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Introduction

Goal:

e Gradient-based hyperparameter optimization, which scales to
problems with as many - or more - hyperparameters than
parameters.

Why?
e Generalization of neural networks is critically tied to
hyperparameters.
e Existing methods have various limitations - particularly for
high-dimensional hyperparameters.

e Interesting new techniques if we aren't constrained to have
low-dimensional hyperparameters!



Learned Data Augmentation

Original Sample 1 Sample 2 Pixel Std.

Figure 1: A visualization of the learned data augmentatlon. The original
image is on the left, followed by samples and the standard deviation of the
pixel intensities from the augmentation distribution.

The hyperparameters are weights in a U-Net [17], which learns a
stochastic data augmentation: x' = Ux(x,¢€),e ~ N(0,/),x ~ D.



Contributions

e We show how implicit differentiation is the limit of
differentiating through optimization.

e We scale implicit differentiation to optimize hyperparameters of
modern, deep nets with computationally feasible approximations
to the inverse-Hessian of the training loss.

e We present a simple algorithm with few
(hyper-hyper-)parameters, which scales to millions of
hyperparameters with a similar cost to evaluating training
gradients.



Hyperparameter Optimization is Nested Optimization

Lt is training loss.

Ly is validation loss.
® W are parameters.

A are hyperparameters.

w*(\) are best parameters on train loss given hyperparameters:

w*(A) = argmin L1 (A, w)

Want to optimize validation loss using optimal parameters:



Hypergradients are indirect

e The gradient is difficult to compute because we need the
Jacobian of the best-response, which requires differentiating
through optimization:

DL _ dLyw(r) dw (A)
oA T owx(A) oA
N——
hypergradient
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Theorem (Implicit Function Theorem)

If dﬁT o |arw = 0 for some (X', w') and regularity conditions are
sat/sfled, then surrounding (X', w’) there exists a function w*(X) s.t.
oL _

TWT|>\,W*()\) =0 and

M:_[ 2Ly }*1 82£T ‘
oX owow™ | gwoAT Iaw(n)



e |dea used in “Gradient-based Hyperparameter Optimization”,
Bengio, 2000.

: . 2 ,
e But inverting 83§;T costs O(D3) where D is number of

parameters, so limited to toy problems.

e We scale to millions of parameters by approximating inverse
Hessian product with efficient Jacobian-vector products.



e The IFT only holds in a neighborhood around a locally optimal
w*(A).

e But, isn't the problem that it's difficult to evaluate w*(\), so
we can apply the IFT?

e Not really - we can evaluate w*(’) for some fixed A’ by doing
gradient descent on w.

e What's actually difficult is finding the best-response Jacobian at

: /. Ow*
some fixed \': Y

\
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e In-practice [w*(A) — w*(A)|| < €, where w*(A) = SGD(wpg, A).

e Check out HOAG [16] for results about consequences of this
sub-optimality (i.e., w*(X) # w*(X)).

e If we know Lipschitz constants of the various functions (we

don’t), we can bound the error introduced by approximations.

o If w*(A) # w*(X), we have an additional term for how the

inverse-training-Hessian changes as the hyperparameters change:

o[22 177
OwowT ALy
oA ow -~
J[ o 17
f w =3 h 9| owowT ALy aLr _
o If w*(A) = w*(A), then ———3——FT =0, since FF =

by optimality conditions.
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e Also, we invert a large matrix.

e We use tractable inverse approximations consisting of only
vector-Jacobian products.

A il . 71
e In-practice || {ﬁ} - { P } | <e.

owowT owowT

2 -1, S :
e Here, [aiaﬁ\;T} is the result of some approximation like using

CG or a Neumann series.

e Again, check out HOAG [16] for results about potential
consequences of this.

