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Bilevel Optimization & Hypergradients

e A bilevel optimization problem consists of two , Where the outer
problem must be solved subject to optimality of the inner problem:

x* € argmin F(x,y")

X

y" € S(x) = argmin f(x,y)
y

e Hypergradient for a given solution y* € S(x) is:

dF(x,y") _ OF N OF 0y*
dx ox  OJy* 0x



The Many Uses of Response Jacobians

e The response Jacobian g is a central quantity of interest for many applications
X

Response Jacobians in Bilevel Settings

Hyperparameter optimization (including data augmentation and NAS)
Dataset distillation

GANs

Actor-critic methods and multi-agent RL

Adversarial training

Meta-learning

Response Jacobians in Non-Bilevel Settings

e Influence functions to estimate the effect of changing the weighting of a training point
e Implicit layers in equilibrium models
e Optimizing convergent recurrent neural networks (via recurrent backpropagation)



Computing the Response and its Jacobian

e Exactly computing a
o We typically approximate y* or % or both — leads to

e Common to approximate the best-response via truncated unrolls of the inner problem:
y'(x) ~ ®r(yo,x)

e The two main ways to compute the best-response Jacobian are:

1. Differentiation through unrolling (a.k.a. )
dy* _ d®x(yo,x)
dx dx
2. , applicable when we are at the converged solution to the inner problem:

dy* [ O*f \ ' 9%f
dx Oyoy " dyOx



Implicit Differentiation

)

dx Oyoy " JyO0x
e The to compute for large networks
e Two main approximations to the inverse Hessian have been proposed in the literature

o Both can be

Conjugate Gradient (CG) Neumann Series

oo

Solve the linear system with CG

T-'=> (I-T)
O%f '\ dy* % f k=0
oyoyT ) dx  OyOx 2 -1k j
Of S (1- i
Oydy' o Oydy '
e CGis only applicable when the matrix Connection between diff-through-opt and
to be inverted is PSD implicit differentiation: unrolling differentiation for
e  Empirically, using truncated CG can i steps starting from optimal inner parameters is
have very different inductive bias than equivalent to approximating the inverse Hessian

truncated Neumann with the first i terms in the Neumann series.



Uniqueness of the Inner Solution

X*@ﬂg min F'(x,y")
Y @S(x) = argmin f(x,y)
When the inner problem is : there are many equally good solutions to the inner

optimization, so the best response is a

Different choices of inner parameters yield different best-response Jacobians, which lead to different
hypergradients
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Cold-Start and Warm-Start Bilevel Optimization

° re-initialize the inner parameters and run the inner optimization to
convergence each time we compute the gradient for the outer parameters

o Impractical due to the computational expense of full inner optimization
° jointly optimize the inner and outer parameters in an online fashion, e.g.,
alternating gradient steps with their respective objectives

o Here, the inner params are warm-started from the approximate solution to the inner

optimization given the outer params in the previous iteration
o The optimization dynamics can lead to an implicit regularization effect

Training on the data directly Warm-start joint optimization Training from scratch on final distillation




Proximal Inner Objective

e \We can formalize warm-started joint optimization by considering a proximally
reqularized inner objective:

* ; € 2
y" € argmin{ f(x,y) + 5 ly — y&l|"}
Yy

e \We define notions of cold-start and warm-start equilibria, which correspond to different
solutions than optimistic and pessimistic bilevel opt

Cold-Start Warm-Start

A Y - k)5 5,/ _ L OF 9y,
Update Xt4+1 = Xt e} Jy* Ox , Xt41 =Xt — & dy: o
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Intuition for Cold-Start and Warm-Start Behavior

e Toy linear regression w/ one learned

datapoint constrained to move along a line in 41
data-space
N
e Cold-start always projects from the origin =2
onto the solution set for the current datapoint : -
e Warm-start projects from the current weights —— Warm (Full)
onto the solution set 0 Warm (Online)
o By successive projection between solution Cold \
sets, the inner parameters will converge to : : —\
the intersection of the solution sets, yielding 0 2 4
inner params that perform well for multiple W1
outer params simultaneously Figure 4: Parameter-space view of warm-start
o Note that we do not necessarily converge to with full inner optimization, warm-start with par-
the optimal validation loss tial inner optimization (denoted the “online” set-

ting, which most closely resembles what is done
in practice), and cold-start optimization.



Outer Overparameterization: Anti-Distillation

Anti-distillation: more learned datapoints than original dataset examples
One validation data point and 13 synthetic training points, so any solution that places a learned
datapoint on top of the validation point perfectly fits the outer objective.
We use Fourier-basis regression, where the low frequency terms have larger amplitude than high

frequency terms

The quality of hypergradient approximations induces a trade-off between the inner and outer
parameter norms—e.g., we can achieve the good performance for the outer objective by either

making larger updates to the inner or the outer parameters
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Revisiting Overparam Bilevel Solutions
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(a bit more complicated)






