equal numbers of clusters (number of
main cast), ACC is a fair metric for comparison. ACC is



Fig. 4. Example images for a few characters from our dataset. We show one easy view and one difficult view. The extreme variation in illumination,
pose, resolution, and attributes (spectacles) make the datasets challenging.

computed as

ACC =
1

N

|C|∑
c=1

nc · pc , (4)

where N is the total number of tracks in the video, nc is the
number of samples in the cluster c, and cluster purity pc is
measured as the fraction of the largest number of samples
from the same label to nc. |C| corresponds to the number
of main cast members, and in our case also the number
of clusters. For ACCIO, we report BCubed Precision (P),
Recall (R) and F-measure (F) for a fair comparison with the
state-of-the-art. Figure 3 illustrates the steps for the testing
evaluation.

B. Implementation Details
CNN. We adopt the VGG-2 face CNN [3], a ResNet50
model, pre-trained on MS-Celeb-1M [11] and fine-tuned on
3.31M face images of 9131 subjects (VGG2 data). Input
RGB face images are resized to 224 × 224, and pushed
through the CNN. We extract pool5 7x7 s1 features,
resulting in xik ∈ R2048.

Siamese network MLP. The network comprises of fully-
connected layers (R2048 → R256 → R2). Note that the
second linear layer is part of the contrastive loss (corresponds
to W in Eq. 3), and we use the feature representations at R256

for clustering.
To train our Siamese network with track-level supervision

(TSiam), we obtain about 102k positive and 204k negative
frame pairs (for BBT-0101) by mining 2 positive and 4
negative pairs for each frame. For Self-supervised Siamese,
we generate pairs as described in Sec. III, using B =
1000,K = 64. Higher values values of B = 2000, 3000,
did not provide significant improvements.

The MLP is trained using the contrastive loss, and param-
eters are updated using Stochastic Gradient Descent (SGD)
with a fixed learning rate of 10−3. Since the labels are
obtained automatically, overfitting is not a concern. We
train our model until convergence (loss does not reduce
significantly).

C. Clustering Performance and Generalization
Base features. We compare track- and frame-level perfor-
mance of two popular deep face representations: VGG1 [21]

TABLE II
CLUSTERING ACCURACY ON THE BASE FACE REPRESENTATIONS.

Dataset Track Level Frame Level
VGG1 VGG2 VGG1 VGG2

BBT-0101 0.916 0.932 0.938 0.940
BF-0502 0.831 0.836 0.901 0.912

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
Cosine similarity

Positives (same identity)
Negatives (different identity)

Fig. 5. Histograms of pairwise cosine similarity between tracks of same
identity (pos) and different identity (neg) for BBT-0101.

and VGG2 [3]. Track-level results use mean-pool of frames.
Number of clusters matches number of characters. Results
are reported in Table II. Note that the differences are typically
within 1% of each other indicating that the results in the
following tables are not just due to having better CNNs
trained with more data. We refer to VGG2 features as Base
for the remainder of this paper.

Role of effective mining of +/- pairs. We emphasize that
especially in light of CNN face representations, the features
are very similar even across different identities, and thus
positive and negative pairs need to be created properly to
make the most out of them. Fig. 5 proves this point as we
see a large overlap between the cosine similarity distributions
of positive (same id) and negative (across id) track pairs on
the base features.

TSiam, impact of singleton tracks. Previous work with
video-level constraints [47], [48] and [5], ignore singleton
(not co-occurring) tracks. In TSiam, we include negative
pairs for singletons based on track distances. Table III
shows that 30-70% tracks are singleton and ignoring them



lowers accuracy by 4%. This confirms our hypothesis that
incorporating negative pairs of singletons helps improve
performance.

TABLE III
IGNORING SINGLETON TRACKS (AND POSSIBLY CHARACTERS) LEADS

TO SIGNIFICANT PERFORMANCE DROP. ACCURACY ON TRACK-LEVEL

CLUSTERING.

TSiam # Tracks
Dataset w/o Single [5] Ours Total Single Co-oc

BBT-0101 0.936 0.964 644 219 425
BF-0502 0.849 0.893 568 345 223

SSiam, comparison to pseudo-RF [45], [44]. In Pseudo-
RF, all samples are treated independent of each other, there
is no batch of data from which 2K pairs are chosen. A pair
of samples closest in distance are chosen as positive, and
farthest as negative. However, this usually corresponds to
samples that already satisfy the loss margin, thus leading to
small (possibly even 0) gradient updates. Table IV shows
that SSiam that involves sorting a batch of queries is much
more efficient over pseudo-RF as it has the potential to select
harder positives and negatives. We see a consistent gain in
performance, 3% for BBT-0101 and over 9% for BF-0502.

