Meta-Learning to Improve Pre-Training

Aniruddh Raghu, Jonathan Lorraine, Simon Kornblith, Matthew McDermott, David Duvenaud

Pre-training (PT) followed by Fine-tuning (FT): An important neural network training paradigm...

Pre-training (PT) followed by Fine-tuning (FT): An important neural network training paradigm...

Examples include:

- Supervised PT on ImageNet
- (Masked) language modelling for NLP
- Self-supervised PT: SimCLR, BYOL, ...

... but introduces many complex design choices (meta-parameters), especially during pre-training (PT)

... but introduces many complex design choices (meta-parameters), especially during pre-training (PT)

... but introduces many complex design choices (meta-parameters), especially during pre-training (PT)

Meta-parameters may include:

- Task weights for multitask PT
- Sampling strategies
- Augmentation strategies for self-supervised PT
- Noise models for PT
- ...

Optimizing these meta-parameters is hard!

Optimizing these meta-parameters is hard!

- Random/Grid Search, BayesOpt
 - Slow, may not scale to high-dimensional meta-parameters

Optimizing these meta-parameters is hard!

- Random/Grid Search, BayesOpt
 - Slow, may not scale to high-dimensional meta-parameters

- Gradient based
 - How to efficiently obtain gradients through two optimization stages (PT and FT)?

This work: An efficient and scalable algorithm to optimize these meta-parameters

Standard Pre-Training (PT)

Meta-Parameterized Pre-Training (PT)

Define meta-parameters: ϕ

Define meta-parameters: ϕ

These parameterize a PT algorithm: Alg_{PT}

Define meta-parameters: ϕ

These parameterize a PT algorithm: Alg_{PT}

Used when PT a neural network:

$$f(x;\theta)$$

Define meta-parameters: ϕ

These parameterize a PT algorithm: Alg_{PT}

Used when PT a neural network:

$$f(x;\theta)$$

Result: Pre-trained parameters:

$$\theta^*_{\rm PT}$$

Following PT, the network is fine-tuned on a FT dataset using Alg_{FT}

Following PT, the network is fine-tuned on a FT dataset using ${
m Alg}_{
m FT}$

Result: Fine-tuned parameters: $heta_{
m FT}^*$

Following PT, the network is fine-tuned on a FT dataset using $\,Alg_{FT}$

Result: Fine-tuned parameters: $heta_{
m FT}^*$

Inducing some loss on a FT validation dataset: $L_{
m FT}$

Following PT, the network is fine-tuned on a FT dataset using $\mathrm{Alg}_{\mathrm{FT}}$

Result: Fine-tuned parameters: $heta_{
m FT}^*$

Inducing some loss on a FT validation dataset: $L_{
m FT}$

Optimization problem: How do we adjust ϕ to minimize the FT loss $L_{\rm FT}$?

Optimization problem: How do we adjust ϕ to minimize the FT loss $L_{\rm FT}$?

Optimization problem: How do we adjust ϕ to minimize the FT loss $L_{\rm FT}$? We want the gradient: $\frac{\partial L_{\rm FT}}{\partial \phi}$

Optimization problem: How do we adjust ϕ to minimize the FT loss $L_{\rm FT}$? We want the gradient: $\frac{\partial L_{\rm FT}}{\partial \phi}$

By chain rule, the gradient of FT loss wrt ϕ is a product of sets of terms arising from pre-training and fine-tuning.

Optimization problem: How do we adjust ϕ to minimize the FT loss $L_{\rm FT}$? We want the gradient: $\frac{\partial L_{\rm FT}}{\partial \phi}$

By chain rule, the gradient of FT loss wrt ϕ is a product of sets of terms arising from pre-training and fine-tuning.

$$\stackrel{\text{Informally:}}{=} \frac{\partial L_{\rm FT}}{\partial \phi} = \frac{\partial L_{\rm FT}}{\partial \theta_{\rm FT}^*} \times \frac{\partial {\rm Alg}_{\rm FT}}{\partial \theta_{\rm PT}^*} \times \frac{\partial {\rm Alg}_{\rm PT}}{\partial \phi}$$

Optimization problem: How do we adjust ϕ to minimize the FT loss $L_{\rm FT}$? We want the gradient: $\frac{\partial L_{\rm FT}}{\partial \phi}$

By chain rule, the gradient of FT loss wrt ϕ is a product of sets of terms arising from pre-training and fine-tuning.

Informally:

$$\frac{\partial L_{\rm FT}}{\partial \phi} = \frac{\partial L_{\rm FT}}{\partial \theta_{\rm FT}^*} \times \frac{\partial {\rm Alg}_{\rm FT}}{\partial \theta_{\rm PT}^*} \times \frac{\partial {\rm Alg}_{\rm PT}}{\partial \phi}$$

Lasy to compute: Use direct backprop Harder to compute: Use (Truncated) Backprop through training

Harder to compute: Use Implicit differentiation

In practice, learn meta-parameters and network parameters online for efficiency

In practice, learn meta-parameters and network parameters online for efficiency

In practice, learn meta-parameters and network parameters online for efficiency

For *T* meta-optimization steps:

• Do P steps of pre- training, obtain: θ_{PT}^{*}

In practice, learn meta-parameters and network parameters online for efficiency

- Do P steps of pre- training, obtain: $\theta_{\rm PT}^*$
- Do K steps of fine-tuning: $\theta^*_{\rm FT}$

In practice, learn meta-parameters and network parameters online for efficiency

- Do P steps of pre- training, obtain: θ_{PT}^{*}
- Do K steps of fine-tuning: $heta_{\mathrm{FT}}^*$
- Compute FT validation set loss: $L_{\rm FT}$

In practice, learn meta-parameters and network parameters online for efficiency

- Do P steps of pre- training, obtain: θ_{PT}^{*}
- Do K steps of fine-tuning: $heta_{\mathrm{FT}}^*$
- Compute FT validation set loss: $L_{\rm FT}$
- Compute meta-gradients using previous approximation: $\frac{\partial L_{\rm FT}}{\partial \phi}$

In practice, learn meta-parameters and network parameters online for efficiency

- Do P steps of pre- training, obtain: $heta_{
 m PT}^*$
- Do K steps of fine-tuning: $heta_{\mathrm{FT}}^*$
- Compute FT validation set loss: $L_{\rm FT}$
- Compute meta-gradients using previous approximation: $\frac{\partial L_{\rm FT}}{\partial \phi}$
- Perform meta-parameter update: $\phi \leftarrow \phi \eta \frac{\partial L_{\rm FT}}{\partial \phi}$

Experimental evaluation

Synthetic Experiments:

Can our algorithm learn optimal meta-parameters?

Synthetic Experiments:

Can our algorithm learn optimal meta-parameters?

Yes! In two synthetic MNIST domains, the algorithm finds optimal meta-parameters.

Synthetic Experiments:

Can our algorithm learn optimal meta-parameters?

Yes! In two synthetic MNIST domains, the algorithm finds optimal meta-parameters.

• PT augmentations: *learns the optimal augmentation distribution*

• PT example importance weighting with noisy labels: *downweights noisy label examples*

Real-world experimental evaluation

Study two settings:

- 1) Optimizing task weights for multi-task PT with GNNs
- 2) Optimizing data augmentation pipeline for self-supervised learning with electrocardiogram signals

Focus on 1) in this talk

• **Task:** Given input Protein-Protein Interaction graph, predict the presence of several biological functions [1]

- **Task:** Given input Protein-Protein Interaction graph, predict the presence of several biological functions [1]
- PT: Input graphs (x) together with 5000 binary attributes (y)
 FT: Input graphs (x) together with 40 (distinct) binary attributes (y)

[1] Strategies for Pre-training Graph Neural Networks, Hu et al., ICLR 2020

- **Task:** Given input Protein-Protein Interaction graph, predict the presence of several biological functions [1]
- PT: Input graphs (x) together with 5000 binary attributes (y)
 FT: Input graphs (x) together with 40 (distinct) binary attributes (y)
- Meta-parameters: 5000-dimensional vector representing a weight for each task in PT, used to weight PT loss.

• Baselines:

- No PT
- Supervised PT: weights set to 1
- CoTrain: PT jointly on all labels
- CoTrain + PCGrad [1]: Like above, but apply PCGrad to reduce conflicting gradient updates among tasks

[1] Gradient Surgery for Multi-Task Learning, Yu et al., NeurIPS 2020

Results:	Method	Average AUC across tasks
	No PT	66.6 ± 0.7
	Graph Supervised PT	74.7 ± 0.1
	CoTrain	70.2 ± 0.3
	CoTrain + PCGrad	69.4 ± 0.2
	Meta-Parameterized PT	$\textbf{78.6} \pm \textbf{0.1}$

Meta-Parameterized PT improves significantly on baselines!

Results:	Method	Average AUC across tasks
	No PT	66.6 ± 0.7
	Graph Supervised PT	74.7 ± 0.1
	CoTrain	70.2 ± 0.3
	CoTrain + PCGrad	69.4 ± 0.2
	Meta-Parameterized PT	$\textbf{78.6} \pm \textbf{0.1}$

Meta-Parameterized PT improves significantly on baselines!

- Additional experimental settings and baselines in paper
 - Testing generalization to new tasks
 - Further studies on sample efficiency
 - Other meta-parameter learning baselines

• Pre-training followed by Fine-tuning:

• Pre-training followed by Fine-tuning:

+ A powerful and successful neural network training paradigm

- Pre-training followed by Fine-tuning:
 - + A powerful and successful neural network training paradigm
 - Comes with many design choices (meta-parameters) during pre-training

- Pre-training followed by Fine-tuning:
 - + A powerful and successful neural network training paradigm
 - Comes with many design choices (meta-parameters) during pre-training
- This work:
 - Formalize the problem of optimizing these meta-parameters
 - Propose a scalable meta-learning algorithm to do so

- Pre-training followed by Fine-tuning:
 - + A powerful and successful neural network training paradigm
 - Comes with many design choices (meta-parameters) during pre-training
- This work:
 - Formalize the problem of optimizing these meta-parameters
 - Propose a scalable meta-learning algorithm to do so
- **Experimental evaluation**: our algorithm can effectively optimize these meta-parameters, and improves performance in two-real world domains