A (IFT)
2N Owow T OwOoXT Now* (\)

training Hessian  training mixed partials
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How can we efficiently approximate

_ 0Ly
- Ow

|

Ly
Owow "

r?
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Ly

Owow "

- . o 02[:_'_
How can we efficiently approximate v = %>~ [7} 7

Initial ideas:

e Solve for

with conjugate gradient (CG) - ex., Pedregosa [16].
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How can we efficiently approximate v = %>~ [W} 7

Initial ideas:

e Solve for v with conjugate gradient (CG) - ex., Pedregosa [16].

0% Lr
OwowT

-1
e Approximate [ } ~ | - ex., Luketina et al. [11].
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= - _ ooy [ cr
How can we efficiently approximate v = %>~ [W} 7

Initial ideas:

e Solve for v with conjugate gradient (CG) - ex., Pedregosa [16].

0% Lr
OwowT

-1
e Approximate [ } ~ | - ex., Luketina et al. [11].

p -1
e Build on-line approximation of [ aﬁfﬂ with KFAC [14].
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Unrolled optimization [Domke 2012, Maclaurin et al., 2015]
approximates best-response function w*(A) ~ w;(A), where

wit1(A) == wi(A) + W

SGD Step

15



Unrolled optimization [Domke 2012, Maclaurin et al., 2015]
approximates best-response function w*(A) ~ w;(A), where

wit1(A) == wi(A) + W

SGD Step

i— e * . )
If wj —= w*, then %K' . %i)\ (with some assumptions).
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An Interesting Connection

9Ly
OwoAT

e This is (almost) the same gradient as using implicit

differentiation with [‘02& }7 ~ /!

Owow "

owy __
e Note that =1

A7W0 .

e If we unrolled from a locally optimal w*(A) instead of wg, they
would be exactly the same.

e |dea: %‘3’\" is the same as using implicit differentiation with an
-1
approximation of L*)i:tﬁﬁ , which is exact as i — oo (if we

unroll from a locally optimal w*(\)).

e Consequence: Unify unrolled optimization and implicit
differentiation.
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Unifying Unrolled Optimization and Implicit Differentiation

Lemma (2)

Given the recurrence from unrolling SGD optimization

(wo given, wii1(X\) = w;(A) + W}, we have:

BZL‘T 1
wi () | OWOAT X w, (N (1)

Do =S AT+ o2,

J<i | k<j

This gives an approximate best-response Jacobian provided by
unrolling for i steps.

Ugly, but will show it massively simplifies if we unroll from w*(\) as
initial condition instead of an arbitrary wy.
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e Why did we choose to telescope the recurrence for w; and
group the terms like this?

e Because we want to use properties of Neumann Series
converging to inverses.

e If T is contractive:
(Id—T)~ Z Tk (2)

e This is just a generalization of == = > 770 x'.

e Can generalize w;(A) + W to opt(A, w;i(A)) for

optimizers opt besides SGD, where 85§t =T.
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Theorem

Given the SGD recurrence, if wg = w*(X):

aW,'_;’_]_ 82/ J 92
_ T T
O\ Z |:I + 8W8WT:| OwoXT (3)
J<i
w*(A)
. 52 . .
and if | + a(\i 85“} is contractive:
fim Wil _ [ oter 17V otk (4)
oo ON Owow OwOoAT

w*(X)

Eq. 3 allows us to approximate the inverse-Hessian-vector product

with a repeated vector-Hessian product by unrolling from w*(\). 19



Neumann Inverse Approximation

e Old trick: (I — T)™ ! = > 20 T/ if T contractive.

e : So,

{ 02 Lr } _Z [/+ 02y }J
owow T - owowT
j=0

. ) = [ . J
oo, [ o2er 17V _ osy o2Lr
ow |:0W0WT:| - ow Z |:I + Owow T

e We can compute each term using only vector-Jacobian
products! Thus, cost per term is a constant multiple of
evaluating training loss.
20



Algorithm 1 approxInverseJVP(v,f): Neumann Series approxima-
tion of v [(9 ]t

1: Initialize p = v

2: forj=0...ido

3: v += grad(f, w, grad_outputs = v) > Here, f = %%
4 p+=v

5: return p

grad(f,w, grad_outputs = v) is PyTorch notation to compute the

Jacobian-vector product g—fv
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Algorithm 2 Gradient-based parameter & hyperparam optimization

