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● Hypergradient for a given solution                   is:

● A bilevel optimization problem consists of two nested sub-problems, where the outer 
problem must be solved subject to optimality of the inner problem:
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● The response Jacobian           is a central quantity of interest for many applications

The Many Uses of Response Jacobians

● Hyperparameter optimization (including data augmentation and NAS)
● Dataset distillation
● GANs
● Actor-critic methods and multi-agent RL
● Adversarial training
● Meta-learning

● Influence functions to estimate the effect of changing the weighting of a training point
● Implicit layers in equilibrium models
● Optimizing convergent recurrent neural networks (via recurrent backpropagation)

Response Jacobians in Bilevel Settings

Response Jacobians in Non-Bilevel Settings



● The two main ways to compute the best-response Jacobian are:
1. Differentiation through unrolling (a.k.a. iterative differentiation)

2. Implicit differentiation, applicable when we are at the converged solution to the inner problem:

● Exactly computing a best-response or its Jacobian is expensive
○ We typically approximate        or      or both → leads to two sources of 

approximation error for the hypergradient.

● Common to approximate the best-response via truncated unrolls of the inner problem:

Computing the Response and its Jacobian

● The exact inverse Hessian is intractable to compute for large networks; two common 
approximations involve: 1) using truncated conjugate gradient 
(CG)~\cite{pedregosa2016hyperparameter}, and 2) using the truncated Neumann 
series~\cite{liao2018reviving,lorraine2020optimizing}



● The inverse Hessian is intractable to compute for large networks
● Two main approximations to the inverse Hessian have been proposed in the literature

○ Both can be implemented efficiently through Hessian-vector products

Implicit Differentiation

Conjugate Gradient (CG) Neumann Series

Connection between diff-through-opt and 
implicit differentiation: unrolling differentiation for 
i steps starting from optimal inner parameters is 
equivalent to approximating the inverse Hessian 
with the first i terms in the Neumann series.

● CG is only applicable when the matrix 
to be inverted is PSD

● Empirically, using truncated CG can 
have very different inductive bias than 
truncated Neumann

● Solve the linear system with CG



● When the inner problem is overparameterized, there are many equally good solutions to the inner 
optimization, so the best response is a set and not unique

● Different choices of inner parameters yield different best-response Jacobians, which lead to different 
hypergradients

Uniqueness of the Inner Solution
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● Cold-start: re-initialize the inner parameters and run the inner optimization to 
convergence each time we compute the gradient for the outer parameters

○ Impractical due to the computational expense of full inner optimization
● Warm-start: jointly optimize the inner and outer parameters in an online fashion, e.g., 

alternating gradient steps with their respective objectives
○ Here, the inner params are warm-started from the approximate solution to the inner 

optimization given the outer params in the previous iteration
○ The optimization dynamics can lead to an implicit regularization effect

Cold-Start and Warm-Start Bilevel Optimization
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Training on the data directly Warm-start joint optimization Training from scratch on final distillation



● We can formalize warm-started joint optimization by considering a proximally 
regularized inner objective:

Proximal Inner Objective
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● We define notions of cold-start and warm-start equilibria, which correspond to different 
solutions than optimistic and pessimistic bilevel opt



● Toy linear regression w/ one learned 
datapoint constrained to move along a line in 
data-space

Intuition for Cold-Start and Warm-Start Behavior
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● Cold-start always projects from the origin 
onto the solution set for the current datapoint

● Warm-start projects from the current weights 
onto the solution set

○ By successive projection between solution 
sets, the inner parameters will converge to 
the intersection of the solution sets, yielding 
inner params that perform well for multiple 
outer params simultaneously

○ Note that we do not necessarily converge to 
the optimal validation loss



● Anti-distillation: more learned datapoints than original dataset examples
● One validation data point and 13 synthetic training points, so any solution that places a learned 

datapoint on top of the validation point perfectly fits the outer objective.
● We use Fourier-basis regression, where the low frequency terms have larger amplitude than high 

frequency terms
● The quality of hypergradient approximations induces a trade-off between the inner and outer 

parameter norms—e.g., we can achieve the good performance for the outer objective by either 
making larger updates to the inner or the outer parameters

Outer Overparameterization: Anti-Distillation
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●

Revisiting Overparam Bilevel Solutions

Add visualization of the
Data without any fit

(a bit more complicated)
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