TABLE IV
COMPARISON OF SSiam WITH pseudo-RF.

Method BBT-0101 BF-0502

Pseudo-RF 0.930 0.814
SSiam 0.962 0.909

TABLE V
CLUSTERING ACCURACY COMPUTED AT TRACK-LEVEL ON THE

TRAINING EPISODES, WITH A COMPARISON TO ALL EVALUATED

MODELS.

Train/Test Base TSiam SSiam

BBT-0101 0.932 0.964 0.962
BF-0502 0.836 0.893 0.909

Performance on training videos. We report the clustering
performance on training videos in Table V. Note that both
TSiam and SSiam are trained in an unsupervised manner,
or with automatically generated labels. Both of the proposed
models SSiam and TSiam provide a large performance boost
over the base VGG2 features on BBT and BF.

Generalization within series. In this experiment, we evalu-
ate the generalization capability of our models. We train on
one episode each of BBT-0101 and BF-0502 and evaluate on
all other episodes of the same TV series. Table VI reports
clustering accuracy. Both SSiam or TSiam perform similar
(slightly lower/higher) to the base features, possibly due to
overfitting.

TABLE VI
CLUSTERING ACCURACY COMPUTED AT TRACK-LEVEL ACROSS

EPISODES WITHIN THE SAME TV SERIES. NUMBERS ARE AVERAGED

ACROSS 5 TEST EPISODES.

Train Test Base TSiam SSiam

BBT-0101 BBT-01[02-06] 0.935 0.930 0.914
BF-0502 BF-05[01,03-06] 0.892 0.889 0.904

TABLE VII
CLUSTERING ACCURACY WHEN EVALUATING ACROSS VIDEO SERIES.

EACH ROW INDICATES THAT THE MODEL WAS TRAINED ON ONE EPISODE

OF BBT / BF, BUT EVALUATED ON ALL 6 EPISODES OF THE TWO SERIES.

Trained BBT-01[01-06] BF-05[01-06]

TSiam BBT-0101 0.936 0.875
BF-0502 0.915 0.890

SSiam BBT-0101 0.922 0.862
BF-0502 0.883 0.905

Generalization across series. We further analyze our models
by evaluating generalization across series. From Table VII,
we wish to point out an interesting observation: TSiam and
SSiam retain their discriminative power and can transfer to
other series gently. As they learn to score similarity between
pairs of faces, the actual identity and characters do not seem
to matter much. For example, the drop when training TSiam
on BBT-0101 and evaluating on BF is 0.890 (train on BF-
0502) to 0.875.

Please note that the generalization experiments are pre-
sented here to explore the underlying properties of our
models. If achieving high performance is the only goal, we
assert that our models can be trained and evaluated on each
video rapidly and fully automatically.

TABLE VIII
CLUSTERING ACCURACY WHEN EXTENDING TO ALL NAMED

CHARACTERS WITHIN THE EPISODE. BBT-0101 HAS 5 MAIN AND 6
NAMED CHARACTERS. BF-0502 HAS 6 MAIN AND 12 NAMED

CHARACTERS.

BBT-0101 BF-0502
TSiam SSiam TSiam SSiam

Main cast 0.964 0.922 0.893 0.905
All named cast 0.958 0.922 0.829 0.870

Generalization to unseen characters. In the ideal setting,
we would like to cluster all characters appearing in an
episode including (main, other named, unknown, and back-
ground). However, this is a very difficult setting, and in
fact, disambiguating background characters is even hard for
humans and there are no datasets that include such labels. For
BBT and BF, we do however have all named characters la-
beled. Firstly, expanding the clustering experiment to include
them drastically changes the class balance. For example, BF-



TABLE IX
COMPARISON TO STATE-OF-THE-ART. METRIC IS CLUSTERING

ACCURACY (%) EVALUATED AT FRAME LEVEL. PLEASE NOTE THAT

MANY PREVIOUS WORKS USE FEWER TRACKS (# OF FRAMES) (ALSO

INDICATED IN TABLE I) MAKING THE TASK RELATIVELY EASIER. WE

USE AN UPDATED VERSION OF FACE TRACKS PROVIDED BY [2].

