Meta-Learning to Improve Pre-Training

Aniruddh Raghu, Jonathan Lorraine, Simon Kornblith,
Matthew McDermott, David Duvenaud

Ill T‘gﬁgg?@ Google Research

Pre-training (PT) followed by Fine-tuning (FT):
An important neural network training paradigm...

Pre-training Phase Fine-tuning Phase

Pre-Training H Pre-Trained } _______ . { Fine-Tuning _I
Algorithm Model l Algorithm]

| Pre-Train I Fine-Tune |
Dataset . Dataset I

Pre-training (PT) followed by Fine-tuning (FT):
An important neural network training paradigm...

Examples include:

e Supervised PT on ImageNet
® (Masked) language modelling for NLP

e Self-supervised PT: SimCLR, BYOL, ...

... but introduces many complex design choices
(meta-parameters), especially during pre-training (PT)

... but introduces many complex design choices
(meta-parameters), especially during pre-training (PT)

Pre-training Phase

Pre-Training Pre-Trained
I [Model]"[Algorithm]7{ Model]
f
Pre-Train
Dataset
L

... but introduces many complex design choices
(meta-parameters), especially during pre-training (PT)

Pre-training Phase

— (=n
| Pre-Training I re-T.aimed
I [gzl] Algorithm l Model
{

Pre-Train
Dataset
L

.
J

Meta-parameters may include:

Task weights for multitask PT
Sampling strategies
Augmentation strategies for
self-supervised PT

Noise models for PT

Optimizing these meta-parameters is hard!

Optimizing these meta-parameters is hard!

e Random/Grid Search, BayesOpt

o Slow, may not scale to high-dimensional meta-parameters

Optimizing these meta-parameters is hard!

e Random/Grid Search, BayesOpt

o Slow, may not scale to high-dimensional meta-parameters

® Gradient based

o How to efficiently obtain gradients through two optimization
stages (PT and FT)?

This work: An efficient and scalable algorithm to
optimize these meta-parameters

Standard Pre-Training (PT)

Standard Pre-Training Fine-Tuning
r I I j f EEE § =N § =S § =SS §f =S | =N F =Em = q
Pre-Training I Fine-Tuning i
Model . Pre-trained Model [---4------- = . Fine-tuned Model |
Algorithm 1 | Algorithm)
I
Pre-training | Fine-tuning)
Dataset - Dataset I

|

Meta-Parameterized Pre-Training (PT)

Meta-Parameterized Pre-Training

Dataset

[Pre-training] Fine-tuning] |
Dataset

- Meta-Parameters :

: data/task reweighting, augmentation

- policies, noise models, ... -

. Standard Pre-Training - Fine-Tuning

™ F I I ﬂ - n —_—] _— n —_—] _— n —_—] _— n q
i Model Pre Trz?mlng Pre-trained Model [---{--%----- - Fine Tgnmg Fine-tuned Model I
. Algorithm 1 | Algorithm)

)

More formally...

Define meta-parameters: ¢

More formally...

Define meta-parameters: ¢

These parameterize a PT algorithm: AlgPT

More formally...

Define meta-parameters: ¢

These parameterize a PT algorithm: AlgPT

Used when PT a neural network: f (QZ, 6)

More formally...

Define meta-parameters: ¢

These parameterize a PT algorithm: AlgPT

Used when PT a neural network: f (QZ, 6)

. >k
Result: Pre-trained parameters: 9
PT

More formally...

Following PT, the network is fine-tuned on a FT dataset using AlgFT

More formally...

Following PT, the network is fine-tuned on a FT dataset using AlgFT

Result: Fine-tuned parameters: H;T

More formally...

Following PT, the network is fine-tuned on a FT dataset using AlgFT

Result: Fine-tuned parameters: H;T

Inducing some loss on a FT validation dataset: LFT

More formally...

Following PT, the network is fine-tuned on a FT dataset using AlgFT

Result: Fine-tuned parameters: H;T

Inducing some loss on a FT validation dataset: LFT

Optimization problem: How do we adjust ¢ to minimize the FT loss LFT?

Gradient-based learning of meta-parameters

Optimization problem: How do we adjust ¢ to minimize the FT loss LFT?

Gradient-based learning of meta-parameters

Optimization problem: How do we adjust ¢ to minimize the FT loss LFT?

