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Why Unsupervised Object Detection?
● Obtaining human annotations is costly and tedious.

● Most existing visual data is unlabeled. 

● Humans and animals learn to perceive objects without 

explicit labels at all. 

● In this paper, we study unsupervised object detection 

from LiDAR point clouds in real-world self-driving scenes.
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OYSTER: Bootstrapping + Self-Training

Track, Refine, Retrain, Repeat

● We use an unsupervised offline tracker to find object tracks of various lengths, 

discard short tracks, refine long tracks, re-train on refined pseudo-labels, repeat.

● Refinement uses temporal consistency of object tracks as a self-supervision signal: 

objects tend to stay the same 3D size and move in a temporally consistent way.

● Near-range point clustering provides initial pseudo-labels. We utilize translation 

equivariance of CNNs and specialized data augmentations to auto-label long range.
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● Construct an object discovery loop where the detector is 

iteratively re-trained on pseudo-labels of increasingly 
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