1: while not converged do

2: for k=1...N do >ex., N=25
3: W —= S~
4: A—= IFT_hypergradient(EV, L1, A, w)
5. return A\, w

Algorithm 3 IFT_hypergradient(Ly, Lr, A, w')

a
1: v = 8761/’)\' w’
2: vy = approxInverseJVP(vi, G

. MY
3: return grad(%,w,grad_outputs = vp) > Approximates %

8[:1- )
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Related algorithms

e Changing Alg. 1 by setting i = 0 recovers T1 — T2 [11].

e Changing Alg. 1 to use conjugate gradient is used in Bengio [2]
and HOAG [16].

e Can change Alg. 1 to use KFAC [14].

Hessian Inverse Hessian

Figure 2: 2nd order info for logistic regression on MNIST. The
7850 x 7850 images have been down-sampled & clipped for visualization.
Red & blue indicates a large & small magnitudes respectively. 24



Comparison

Method Steps Best-Response Jacobian Approximation
N2 -1 2
Exact IFT ee {dﬁmﬁxT} aa,aﬁ;\T
w*(A)
i 52 -1
Bengio [2], [9 00 (25| S5
w*(X)
-1 9%
T1- T2 [11] 1 U4 P

Unrolled Diff. [3, 13]

Us - Hessian

Us - Gauss-Newton

Hypernetwork [10, 12]

Ly > Ly
Zjﬁi |:Hk<j I+ owowT Wr‘k:| OwoT w
Z I+ ﬁzﬁ'r J 82L‘T
j<i Oowow’T OowoxT

orroce’ ]\ _o%c
(Syei [+ 355] ) 2
o w(X)
(,)“;f where w; (A) = arg min,, L1 (A, wg(A))

i~

W (A)
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Experiments




A Sanity Check

e First, verify we can optimize the validation loss.
e We train models with many more parameters and
hyperparameters than data points.

e Hopefully, we achieve near perfect training and validation
performance.

e We train models with 50 train and validation datapoints on
different architectures & datasets, with a separate weight decay
hyperparameter for each weight.
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Overfitting Small Problems

CIFAR
1.0 -
—— Training
5 0.8 —— Validation =&
,_E —— Test
5 0.6 —— TLinear
E 04 1-Layer
@ —— LeNet
S 02 AlexNet
—— ResNet44
0.0—% I
10 10

[teration

Figure 3: In all examples we are able to achieve 100 % training and
validation accuracy, while the testing accuracy is significantly lower. An
identity inverse approximation is used here. 27



Overfitting Small Problems

MNIST
1.0

0.8
0.6

0.4

Classification Error

0.2

0.0

Iteration

Figure 4: In all examples we are able to achieve 100 % training and
validation accuracy, while the testing accuracy is significantly lower. An

identity inverse approximation is used here. 28



Overfitting Small Problems

e Thus, we can successfully optimize high-dimensional
hyperparameters of the L2 norm of each weight.

e More than 1,000,000 hyperparameters in AlexNet [8] and
ResNet [7]!

e But, our test performance is near random.

e Are there sensible ways to introduce millions of
hyperparameters?

e How should training / validation / testing partitions be

constructed when we have many hyperparameters?
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Comparison with KFAC

10 |—— Direct
—— KFAC
_4 |— Identity
—— Zero

10° 10' 10° 10° 10
Iteration
Figure 5: A comparison for different inversion approximations for our
algorithm are presented. “Direct” means exact IFT. Exact inversion
eventually fails from numerical errors.

Validation Loss £y

Takeaway - KFAC does well on logistic regression, but we were
unable to achieve improved performance for deep networks.
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Dataset Distillation

CIFAR-10 distillation

EEECRAENE M

MNIST distillation

FEEEDNERDNMEHEQG

Figure 6: We learn 1 distilled image for each class, so after a logistic
regression classifier has been trained on the distillation, it generalizes to
the rest of the dataset. We fit 30 720 and 7840 hyperparameters for
CIFAR-10 and MNIST respectively.
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Dataset Distillation

CIFAR-100 distillation - 300 720 hyperparameters

CEERS » SREAP: 4 54 1
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Learned Augmentations
Original Sample 1 Sample 2 Pixel Std.