Lyt

0o

We want the gradient:

Gradient-based learning of meta-parameters

Optimization problem: How do we adjust ¢ to minimize the FT loss LFT?
LT

0o

By chain rule, the gradient of FT loss wrt ¢ is a product of sets of terms arising
from pre-training and fine-tuning.

We want the gradient:

Gradient-based learning of meta-parameters

Optimization problem: How do we adjust ¢ to minimize the FT loss LFT?
LT

0o

By chain rule, the gradient of FT loss wrt ¢ is a product of sets of terms arising
from pre-training and fine-tuning.

We want the gradient:

Informally: aLFT - aLFT ® aAlgFT % aAA‘lgPT

Op 00h. 005 O

Gradient-based learning of meta-parameters

Optimization problem: How do we adjust ¢ to minimize the FT loss LFT?

Lyt
0o

By chain rule, the gradient of FT loss wrt ¢ is a product of sets of terms arising

We want the gradient:

from pre-training and fine-tuning.

Need to differentiate through two optimization problems!

Informally: 5’LFT o 6’LFT « i@AlgFT v 8A1gPT i
06 00h. | 005, 0p !

I m e e e o e e e e e e e = = = J

Gradient-based learning of meta-parameters

Informally:

OLpr OLpr y OAlgpT y OAlgpr

Op 00in 00h O¢

Key insight: Approximate gradient by combining backpropagation through training
and implicit differentiation

Gradient-based learning of meta-parameters

Informally: === -- I

OLpT _: 5’LFT i>< OAlgpT y OAlgpT

06 | 00py | 00y 06

|
[-

Easy to compute:
Use direct backprop

Key insight: Approximate gradient by combining backpropagation through training
and implicit differentiation

Gradient-based learning of meta-parameters

Informally: F=———— | Fm————— l
| | I l
OLpr _1OLpr, OAlgpr), OAlgpr
[* 1”1 >k I
Eas:/ t: ct)m_pL;e:_) Ha_rde_r ';) c_orTTpL:te-:lUse

Use direct backprop Truncated Backprop
through training

Key insight: Approximate gradient by combining backpropagation through training
and implicit differentiation

Gradient-based learning of meta-parameters

Informally: r——-—--- | Fm———— | m————— |
I 1| I l I
8LFT :: 8LFT :X :6’AlgFT: v :5‘AlgPT:
l * 1”0 * | l |
dp 1 00pp . 1 OOpp 1 1 0P
Easy to compute: Harder to compute: Use Harder to compute: Use

Use direct backprop Truncated Backprop

Implicit differentiation
through training

Key insight: Approximate gradient by combining backpropagation through training
and implicit differentiation

OLyT

O

FT Loss Gradient

Easy to compute:
Use direct backprop

FT Best Response Jacobian PT Best Response Jacobian

X

iaAlgFTi v iaAlgPT i
00y 1 0p

Harder to compute:
Use (Truncated) Backprop
through training

Harder to compute:
Use Implicit differentiation

An Online Meta-Learning Algorithm

In practice, learn meta-parameters and network parameters online for efficiency

An Online Meta-Learning Algorithm

In practice, learn meta-parameters and network parameters online for efficiency

For T meta-optimization steps:

An Online Meta-Learning Algorithm

In practice, learn meta-parameters and network parameters online for efficiency
For T meta-optimization steps:

e Do P steps of pre- training, obtain: Op

An Online Meta-Learning Algorithm

In practice, learn meta-parameters and network parameters online for efficiency
For T meta-optimization steps:

e Do P steps of pre- training, obtain: Op
® Do K steps of fine-tuning: QET

An Online Meta-Learning Algorithm

In practice, learn meta-parameters and network parameters online for efficiency
For T meta-optimization steps:

e Do P steps of pre- training, obtain: Op
® Do K steps of fine-tuning: QET
e Compute FT validation set loss: L

An Online Meta-Learning Algorithm

In practice, learn meta-parameters and network parameters online for efficiency

For T meta-optimization steps:

Do P steps of pre- training, obtain: 0pr

Do K steps of fine-tuning: O

Compute FT validation set loss: L DL
Compute meta-gradients using previous approximation: ¢

An Online Meta-Learning Algorithm

In practice, learn meta-parameters and network parameters online for efficiency
For T meta-optimization steps:

Do P steps of pre- training, obtain: 0pr

Do K steps of fine-tuning: O

Compute FT validation set loss: L DL
Compute meta-gradients using previous approximation: ¢

OLpT
ol

® Perform meta-parameter update: ¢ < ¢ — 7

Experimental evaluation

Synthetic Experiments:
Can our algorithm learn optimal meta-parameters?