Method BBT-0101 BF-0502 Data Source
BBT BF

ULDML (ICCV ’11) [4] 57.00 41.62 − [4]
HMRF (CVPR ’13) [42] 59.61 50.30 [26] [7]
HMRF2 (ICCV ’13) [41] 66.77 − [26] −
WBSLRR (ECCV ’14) [43] 72.00 62.76 − [7]
VDF (CVPR ’17) [30] 89.62 87.46 [2] [2]
Imp-Triplet (PacRim ’16) [47] 96.00 − [26] −
JFAC (ECCV ’16) [48] − 92.13 − [7]

Ours (with HAC)

TSiam 98.58 92.46
SSiam 99.04 90.87 [2]* [2]*

0502 has 6 main and 12 named characters with class balance
36.2/5.0 to 40.8/0.1.

We present clustering accuracy for this setting in Ta-
ble VIII. Both proposed methods show a drop in performance
when extending to unseen characters. Note that the models
have been trained on only the main characters data and tested
on all (including unseen) characters. However, the drop is
small when adding just 1 new character (BBT-0101) vs.
introduction of 6 in BF-0502.

SSiam’s performance scales well, probably since it is
trained with a diverse set of pairs (dynamically generated
during training) and can generalize to unseen characters.

D. Comparison with the state-of-the-art

BBT and BF. We compare our proposed methods (TSiam,
and SSiam) with the state-of-the-art approaches in Table IX.
We report clustering accuracy (%) on two videos: BBT-0101
and BF-0502. Historically, previous works have reported
performance at a frame-level. We follow this for TSiam and
SSiam.

Note that our evaluation uses 2-4 times larger number
of frames than previous works [48], [47] making direct
comparison hard. Specifically in BBT-0101 we have 41,220
frames while [47] uses 11,525 frames. Similarly, we use
39,263 frames for BF-0502 (vs. 17,337 [48]). Even though
we cluster more frames and tracks (with more visual diver-
sity), our approaches are comparable to or even better than
the current results.

TSiam and SSiam are better than the improved triplet
method [47] on BBT-0101. SSiam obtains 99.04% accuracy
which is 3.04% higher performance in absolute gains. On
BF-0502, TSiam performs the best with 92.46% which is
0.33% better than the JFAC [48].

ACCIO. We evaluate our methods on ACCIO dataset with
36 named characters, 3243 tracks, and 166885 faces. The
largest to smallest cluster ratios are very skewed: 30.65%

and 0.06%. In fact, half the characters correspond to less
than 10% of all tracks. Table X presents the results when
performing clustering to yield 36 clusters (equivalent to the
number of characters). In addition, as in [48], Table XI (num.
clusters = 40) shows that our discriminative methods are not
affected much by this skew, and in fact improve performance
by a significant margin over the state-of-the-art.

TABLE X
PERFORMANCE COMPARISON OF TSIAM AND SSIAM WITH JFAC [48]

ON ACCIO.

#cluster=36
Methods P R F

JFAC (ECCV ’16) [48] 0.690 0.350 0.460

Ours (with HAC)

TSiam 0.749 0.382 0.506
SSiam 0.766 0.386 0.514

TABLE XI
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THE ACCIO

DATASET.

# clusters=40
Methods P R F

DIFFRAC-DeepID2+ (ICCV ’11) [48] 0.557 0.213 0.301
WBSLRR-DeepID2+ (ECCV ’14) [48] 0.502 0.206 0.292
HMRF-DeepID2+ (CVPR ’13) [48] 0.599 0.23.0 0.332
JFAC (ECCV ’16) [48] 0.711 0.352 0.471

Ours (with HAC)

TSiam 0.763 0.362 0.491
SSiam 0.777 0.371 0.502

Computational complexity. Our models essentially consist
of a few linear layers and are very fast to compute at
inference time. In fact, training the SSiam for about 15
epochs on BBT-0101 requires less than 25 minutes (on a
GTX 1080 GPU using the matconvnet framework [36]).

V. CONCLUSION

We proposed simple, unsupervised approaches for face
clustering in videos, by distilling the identity factor from
deep face representations. We showed that discriminative
models can leverage dynamic generation of positive/negative
constraints based on ordered face distances and do not have
to only rely on track-level information that is typically used.
Our proposed models are unsupervised (or use automatically
generated labels) and can be trained and evaluated efficiently
as they involve only a few matrix multiplications.

We conducted experiments on three challenging video
datasets, comparing their differences in usage in past works.
Overall, our models are very fast to train and evaluate and
outperform the state-of-the-art while operating on datasets
that contain more tracks with large changes in appearance.
Acknowledgements: This work is supported by the DFG, a
German Research Foundation - funded PLUMCOT project.
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