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Pre-training (PT) followed by Fine-tuning (FT):
An important neural network training paradigm...
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Pre-training (PT) followed by Fine-tuning (FT):
An important neural network training paradigm...

Examples include:

e Supervised PT on ImageNet
® (Masked) language modelling for NLP

e Self-supervised PT: SimCLR, BYOL, ...




... but introduces many complex design choices
(meta-parameters), especially during pre-training (PT)



... but introduces many complex design choices
(meta-parameters), especially during pre-training (PT)

Pre-training Phase

Pre-Training Pre-Trained
I [ Model ]"[ Algorithm ]7{ Model ]
f
Pre-Train
Dataset
L




... but introduces many complex design choices
(meta-parameters), especially during pre-training (PT)
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Meta-parameters may include:

Task weights for multitask PT
Sampling strategies
Augmentation strategies for
self-supervised PT

Noise models for PT
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Optimizing these meta-parameters is hard!

e Random/Grid Search, BayesOpt

o Slow, may not scale to high-dimensional meta-parameters

® Gradient based

o How to efficiently obtain gradients through two optimization
stages (PT and FT)?



This work: An efficient and scalable algorithm to
optimize these meta-parameters



Standard Pre-Training (PT)
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Meta-Parameterized Pre-Training (PT)

Meta-Parameterized Pre-Training
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- Meta-Parameters :

: data/task reweighting, augmentation

- policies, noise models, ... -
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More formally...

Define meta-parameters: ¢

These parameterize a PT algorithm: AlgPT

Used when PT a neural network: f (QZ, 6)

. >k
Result: Pre-trained parameters: 9
PT
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More formally...

Following PT, the network is fine-tuned on a FT dataset using AlgFT

Result: Fine-tuned parameters: H;T

Inducing some loss on a FT validation dataset: LFT

Optimization problem: How do we adjust ¢ to minimize the FT loss LFT?
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Optimization problem: How do we adjust ¢ to minimize the FT loss LFT?
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By chain rule, the gradient of FT loss wrt ¢ is a product of sets of terms arising
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Gradient-based learning of meta-parameters

Optimization problem: How do we adjust ¢ to minimize the FT loss LFT?

Lyt
0o

By chain rule, the gradient of FT loss wrt ¢ is a product of sets of terms arising

We want the gradient:

from pre-training and fine-tuning.

Need to differentiate through two optimization problems!

Informally: 5’LFT o 6’LFT « i@AlgFT v 8A1gPT i
06  00h. | 005, 0p !
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Gradient-based learning of meta-parameters

Informally:

OLpr  OLpr y OAlgpT y OAlgpr
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Key insight: Approximate gradient by combining backpropagation through training
and implicit differentiation



Gradient-based learning of meta-parameters

Informally: === -- I
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Easy to compute:
Use direct backprop

Key insight: Approximate gradient by combining backpropagation through training
and implicit differentiation



Gradient-based learning of meta-parameters

Informally: F=———— | Fm————— l
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Use direct backprop Truncated Backprop
through training

Key insight: Approximate gradient by combining backpropagation through training
and implicit differentiation



Gradient-based learning of meta-parameters

Informally: r——-—--- | Fm———— | m————— |
I 1| I l I
8LFT :: 8LFT :X :6’AlgFT: v :5‘AlgPT:
l * 1”0 * | l |
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Easy to compute: Harder to compute: Use Harder to compute: Use

Use direct backprop Truncated Backprop

Implicit differentiation
through training

Key insight: Approximate gradient by combining backpropagation through training
and implicit differentiation
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FT Loss Gradient

Easy to compute:
Use direct backprop

FT Best Response Jacobian PT Best Response Jacobian

X

iaAlgFTi v iaAlgPT i
00y 1 0p

Harder to compute:
Use (Truncated) Backprop
through training

Harder to compute:
Use Implicit differentiation
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Do P steps of pre- training, obtain: 0pr
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An Online Meta-Learning Algorithm

In practice, learn meta-parameters and network parameters online for efficiency
For T meta-optimization steps:

Do P steps of pre- training, obtain: 0pr

Do K steps of fine-tuning: O

Compute FT validation set loss: L DL
Compute meta-gradients using previous approximation: ¢

OLpT
ol

® Perform meta-parameter update: ¢ < ¢ — 7



Experimental evaluation
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Synthetic Experiments:
Can our algorithm learn optimal meta-parameters?

Yes! In two synthetic MNIST domains, the algorithm finds optimal
meta-parameters.
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e PT augmentations: |
learns the optimal augmentation distribution §j§ / """"""""""" -

e PT example importance weighting with noisy labels:
downweights noisy label examples

Average Assigned Weight
o H

No Noise Noise



Real-world experimental evaluation

Study two settings:
1) Optimizing task weights for multi-task PT with GNNs

2) Optimizing data augmentation pipeline for self-supervised learning
with electrocardiogram signals

Focus on 1) in this talk



Multitask Pre-training with GNNs

® Task: Given input Protein-Protein Interaction graph, predict the presence of several
biological functions [1]
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Multitask Pre-training with GNNs

® Task: Given input Protein-Protein Interaction graph, predict the presence of several
biological functions [1]

® PT: Input graphs (x) together with 5000 binary attributes (y)
FT: Input graphs (x) together with 40 (distinct) binary attributes (y)

® Meta-parameters: 5000-dimensional vector representing a weight for each task in
PT, used to weight PT loss.

[1] Strategies for Pre-training Graph Neural Networks, Hu et al., ICLR 2020



Multitask Pre-training with GNNs

® Baselines:

© NoPT
Supervised PT: weights setto 1

O
o CoTrain: PT jointly on all labels
o CoTrain + PCGrad [1]: Like above, but apply PCGrad to reduce conflicting

gradient updates among tasks

[1] Gradient Surgery for Multi-Task Learning, Yu et al., NeurlPS 2020



Multitask Pre-training with GNNs

* Results: Method Average AUC across tasks
No PT 66.6 + 0.7
Graph Supervised PT 747 £ 0.1
CoTrain 70.2 + 0.3
CoTrain + PCGrad 69.4 + 0.2
Meta-Parameterized PT 78.6 = 0.1

Meta-Parameterized PT improves significantly on baselines!



Multitask Pre-training with GNNs

* Results: Method Average AUC across tasks
No PT 66.6 + 0.7
Graph Supervised PT 747 £ 0.1
CoTrain 70.2 + 0.3
CoTrain + PCGrad 69.4 + 0.2
Meta-Parameterized PT 78.6 = 0.1

Meta-Parameterized PT improves significantly on baselines!

e Additional experimental settings and baselines in paper
o Testing generalization to new tasks
o Further studies on sample efficiency
o Other meta-parameter learning baselines
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Conclusion

® Pre-training followed by Fine-tuning:
+ A powerful and successful neural network training paradigm
- Comes with many design choices (meta-parameters) during pre-training

e This work:
o Formalize the problem of optimizing these meta-parameters
o Propose a scalable meta-learning algorithm to do so

e Experimental evaluation: our algorithm can effectively optimize these
meta-parameters, and improves performance in two-real world domains