Figure 7: A visualization of the learned data augmentatlon. The original
image is on the left, followed by samples and the standard deviation of the
pixel intensities from the augmentation distribution.

iﬁﬁ

The hyperparameters are weights in a U-Net [17], which learns a

stochastic data augmentation: x’ = Ux(x,€),e ~ N(0, /). .



Learned Augmentation Results

Accuracy Distribution

Strategy Train Validation Test

Standard Aug. 100 +0.000 % 92.5 £0.021 % 92.6 +0.017 %
Learned Aug.  99.9 £0.001 % 95.1 £0.002 % 94.6 +0.001 %

e Results are computed over 10 random seeds for a ResNet
architecture.

e The baseline accuracy has a lower mean, and much higher
variance than learned augmentations.

e Used 2-steps of Neumann series with a Gauss-Newton
approximation.

e Total compute cost of learning the augmentations is about 3x

. . . 34
baseline per iter, 2x per training run.



e Can't use this for optimization hyperparameters

e not clear what can be done for discrete hypers.
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Future Directions

e What about as an alternative for methods like LOLA [4], when
learning in arbitrary Stackelberg games?

e What are interesting ways to use large number of
hyperparameters?

e When does having a large number of hyperparameters just
overfit the validation set?

36



Approximate Implicit Differentiation for GANs

e Can we use implicit differentiation to help with GAN [5]
training?

G* =argmin L;(G, D*(G)), D*(G) := argmin Lp(G, D)
G D

aD*

=

e But, simple zero-sum GAN formulations where L = —Lp
always have a direct gradient. Maybe its fine to ignore the
response?

e Simultaneous SGD ignores the best-response Jacobian

e Metz et al. [15] use differentiation through optimization to

approximate %DG* .
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Conclusion

e Implicit function theorem gives a family of tractable inverse

approximations.

e Just using an identity approximation with efficient
Jacobian-vector products works pretty well for tuning millions of

hyperparameters.

e What to do with this new ability?
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Related Algorithms

il
e Try approximating [86 Lk } = I, which is equivalent to using

only the first term from the Neumann series.

e This was proposed in T1 — T2 Luketina et al. [11], but they
were only able to optimize 10 - 20 hyperparameters, where we
are able to optimize >1 000000 hyperparameters. It's not clear
why they were unable to scale.

e Adding more terms from the Neumann series provides more
accurate hypergradients.

2 . .
e We can replace % with the Gauss-Newton matrix

oy T oLy
ow ow -~

e This massively simplifies the computation because we only need

to compute E once.
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Related algorithms

e Changing Alg. 3 to use Hypernetworks [6] recovers
self-tuning-nets [10, 12].

e Can change Alg. 3 to use Unrolled Optimization [3, 13].

e Changing Alg. 3 to use an acquisition function on a GP for
tuples of (X, £j(A)) recovers Bayesian Optimization-type
algorithms [18].

For Bayesian Optimization & Random Search it's common to
re-initialize w in Alg. 2 after changing A, but this wastes a lot
of computational effort.
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Hyperparameter Optimization is a Pure-Response Game

e Simultaneous SGD uses only the
e This sometimes works for games with a non-zero
. Ex., zero-sum games [1].

e The direct gradient is often identically zero for hyperparameter
optimization. This makes hyperparameter optimization
uniquely hard!

e Thus, we must approximate the indirect gradient - can't use
simple choices like simultaneous SGD.

Identically 0! hyperparameter indirect grad.
aLy(A) _ Lon0wra)  owr )
x| = ow* (X) A
hypergradient parameter direct grad. best-response Jacobian

_ 95y w*
—( +aT,a“i)

Aw* () 42
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