Synthetic Experiments:
Can our algorithm learn optimal meta-parameters?

Yes! In two synthetic MNIST domains, the algorithm finds optimal
meta-parameters.

Synthetic Experiments:
Can our algorithm learn optimal meta-parameters?

Yes! In two synthetic MNIST domains, the algorithm finds optimal
meta-parameters.

=5
c

360 - _______________

e PT augmentations: |
learns the optimal augmentation distribution §j§ / """"""""""" -

e PT example importance weighting with noisy labels:
downweights noisy label examples

Average Assigned Weight
o H

No Noise Noise

Real-world experimental evaluation

Study two settings:
1) Optimizing task weights for multi-task PT with GNNs

2) Optimizing data augmentation pipeline for self-supervised learning
with electrocardiogram signals

Focus on 1) in this talk

Multitask Pre-training with GNNs

® Task: Given input Protein-Protein Interaction graph, predict the presence of several
biological functions [1]

[1] Strategies for Pre-training Graph Neural Networks, Hu et al., ICLR 2020

Multitask Pre-training with GNNs

® Task: Given input Protein-Protein Interaction graph, predict the presence of several
biological functions [1]

® PT: Input graphs (x) together with 5000 binary attributes (y)
FT: Input graphs (x) together with 40 (distinct) binary attributes (y)

[1] Strategies for Pre-training Graph Neural Networks, Hu et al., ICLR 2020

Multitask Pre-training with GNNs

® Task: Given input Protein-Protein Interaction graph, predict the presence of several
biological functions [1]

® PT: Input graphs (x) together with 5000 binary attributes (y)
FT: Input graphs (x) together with 40 (distinct) binary attributes (y)

® Meta-parameters: 5000-dimensional vector representing a weight for each task in
PT, used to weight PT loss.

[1] Strategies for Pre-training Graph Neural Networks, Hu et al., ICLR 2020

Multitask Pre-training with GNNs

® Baselines:

© NoPT
Supervised PT: weights setto 1

O
o CoTrain: PT jointly on all labels
o CoTrain + PCGrad [1]: Like above, but apply PCGrad to reduce conflicting

gradient updates among tasks

[1] Gradient Surgery for Multi-Task Learning, Yu et al., NeurlPS 2020

Multitask Pre-training with GNNs

* Results: Method Average AUC across tasks
No PT 66.6 + 0.7
Graph Supervised PT 747 £ 0.1
CoTrain 70.2 + 0.3
CoTrain + PCGrad 69.4 + 0.2
Meta-Parameterized PT 78.6 = 0.1

Meta-Parameterized PT improves significantly on baselines!

Multitask Pre-training with GNNs

* Results: Method Average AUC across tasks
No PT 66.6 + 0.7
Graph Supervised PT 747 £ 0.1
CoTrain 70.2 + 0.3
CoTrain + PCGrad 69.4 + 0.2
Meta-Parameterized PT 78.6 = 0.1

Meta-Parameterized PT improves significantly on baselines!

e Additional experimental settings and baselines in paper
o Testing generalization to new tasks
o Further studies on sample efficiency
o Other meta-parameter learning baselines

Conclusion

® Pre-training followed by Fine-tuning:

Conclusion

® Pre-training followed by Fine-tuning:

+ A powerful and successful neural network training paradigm

Conclusion

® Pre-training followed by Fine-tuning:
+ A powerful and successful neural network training paradigm

- Comes with many design choices (meta-parameters) during pre-training

Conclusion

® Pre-training followed by Fine-tuning:
+ A powerful and successful neural network training paradigm
- Comes with many design choices (meta-parameters) during pre-training

e This work:
o Formalize the problem of optimizing these meta-parameters
o Propose a scalable meta-learning algorithm to do so

Conclusion

® Pre-training followed by Fine-tuning:
+ A powerful and successful neural network training paradigm
- Comes with many design choices (meta-parameters) during pre-training

e This work:
o Formalize the problem of optimizing these meta-parameters
o Propose a scalable meta-learning algorithm to do so

e Experimental evaluation: our algorithm can effectively optimize these
meta-parameters, and improves performance in two-real world domains

